Fixed planet spining while in orbit

Added star colorization
This commit is contained in:
LemADEC 2017-03-04 20:54:18 +01:00
parent 71857b21bc
commit a6a6adcfbd

View file

@ -4,6 +4,7 @@ import cr0s.warpdrive.WarpDrive;
import cr0s.warpdrive.config.WarpDriveConfig;
import cr0s.warpdrive.data.CelestialObject;
import java.awt.Color;
import java.util.Random;
import net.minecraft.client.Minecraft;
@ -282,8 +283,8 @@ public class RenderSpaceSky extends IRenderHandler {
final double transitionOrbit = Math.max(0.0D, Math.min(PLANET_ORBIT, distanceToBorder)) / PLANET_ORBIT;
// relative position above celestialObject
final double offsetX = (1.0 - transitionOrbit) * (celestialObject.borderRadiusX - distanceToCenterX) / celestialObject.borderRadiusX;
final double offsetZ = (1.0 - transitionOrbit) * (celestialObject.borderRadiusZ - distanceToCenterZ) / celestialObject.borderRadiusZ;
final double offsetX = (1.0 - transitionOrbit) * (distanceToCenterX / celestialObject.borderRadiusX);
final double offsetZ = (1.0 - transitionOrbit) * (distanceToCenterZ / celestialObject.borderRadiusZ);
// simulating a non-planar universe...
final double planetY_far = (celestialObject.dimensionId + 99 % 100 - 50) * Math.log(distanceToCenter) / 4.0D;
@ -307,7 +308,13 @@ public class RenderSpaceSky extends IRenderHandler {
@SuppressWarnings("SuspiciousNameCombination")
final double angleV_far = Math.atan2(Math.sqrt(distanceToCenterX * distanceToCenterX + distanceToCenterZ * distanceToCenterZ), planetY);
final double angleV = Math.PI * (1.0D - transitionOrbit) + angleV_far * transitionOrbit;
final double angleS = 0.15D * celestialObject.dimensionId * transitionApproaching; // + (world.getTotalWorldTime() + partialTicks) * Math.PI / 6000.0D;
final double angleS = 0.15D * celestialObject.dimensionId * transitionApproaching // + (world.getTotalWorldTime() + partialTicks) * Math.PI / 6000.0D;
+ angleH * (1.0D - transitionApproaching);
if (celestialObject.dimensionId == 1 && (Minecraft.getSystemTime() / 10) % 100 == 0) {
WarpDrive.logger.info(String.format("transition Far %.2f Approaching %.2f Orbit %.2f distanceToCenter %.3f %.3f offset %.3f %.3f angle H %.3f V_far %.3f V %.3f S %.3f",
transitionFar, transitionApproaching, transitionOrbit, distanceToCenterX, distanceToCenterZ, offsetX, offsetZ, angleH, angleV_far, angleV, angleS));
}
// pre-computations
final double sinH = Math.sin(angleH);
@ -328,9 +335,9 @@ public class RenderSpaceSky extends IRenderHandler {
final double valH = offset2 * cosS + offset1 * sinS;
final double y = valV * sinV + renderRange * cosV;
final double valD = renderRange * sinV - valV * cosV;
final double x = valD * sinH - valH * cosH;
final double z = valH * sinH + valD * cosH;
tessellator.addVertexWithUV(100 * (1 - offsetX) + x, y, 100 * (1 - offsetZ) + z, (indexVertex & 2) / 2, (indexVertex + 1 & 2) / 2);
final double x = valD * sinH - valH * cosH + renderSize * offsetX;
final double z = valH * sinH + valD * cosH + renderSize * offsetZ;
tessellator.addVertexWithUV(x, y, z, (indexVertex & 2) / 2, (indexVertex + 1 & 2) / 2);
}
tessellator.draw();
@ -341,17 +348,22 @@ public class RenderSpaceSky extends IRenderHandler {
final Random rand = new Random(10842L);
final boolean hasMoreStars = rand.nextBoolean() || rand.nextBoolean();
final Tessellator tessellator = Tessellator.instance;
tessellator.startDrawingQuads();
for (int indexStars = 0; indexStars < (hasMoreStars ? 20000 : 6000); indexStars++) {
double randomX = rand.nextDouble() * 2.0D - 1.0D;
double randomY = rand.nextDouble() * 2.0D - 1.0D;
double randomZ = rand.nextDouble() * 2.0D - 1.0D;
final double lambda = 1.2D;
final double renderSize = 0.10F + 0.03F * Math.log(1.0D - rand.nextDouble()) / (-lambda); // random.nextFloat() * 0.5F;
double randomLength = randomX * randomX + randomY * randomY + randomZ * randomZ;
