0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-06-02 18:18:56 +02:00
construct/ircd/cl.cc

1763 lines
34 KiB
C++
Raw Normal View History

2021-01-04 11:29:40 +01:00
// The Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2021 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#include <dlfcn.h>
2021-01-04 11:29:40 +01:00
#include <CL/cl.h>
// Util
2021-01-04 11:29:40 +01:00
namespace ircd::cl
{
static bool is_error(const int &code) noexcept;
static int throw_on_error(const int &code);
template<class func, class... args> static int call(func&&, args&&...);
template<class T = string_view, class F, class id, class param> static T info(F&&, const id &, const param &, const mutable_buffer &);
template<class T = string_view, class F, class id0, class id1, class param> static T info(F&&, const id0 &, const id1 &, const param &, const mutable_buffer &);
2021-01-04 11:29:40 +01:00
}
// Runtime state
namespace ircd::cl
{
static const size_t
OPTION_MAX {8},
PLATFORM_MAX {8},
DEVICE_MAX {8};
static uint
options,
platforms,
devices[PLATFORM_MAX];
static char
option[OPTION_MAX][256];
static void
*linkage;
static cl_platform_id
platform[PLATFORM_MAX];
static cl_device_id
device[PLATFORM_MAX][DEVICE_MAX];
static cl_context
primary;
extern struct stats
primary_stats;
static cl_command_queue
queue[PLATFORM_MAX][DEVICE_MAX];
static void handle_notify(const char *, const void *, size_t, void *) noexcept;
}
struct ircd::cl::stats
{
template<class T>
using item = ircd::stats::item<T>;
item<uint64_t>
alloc_count,
alloc_bytes,
dealloc_count,
dealloc_bytes,
exec_tasks,
exec_kern_tasks,
exec_kern_threads,
exec_kern_groups,
exec_barrier_tasks;
};
decltype(ircd::cl::log)
ircd::cl::log
{
"cl"
};
decltype(ircd::cl::version_api)
ircd::cl::version_api
2021-01-04 11:29:40 +01:00
{
"OpenCL", info::versions::API, CL_TARGET_OPENCL_VERSION,
{
#if defined(CL_VERSION_MAJOR) && defined(CL_VERSION_MINOR) && defined(CL_VERSION_PATCH)
CL_VERSION_MAJOR(CL_TARGET_OPENCL_VERSION),
CL_VERSION_MINOR(CL_TARGET_OPENCL_VERSION),
CL_VERSION_PATCH(CL_TARGET_OPENCL_VERSION),
#endif
2021-01-04 11:29:40 +01:00
}
};
decltype(ircd::cl::version_abi)
ircd::cl::version_abi
2021-01-04 11:29:40 +01:00
{
"OpenCL", info::versions::ABI
2021-01-04 11:29:40 +01:00
};
decltype(ircd::cl::enable)
ircd::cl::enable
{
{ "name", "ircd.cl.enable" },
{ "default", false },
{ "persist", false },
};
decltype(ircd::cl::profile_queue)
ircd::cl::profile_queue
{
{ "name", "ircd.cl.profile.queue" },
{ "default", false },
{ "persist", false },
};
decltype(ircd::cl::primary_stats)
ircd::cl::primary_stats
{
{ { "name", "ircd.cl.alloc.count" } },
{ { "name", "ircd.cl.alloc.bytes" } },
{ { "name", "ircd.cl.dealloc.count" } },
{ { "name", "ircd.cl.dealloc.bytes" } },
{ { "name", "ircd.cl.exec.tasks" } },
{ { "name", "ircd.cl.exec.kern.tasks" } },
{ { "name", "ircd.cl.exec.kern.threads" } },
};
//
// init
//
ircd::cl::init::init()
{
if(!enable)
{
log::dwarning
{
log, "OpenCL hardware acceleration is not available or enabled."
