Added typing; added clarification

This commit is contained in:
Fabian Wunsch 2022-04-11 20:43:51 +02:00
parent 95c706f95a
commit 132798351d

View file

@ -4,36 +4,49 @@
""" """
from math import sqrt from math import sqrt
import time import time
from typing import Tuple, List
# Python3 # Python3
from queue import PriorityQueue from queue import PriorityQueue
from math import inf from math import inf
Point = Tuple[float, float]
Polygon = List[Point]
def _point_to_polygon_distance(x, y, polygon): SQRT2 = sqrt(2)
inside = False
min_distance_squared = inf
previous = polygon[-1]
def _point_to_polygon_distance(x: float, y: float, polygon: Polygon) -> (float, float):
inside: bool = False
min_distance_squared: float = inf
max_distance_sqared: float = -inf
previous: Point = polygon[-1]
for current in polygon: for current in polygon:
if ((current[1] > y) != (previous[1] > y) and if ((current[1] > y) != (previous[1] > y) and
(x < (previous[0] - current[0]) * (y - current[1]) / (previous[1] - current[1]) + current[0])): (x < (previous[0] - current[0]) * (y - current[1]) / (previous[1] - current[1]) + current[0])):
inside = not inside inside = not inside
min_distance_squared = min(min_distance_squared, _get_segment_distance_squared(x, y, current, previous)) min_distance_squared = min(min_distance_squared, _get_segment_distance_squared(x, y, current, previous))
max_distance_sqared = max(max_distance_sqared, _get_max_point_distance(x, y, current))
previous = current previous = current
result = sqrt(min_distance_squared) result: float = sqrt(min_distance_squared)
max_result: float = sqrt(max_distance_sqared)
if not inside: if not inside:
return -result return -result, -max_result
return result return result, max_result
def _get_segment_distance_squared(px, py, point_a, point_b): def _get_max_point_distance(px: float, py: float, point: Point) -> float:
x = point_a[0] return (px - point[0]) ** 2 + (py - point[1]) ** 2
y = point_a[1]
dx = point_b[0] - x
dy = point_b[1] - y def _get_segment_distance_squared(px: float, py: float, point_a: Point, point_b: Point) -> float:
x: float = point_a[0]
y: float = point_a[1]
dx: float = point_b[0] - x
dy: float = point_b[1] - y
if dx != 0 or dy != 0: if dx != 0 or dy != 0:
t = ((px - x) * dx + (py - y) * dy) / (dx * dx + dy * dy) t = ((px - x) * dx + (py - y) * dy) / (dx * dx + dy * dy)
@ -53,12 +66,15 @@ def _get_segment_distance_squared(px, py, point_a, point_b):
class Cell(object): class Cell(object):
def __init__(self, x, y, h, polygon): def __init__(self, x: float, y: float, h: float, polygon: Polygon):
self.h = h self.h: float = h
self.y = y self.y: float = y
self.x = x self.x: float = x
self.d = _point_to_polygon_distance(x, y, polygon) min_dist, max_dist = _point_to_polygon_distance(x, y, polygon)
self.max = self.d + self.h * sqrt(2) self.min_dist: float = min_dist
self.max_dist: float = max_dist
self.max = self.min_dist + self.h * SQRT2
self.weight = self.max
def __lt__(self, other): def __lt__(self, other):
return self.max < other.max return self.max < other.max
@ -76,13 +92,13 @@ def __eq__(self, other):
return self.max == other.max return self.max == other.max
def _get_centroid_cell(polygon): def _get_centroid_cell(polygon: Polygon) -> Cell:
area = 0 area: float = 0
x = 0 x: float = 0
y = 0 y: float = 0
previous = polygon[-1] previous: Point = polygon[-1]
for current in polygon: for current in polygon:
f = current[0] * previous[1] - previous[0] * current[1] f: float = current[0] * previous[1] - previous[0] * current[1]
x += (current[0] + previous[0]) * f x += (current[0] + previous[0]) * f
y += (current[1] + previous[1]) * f y += (current[1] + previous[1]) * f
area += f * 3 area += f * 3
@ -92,13 +108,13 @@ def _get_centroid_cell(polygon):
