""" From https://github.com/Twista/python-polylabel/, which is in turn implemented from https://github.com/mapbox/polylabel """ from math import sqrt import time # Python3 from queue import PriorityQueue from math import inf def _point_to_polygon_distance(x, y, polygon): inside = False min_distance_squared = inf previous = polygon[-1] for current in polygon: if ((current[1] > y) != (previous[1] > y) and (x < (previous[0] - current[0]) * (y - current[1]) / (previous[1] - current[1]) + current[0])): inside = not inside min_distance_squared = min(min_distance_squared, _get_segment_distance_squared(x, y, current, previous)) previous = current result = sqrt(min_distance_squared) if not inside: return -result return result def _get_segment_distance_squared(px, py, point_a, point_b): x = point_a[0] y = point_a[1] dx = point_b[0] - x dy = point_b[1] - y if dx != 0 or dy != 0: t = ((px - x) * dx + (py - y) * dy) / (dx * dx + dy * dy) if t > 1: x = point_b[0] y = point_b[1] elif t > 0: x += dx * t y += dy * t dx = px - x dy = py - y return dx * dx + dy * dy class Cell(object): def __init__(self, x, y, h, polygon): self.h = h self.y = y self.x = x self.d = _point_to_polygon_distance(x, y, polygon) self.max = self.d + self.h * sqrt(2) def __lt__(self, other): return self.max < other.max def __lte__(self, other): return self.max <= other.max def __gt__(self, other): return self.max > other.max def __gte__(self, other): return self.max >= other.max def __eq__(self, other): return self.max == other.max def _get_centroid_cell(polygon): area = 0 x = 0 y = 0 previous = polygon[-1] for current in polygon: f = current[0] * previous[1] - previous[0] * current[1] x += (current[0] + previous[0]) * f y += (current[1] + previous[1]) * f area += f * 3 previous =current if area == 0: return Cell(polygon[0][0], polygon[0][1], 0, polygon) return Cell(x / area, y / area, 0, polygon) def polylabel(polygon, precision=0.5, debug=False, with_distance=False): # find bounding box first_item = polygon[0] min_x = first_item[0] min_y = first_item[1] max_x = first_item[0] max_y = first_item[1] for p in polygon: if p[0] < min_x: min_x = p[0] if p[1] < min_y: min_y = p[1] if p[0] > max_x: max_x = p[0] if p[1] > max_y: max_y = p[1] width = max_x - min_x height = max_y - min_y cell_size = min(width, height) h = cell_size / 2.0 cell_queue = PriorityQueue() if cell_size == 0: if with_distance: return [min_x, min_y], None else: return [min_x, min_y] # cover polygon with initial cells x = min_x while x < max_x: y = min_y while y < max_y: c = Cell(x + h, y + h, h, polygon) y += cell_size cell_queue.put((-c.max, time.time(), c)) x += cell_size best_cell = _get_centroid_cell(polygon) bbox_cell = Cell(min_x + width / 2, min_y + height / 2, 0, polygon) if bbox_cell.d > best_cell.d: best_cell = bbox_cell num_of_probes = cell_queue.qsize() while not cell_queue.empty(): _, __, cell = cell_queue.get() if cell.d > best_cell.d: best_cell = cell if debug: print('found best {} after {} probes'.format( round(1e4 * cell.d) / 1e4, num_of_probes)) if cell.max - best_cell.d <= precision: continue h = cell.h / 2 c = Cell(cell.x - h, cell.y - h, h, polygon) cell_queue.put((-c.max, time.time(), c)) c = Cell(cell.x + h, cell.y - h, h, polygon) cell_queue.put((-c.max, time.time(), c)) c = Cell(cell.x - h, cell.y + h, h, polygon) cell_queue.put((-c.max, time.time(), c)) c = Cell(cell.x + h, cell.y + h, h, polygon) cell_queue.put((-c.max, time.time(), c)) num_of_probes += 4 if debug: print('num probes: {}'.format(num_of_probes)) print('best distance: {}'.format(best_cell.d)) if with_distance: return [best_cell.x, best_cell.y], best_cell.d else: return [best_cell.x, best_cell.y]