};
return;
}
const ctx::posix::enable_pthread enable_pthread;
// Setup options
strlcpy{option[options++], "LP_NUM_THREADS=0"};
strlcpy{option[options++], "MESA_GLSL_CACHE_DISABLE=true"};
strlcpy{option[options++], "AMD_DEBUG=nogfx"};
assert(options <= OPTION_MAX);
// Configure options into the environment. TODO: XXX don't overwrite
while(options--)
sys::call(putenv, option[options]);
// Load the pipe.
assert(!linkage);
if(!(linkage = dlopen("libOpenCL.so", RTLD_LAZY | RTLD_GLOBAL)))
return;
// OpenCL sez platform=null is implementation defined.
info(clGetPlatformInfo, nullptr, CL_PLATFORM_VERSION, version_abi.string);
// Get the platforms.
call(clGetPlatformIDs, PLATFORM_MAX, platform, &platforms);
char buf[4][128];
for(size_t i(0); i < platforms; ++i)
log::logf
{
log, log::level::DEBUG,
"OpenCL:%d [%u][*] :%s :%s :%s :%s",
CL_TARGET_OPENCL_VERSION,
i,
info(clGetPlatformInfo, platform[i], CL_PLATFORM_VERSION, buf[0]),
info(clGetPlatformInfo, platform[i], CL_PLATFORM_VENDOR, buf[1]),
info(clGetPlatformInfo, platform[i], CL_PLATFORM_NAME, buf[2]),
info(clGetPlatformInfo, platform[i], CL_PLATFORM_EXTENSIONS, buf[3]),
};
size_t devices_total(0);
for(size_t i(0); i < platforms; ++i)
{
static const auto type
{
CL_DEVICE_TYPE_GPU | CL_DEVICE_TYPE_ACCELERATOR
};
call(clGetDeviceIDs, platform[i], type, DEVICE_MAX, device[i], devices + i);
devices_total += devices[i];
}
for(size_t i(0); i < platforms; ++i)
for(size_t j(0); j < devices[i]; ++j)
log::info
{
log, "OpenCL:%d [%u][%u] :%s :%s :%s :%s",
CL_TARGET_OPENCL_VERSION,
i,
j,
info(clGetDeviceInfo, device[i][j], CL_DEVICE_VERSION, buf[1]),
info(clGetDeviceInfo, device[i][j], CL_DEVICE_VENDOR, buf[2]),
info(clGetDeviceInfo, device[i][j], CL_DEVICE_NAME, buf[3]),
info(clGetDeviceInfo, device[i][j], CL_DRIVER_VERSION, buf[0]),
};
// Gather all devices we'll use.
size_t _devs {0};
cl_device_id _dev[DEVICE_MAX];
for(size_t i(0); i < platforms; ++i)
for(size_t j(0); j < devices[i]; ++j)
_dev[_devs++] = device[i][j];
// Create a context from gathered devices.
cl_int err {CL_SUCCESS};
cl_context_properties ctxprop {0};
primary = clCreateContext(&ctxprop, _devs, _dev, handle_notify, nullptr, &err);
throw_on_error(err);
// Create a queue for each device.
//cl_command_queue_properties qprop {0};
cl_queue_properties qprop {0};
qprop = (profile_queue? CL_QUEUE_PROFILING_ENABLE: cl_queue_properties(0));
//qprop |= CL_QUEUE_ON_DEVICE;
//qprop |= CL_QUEUE_ON_DEVICE_DEFAULT;
//qprop |= CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE;
for(size_t i(0); i < platforms; ++i)
for(size_t j(0); j < devices[i]; ++j)
{
//queue[i][j] = clCreateCommandQueue(primary, device[i][j], qprop, &err);
queue[i][j] = clCreateCommandQueueWithProperties(primary, device[i][j], &qprop, &err);
throw_on_error(err);
}
work::init();
}
ircd::cl::init::~init()
noexcept
{
if(!linkage)
return;
const ctx::posix::enable_pthread enable_pthread;
if(primary)
{
log::debug
{
log, "Shutting down OpenCL...",
};
work::fini();
}
for(size_t i(0); i < PLATFORM_MAX; ++i)