final double renderRangeMax = 200.0D;
for (int indexStars = 0; indexStars < (hasMoreStars ? 20000 : 2000); indexStars++) {
double randomX;
double randomY;
double randomZ;
double randomLength;
do {
randomX = rand.nextDouble() * 2.0D - 1.0D;
randomY = rand.nextDouble() * 2.0D - 1.0D;
randomZ = rand.nextDouble() * 2.0D - 1.0D;
randomLength = randomX * randomX + randomY * randomY + randomZ * randomZ;
} while (randomLength >= 1.0D || randomLength <= 0.90D);
final double renderSize = 0.4F + 0.05F * Math.log(1.1D - rand.nextDouble());
if (randomLength < 1.0D && randomLength > 0.01D) {
// forcing Z-order
randomLength = 1.0D / Math.sqrt(randomLength);
randomX *= randomLength;
@ -359,9 +371,9 @@ public class RenderSpaceSky extends IRenderHandler {
randomZ *= randomLength;
// scaling
final double x0 = randomX * 100.0D;
final double y0 = randomY * 100.0D;
final double z0 = randomZ * 100.0D;
final double x0 = randomX * renderRangeMax;
final double y0 = randomY * renderRangeMax;
final double z0 = randomZ * renderRangeMax;
// angles
@SuppressWarnings("SuspiciousNameCombination")
@ -370,6 +382,10 @@ public class RenderSpaceSky extends IRenderHandler {
final double angleV = Math.atan2(Math.sqrt(randomX * randomX + randomZ * randomZ), randomY);
final double angleS = rand.nextDouble() * Math.PI * 2.0D;
// colorization
final int rgb = getStarColorRGB(rand);
GL11.glColor4f(((rgb >> 16) & 0xFF) / 255.0F, ((rgb >> 8) & 0xFF) / 255.0F, (rgb & 0xFF) / 255.0F, 1.0F /* isSpace ? 1.0F : 0.2F /**/);
// pre-computations
final double sinH = Math.sin(angleH);
final double cosH = Math.cos(angleH);
@ -378,6 +394,7 @@ public class RenderSpaceSky extends IRenderHandler {
final double sinS = Math.sin(angleS);
final double cosS = Math.cos(angleS);
tessellator.startDrawingQuads();
for (int indexVertex = 0; indexVertex < 4; indexVertex++) {
final double valZero = 0.0D;
final double offset1 = ((indexVertex & 2) - 1) * renderSize;
@ -390,10 +407,62 @@ public class RenderSpaceSky extends IRenderHandler {
final double z1 = valH * sinH + valD * cosH;
tessellator.addVertex(x0 + x1, y0 + y1, z0 + z1);
}
}
tessellator.draw();
}
tessellator.draw();
}
// colorization loosely inspired from Hertzsprung-Russell diagram
// (we're using it for non-star objects too, so yeah...)
private static int getStarColorRGB(Random rand) {
final double colorType = rand.nextDouble();
float hue;
float saturation;
float brightness = 1.0F - 0.8F * rand.nextFloat(); // distance effect
if (colorType <= 0.08D) {// 8% light blue (young star)
hue = 0.48F + 0.08F * rand.nextFloat();
saturation = 0.18F + 0.22F * rand.nextFloat();
} else if (colorType <= 0.24D) {// 22% pure white (early age)
hue = 0.126F + 0.040F * rand.nextFloat();
saturation = 0.00F + 0.15F * rand.nextFloat();
brightness *= 0.95F;
} else if (colorType <= 0.45D) {// 21% yellow white
hue = 0.126F + 0.040F * rand.nextFloat();
saturation = 0.15F + 0.15F * rand.nextFloat();
brightness *= 0.90F;
} else if (colorType <= 0.67D) {// 22% yellow
hue = 0.126F + 0.040F * rand.nextFloat();
saturation = 0.80F + 0.15F * rand.nextFloat();
if (rand.nextInt(3) == 1) {// yellow giant
brightness *= 0.90F;
} else {
brightness *= 0.85F;
}
} else if (colorType <= 0.92D) {// 25% orange
hue = 0.055F + 0.055F * rand.nextFloat();
saturation = 0.85F + 0.15F * rand.nextFloat();
if (rand.nextInt(3) == 1) {// (orange giant)
brightness *= 0.90F;
} else {
brightness *= 0.80F;
}
} else {// red (mostly giants)
hue = 0.95F + 0.05F * rand.nextFloat();
if (rand.nextInt(3) == 1) {// (red giant)
saturation = 0.80F + 0.20F * rand.nextFloat();
brightness *= 0.95F;
} else {
saturation = 0.70F + 0.20F * rand.nextFloat();
brightness *= 0.65F;
}
}
return Color.HSBtoRGB(hue, saturation, brightness);
}
private static Vec3 getCustomSkyColor() {