return Cell(x / area, y / area, 0, polygon) return Cell(x / area, y / area, 0, polygon)
def polylabel(polygon, precision=0.5, debug=False, with_distance=False): def polylabel(polygon: Polygon, precision: float=0.5, debug: bool=False):
# find bounding box # find bounding box
first_item = polygon[0] first_item: Point = polygon[0]
min_x = first_item[0] min_x: float = first_item[0]
min_y = first_item[1] min_y: float = first_item[1]
max_x = first_item[0] max_x: float = first_item[0]
max_y = first_item[1] max_y: float = first_item[1]
for p in polygon: for p in polygon:
if p[0] < min_x: if p[0] < min_x:
min_x = p[0] min_x = p[0]
@ -109,64 +125,57 @@ def polylabel(polygon, precision=0.5, debug=False, with_distance=False):
if p[1] > max_y: if p[1] > max_y:
max_y = p[1] max_y = p[1]
width = max_x - min_x width: float = max_x - min_x
height = max_y - min_y height: float = max_y - min_y
cell_size = min(width, height) cell_size: float = min(width, height)
h = cell_size / 2.0 h: float = cell_size / 2.0
cell_queue = PriorityQueue() cell_queue: PriorityQueue[Tuple[float, int, Cell]] = PriorityQueue()
if cell_size == 0: if cell_size == 0:
if with_distance: return [(max_x - min_x) / 2, (max_y - min_y) / 2]
return [min_x, min_y], None
else:
return [min_x, min_y]
# cover polygon with initial cells # cover polygon with initial cells
x = min_x x: float = min_x
while x < max_x: while x < max_x:
y = min_y y: float = min_y
while y < max_y: while y < max_y:
c = Cell(x + h, y + h, h, polygon) c: Cell = Cell(x + h, y + h, h, polygon)
y += cell_size y += cell_size
cell_queue.put((-c.max, time.time(), c)) cell_queue.put((c.weight, time.time(), c))
x += cell_size x += cell_size
best_cell = _get_centroid_cell(polygon) best_cell: Cell = _get_centroid_cell(polygon)
bbox_cell = Cell(min_x + width / 2, min_y + height / 2, 0, polygon) bbox_cell: Cell = Cell(min_x + width / 2, min_y + height / 2, 0, polygon)
if bbox_cell.d > best_cell.d: if bbox_cell.min_dist > best_cell.min_dist:
best_cell = bbox_cell best_cell = bbox_cell
num_of_probes = cell_queue.qsize() num_of_probes = cell_queue.qsize()
while not cell_queue.empty(): while not cell_queue.empty():
_, __, cell = cell_queue.get() _, __, cell = cell_queue.get()
if cell.d > best_cell.d: if cell.min_dist > best_cell.min_dist:
best_cell = cell best_cell = cell
if debug: if debug:
print('found best {} after {} probes'.format( print(f'found best {round(cell.min_dist, 4)} after {num_of_probes} probes')
round(1e4 * cell.d) / 1e4, num_of_probes))
if cell.max - best_cell.d <= precision: if cell.max - best_cell.min_dist <= precision:
continue continue
h = cell.h / 2 h = cell.h / 2
c = Cell(cell.x - h, cell.y - h, h, polygon) c = Cell(cell.x - h, cell.y - h, h, polygon)
cell_queue.put((-c.max, time.time(), c)) cell_queue.put((c.weight, time.time(), c))
c = Cell(cell.x + h, cell.y - h, h, polygon) c = Cell(cell.x + h, cell.y - h, h, polygon)
cell_queue.put((-c.max, time.time(), c)) cell_queue.put((c.weight, time.time(), c))
c = Cell(cell.x - h, cell.y + h, h, polygon) c = Cell(cell.x - h, cell.y + h, h, polygon)
cell_queue.put((-c.max, time.time(), c)) cell_queue.put((c.weight, time.time(), c))
c = Cell(cell.x + h, cell.y + h, h, polygon) c = Cell(cell.x + h, cell.y + h, h, polygon)
cell_queue.put((-c.max, time.time(), c)) cell_queue.put((c.weight, time.time(), c))
num_of_probes += 4 num_of_probes += 4
if debug: if debug:
print('num probes: {}'.format(num_of_probes)) print(f'num probes: {num_of_probes}')
print('best distance: {}'.format(best_cell.d)) print(f'best distance: {best_cell.min_dist}')
if with_distance:
return [best_cell.x, best_cell.y], best_cell.d
else:
return [best_cell.x, best_cell.y] return [best_cell.x, best_cell.y]