for(size_t j(0); j < DEVICE_MAX; ++j)
if(queue[i][j])
{
call(clReleaseCommandQueue, queue[i][j]);
queue[i][j] = nullptr;
}
if(primary)
{
call(clReleaseContext, primary);
primary = nullptr;
}
dlclose(linkage);
}
//
// interface
//
void
ircd::cl::sync()
{
auto &q
{
queue[0][0]
};
call
(
clFinish, q
);
}
void
ircd::cl::flush()
{
auto &q
{
queue[0][0]
};
call
(
clFlush, q
);
}
//
// exec
//
namespace ircd::cl
{
static const size_t _deps_list_max {32};
static thread_local cl_event _deps_list[_deps_list_max];
static void handle_submitted(cl::exec *const &, const exec::opts &);
static vector_view<cl_event> make_deps_default(cl::work *const &, const exec::opts &);
static vector_view<cl_event> make_deps(cl::work *const &, const exec::opts &);
}
template<>
decltype(ircd::util::instance_list<ircd::cl::work>::allocator)
ircd::util::instance_list<ircd::cl::work>::allocator
{};
template<>
decltype(ircd::util::instance_list<ircd::cl::work>::list)
ircd::util::instance_list<ircd::cl::work>::list
{
allocator
};
decltype(ircd::cl::exec::opts_default)
ircd::cl::exec::opts_default;
ircd::cl::exec::exec(const opts &opts)
try
{
auto &q
{
queue[0][0]
};
const auto deps
{
make_deps(this, opts)
};
assert(!this->handle);
call
(
clEnqueueBarrierWithWaitList,
q,
deps.size(),
deps.size()? deps.data(): nullptr,
reinterpret_cast<cl_event *>(&this->handle)
);
primary_stats.exec_barrier_tasks += 1;
handle_submitted(this, opts);
}
catch(const std::exception &e)
{
log::error
{
log, "Exec Barrier :%s",
e.what(),
};
throw;
}
ircd::cl::exec::exec(kern &kern,
const kern::range &work,
const opts &opts)
try
{
size_t dim(0);
for(size_t i(0); i < work.global.size(); ++i)
dim += work.global[i] > 0 && dim == i;
if(!dim)
return;
auto &q
{
queue[0][0]
};
const auto deps
{
make_deps(this, opts)
};
assert(!this->handle);
call
(
clEnqueueNDRangeKernel,
q,
cl_kernel(kern.handle),
dim,
work.offset.data(),
work.global.data(),
work.local.data(),
deps.size(),
deps.size()? deps.data(): nullptr,
reinterpret_cast<cl_event *>(&this->handle)
);
size_t global_size(work.global[0]);
for(size_t i(1); i < dim; ++i)
global_size *= work.global[i];
size_t local_size(work.local[0]);
for(size_t i(1); i < dim; ++i)
local_size *= work.local[i];
primary_stats.exec_kern_tasks += 1;
primary_stats.exec_kern_threads += global_size;
primary_stats.exec_kern_groups += global_size / local_size;
handle_submitted(this, opts);
}
catch(const std::exception &e)
{
log::error
{
log, "Exec Kern :%s",
e.what(),
};
throw;
}
ircd::cl::exec::exec(data &dst,
const data &src,
const opts &opts)
try
{
auto &q
{
queue[0][0]
};
const auto deps
{
make_deps(this, opts)
};
const size_t size
{
opts.size?:
std::min(dst.size(), src.size())
};
assert(!this->handle);
call
(
clEnqueueCopyBuffer,
q,
cl_mem(src.handle),
cl_mem(dst.handle),
opts.offset[1],
opts.offset[0],
size,
deps.size(),
deps.size()? deps.data(): nullptr,
reinterpret_cast<cl_event *>(&this->handle)
);
handle_submitted(this, opts);
}
catch(const std::exception &e)
{
log::error
{
log, "Exec Copy :%s",
e.what(),
};
throw;
}
ircd::cl::exec::exec(data &data,
const mutable_buffer &buf,
const opts &opts)
try
{
auto &q
{
queue[0][0]
};
const auto size
{
opts.size?: ircd::size(buf)
};
if(!size)
return;
const auto deps
{
make_deps(this, opts)
};
assert(!this->handle);
call
(
clEnqueueReadBuffer,
q,
cl_mem(data.handle),
opts.blocking,
opts.offset[0],
size,
ircd::data(buf),
deps.size(),
deps.size()? deps.data(): nullptr,
reinterpret_cast<cl_event *>(&this->handle)
);
handle_submitted(this, opts);
}
catch(const std::exception &e)
{
log::error
{
log, "Exec Read data:%p cl_mem:%p buf:%p,%zu :%s",
&data,
data.handle,
ircd::data(buf),
ircd::size(buf),
e.what(),
};
throw;
}
ircd::cl::exec::exec(data &data,
const const_buffer &buf,
const opts &opts)
try
{
auto &q
{
queue[0][0]
};
const auto size
{
opts.size?: ircd::size(buf)
};
if(!size)
return;
const auto deps
{
make_deps(this, opts)
};
assert(!this->handle);
call
(
2021-03-10 14:22:40 +01:00
clEnqueueWriteBuffer,
q,
cl_mem(data.handle),
opts.blocking,
opts.offset[0],
size,
mutable_cast(ircd::data(buf)),
deps.size(),
deps.size()? deps.data(): nullptr,
reinterpret_cast<cl_event *>(&this->handle)
);
handle_submitted(this, opts);
}
catch(const std::exception &e)
{
log::error
{
log, "Exec Write data:%p cl_mem:%p buf:%p,%zu :%s",
&data,
data.handle,
ircd::data(buf),
ircd::size(buf),
e.what(),
};
throw;
}
ircd::cl::exec::exec(data &data,
const pair<size_t, off_t> &slice,
const read_closure &closure,
const opts &opts)
try
{
auto &q
{
queue[0][0]
};
const auto size
{
slice.first?:
opts.size?:
data.size()
};
const auto offset
{
slice.second?:
opts.offset[0]
};
assert(size_t(size) <= data.size());
assert(size_t(offset) <= data.size());
const auto deps
{
make_deps(this, opts)
};
cl_map_flags flags {0};
flags |= CL_MAP_READ;
int err {CL_SUCCESS};
assert(!this->handle);
void *const ptr
{
clEnqueueMapBuffer
(
q,
cl_mem(data.handle),
opts.blocking,
flags,
offset,
size,
deps.size(),
deps.size()? deps.data(): nullptr,
reinterpret_cast<cl_event *>(&this->handle),
&err
)
};
throw_on_error(err);
handle_submitted(this, opts);
assert(this->handle);
assert(ptr);
2021-03-18 19:15:49 +01:00
// Perform the unmapping on unwind. This is after the mapping event
// completed and the closure was called below. The unmapping event will
// replace the event handle for this exec instance until its actual dtor;
// thus the lifetime of the exec we are constructing actually represents
// the unmapping event.
const unwind unmap{[this, &data, &q, &ptr, &opts]
{
assert(!this->handle);
call
(
clEnqueueUnmapMemObject,
q,
cl_mem(data.handle),
ptr,
0, // deps
nullptr, // depslist
reinterpret_cast<cl_event *>(&this->handle)
);
handle_submitted(this, opts);
}};
2021-03-18 19:15:49 +01:00
// After the closure is called below, or throws, or if wait() throws,
// we free the completed map event here to allow for the unmap event.
const unwind rehandle{[this]
{
assert(this->handle);
call(clReleaseEvent, cl_event(this->handle));
this->handle = nullptr;
}};
// Wait for the mapping to complete before presenting the buffer.
wait();
closure(const_buffer
{
reinterpret_cast<const char *>(ptr), size
});
}
catch(const std::exception &e)
{
log::error
{
log, "Exec Read Closure :%s",
e.what(),
};
throw;
}
ircd::cl::exec::exec(data &data,
const pair<size_t, off_t> &slice,
const write_closure &closure,
const opts &opts)
try
{
auto &q
{
queue[0][0]
};
const auto size
{
slice.first?:
opts.size?:
data.size()
};
const auto offset
{
slice.second?:
opts.offset[0]
};
assert(size_t(size) <= data.size());
assert(size_t(offset) <= data.size());
const auto deps
{
make_deps(this, opts)
};
cl_map_flags flags {0};
flags |= CL_MAP_WRITE;
flags |= opts.duplex? CL_MAP_READ: 0;
int err {CL_SUCCESS};
assert(!this->handle);
void *const ptr
{
clEnqueueMapBuffer
(
q,
cl_mem(data.handle),
opts.blocking,
flags,
offset,
size,
deps.size(),
deps.size()? deps.data(): nullptr,
reinterpret_cast<cl_event *>(&this->handle),
&err
)
};
throw_on_error(err);
handle_submitted(this, opts);
assert(this->handle);
assert(ptr);
const unwind unmap{[this, &data, &q, &ptr, &opts]
{
assert(!this->handle);
call
(
clEnqueueUnmapMemObject,
q,
cl_mem(data.handle),
ptr,
0, // deps
nullptr, // depslist
reinterpret_cast<cl_event *>(&this->handle)
);
handle_submitted(this, opts);
}};
2021-03-18 19:15:49 +01:00
const unwind rehandle{[this]
{
assert(this->handle);
call(clReleaseEvent, cl_event(this->handle));
this->handle = nullptr;
}};
wait();
closure(mutable_buffer
{
reinterpret_cast<char *>(ptr), size
});
}
catch(const std::exception &e)
{
log::error
{
log, "Exec Write Closure :%s",
e.what(),
};
throw;
}
void
ircd::cl::handle_submitted(cl::exec *const &exec,
const exec::opts &opts)
{
primary_stats.exec_tasks += 1;
if(opts.flush)
cl::flush();
if(opts.sync)
cl::sync();
}
ircd::vector_view<cl_event>
ircd::cl::make_deps(cl::work *const &work,
const exec::opts &opts)
{
//TODO: for out-of-order queue
if((false) && empty(opts.deps) && !opts.indep)
return make_deps_default(work, opts);
if(empty(opts.deps))
return {};
size_t ret(0);
vector_view<cl_event> out(_deps_list);
for(auto &exec : opts.deps)
out.at(ret++) = cl_event(exec.handle);
return vector_view<cl_event>
{
out, ret
};
}
ircd::vector_view<cl_event>
ircd::cl::make_deps_default(cl::work *const &work,
const exec::opts &opts)
{
size_t ret(0);
vector_view<cl_event> out(_deps_list);
for(auto it(rbegin(cl::work::list)); it != rend(cl::work::list); ++it)
{
cl::work *const &other{*it};
if(other == work)
continue;
if(!other->handle)
continue;
if(other->context != ctx::current)
continue;
out.at(ret++) = cl_event(other->handle);
break;
}
return vector_view<cl_event>
{
out, ret
};
}
//
// kern
//
ircd::cl::kern::kern(code &code,
const string_view &name)
try
{
int err {CL_SUCCESS};
handle = clCreateKernel(cl_program(code.handle), name.c_str(), &err);
throw_on_error(err);
}
catch(const std::exception &e)
{
log::error
{
log, "Kernel Create '%s' :%s",
name,
e.what(),
};
throw;
}
ircd::cl::kern::kern(kern &&o)
noexcept
:handle{std::move(o.handle)}
{
o.handle = nullptr;
}
ircd::cl::kern &
ircd::cl::kern::operator=(kern &&o)
noexcept
{
this->~kern();
handle = std::move(o.handle);
o.handle = nullptr;
return *this;
}
ircd::cl::kern::~kern()
noexcept try
{
if(likely(handle))
call(clReleaseKernel, cl_kernel(handle));
}
catch(const std::exception &e)
{
log::critical
{
log, "Kernel Release :%s",
e.what(),
};
return;
}
void
ircd::cl::kern::arg(const int i,
data &data)
{
const auto &data_handle
{
cl_mem(data.handle)
};
call(clSetKernelArg, cl_kernel(handle), i, sizeof(cl_mem), &data_handle);
}
void
ircd::cl::kern::arg(const int i,
const const_buffer &buf)
{
call(clSetKernelArg, cl_kernel(handle), i, ircd::size(buf), ircd::data(buf));
}
std::array<size_t, 3>
ircd::cl::kern::compile_group_size(void *const dev)
const
{
char buf[24];
const auto handle(cl_kernel(this->handle));
constexpr auto flag(CL_KERNEL_COMPILE_WORK_GROUP_SIZE);
return info<std::array<size_t, 3>>(clGetKernelWorkGroupInfo, handle, cl_device_id(dev), flag, buf);
}
size_t
ircd::cl::kern::preferred_group_size_multiple(void *const dev)
const
{
char buf[16];
const auto handle(cl_kernel(this->handle));
constexpr auto flag(CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE);
return info<size_t>(clGetKernelWorkGroupInfo, handle, cl_device_id(dev), flag, buf);
}
size_t
ircd::cl::kern::group_size(void *const dev)
const
{
char buf[16];
const auto handle(cl_kernel(this->handle));
constexpr auto flag(CL_KERNEL_WORK_GROUP_SIZE);
return info<size_t>(clGetKernelWorkGroupInfo, handle, cl_device_id(dev), flag, buf);
}
size_t
ircd::cl::kern::local_mem_size(void *const dev)
const
{
char buf[16];
const auto handle(cl_kernel(this->handle));
constexpr auto flag(CL_KERNEL_LOCAL_MEM_SIZE);
return info<ulong>(clGetKernelWorkGroupInfo, handle, cl_device_id(dev), flag, buf);
}
size_t
ircd::cl::kern::stack_mem_size(void *const dev)
const
{
char buf[16];
const auto handle(cl_kernel(this->handle));
constexpr auto flag(CL_KERNEL_PRIVATE_MEM_SIZE);
return info<ulong>(clGetKernelWorkGroupInfo, handle, cl_device_id(dev), flag, buf);
}
//
// code
//
ircd::cl::code::code(const string_view &src,
const string_view &build_opts)
:code
{
vector_view<const string_view>(&src, 1),
build_opts
}
{
}
ircd::cl::code::code(const vector_view<const string_view> &srcs,
const string_view &build_opts)
{
static const size_t iov_max
{
64 //TODO: ???
};
if(unlikely(srcs.size() > iov_max))
throw error
{
"Maximum number of sources exceeded: lim:%zu got:%zu",
iov_max,
srcs.size(),
};
const size_t count
{
std::min(srcs.size(), iov_max)
};
size_t len[count];
const char *src[count];
for(size_t i(0); i < count; ++i)
src[i] = ircd::data(srcs[i]),
len[i] = ircd::size(srcs[i]);
int err {CL_SUCCESS};
handle = clCreateProgramWithSource(primary, count, src, len, &err);
throw_on_error(err);
if(!null(build_opts))
build(build_opts);
}
ircd::cl::code::code(const vector_view<const const_buffer> &bins,
const string_view &build_opts)
{
static const size_t iov_max
{
64 //TODO: ???
};
if(unlikely(bins.size() > iov_max))
throw error
{
"Maximum number of binaries exceeded: lim:%zu got:%zu",
iov_max,
bins.size(),
};
const size_t count
{
std::min(bins.size(), iov_max)
};
size_t len[iov_max + 1] {0};
const uint8_t *bin[iov_max + 1] {nullptr};
for(size_t i(0); i < count; ++i)
bin[i] = reinterpret_cast<const uint8_t *>(ircd::data(bins[i])),
len[i] = ircd::size(bins[i]);
size_t devs {0};
cl_device_id dev[DEVICE_MAX] {0};
for(size_t i(0); i < platforms; ++i)
for(size_t j(0); j < devices[i]; ++j)
dev[devs++] = device[i][j];
int err {CL_SUCCESS};
int binerr[iov_max + 1] {CL_SUCCESS};
handle = clCreateProgramWithBinary(primary, devs, dev, len, bin, binerr, &err);
throw_on_error(err);
for(size_t i(0); i < count; ++i)
throw_on_error(binerr[i]);
if(!null(build_opts))
build(build_opts);
}
ircd::cl::code::code(code &&o)
noexcept
:handle{std::move(o.handle)}
{
o.handle = nullptr;
}
ircd::cl::code &
ircd::cl::code::operator=(code &&o)
noexcept
{
this->~code();
handle = std::move(o.handle);
o.handle = nullptr;
return *this;
}
ircd::cl::code::~code()
noexcept try
{
if(likely(handle))
call(clReleaseProgram, cl_program(handle));
}
catch(const std::exception &e)
{
log::critical
{
log, "Program Release :%s",
e.what(),
};
return;
}
namespace ircd::cl
{
static void build_handle_error_log_line(const string_view &line);
static void build_handle_error(code &, const opencl_error &);
static void build_handle(cl_program program, void *priv);
}
void
ircd::cl::code::build(const string_view &opts)
try
{
const uint num_devices {0};
const cl_device_id *const device_list {nullptr};
call
(
clBuildProgram,
cl_program(handle),
num_devices,
device_list,
opts.c_str(),
cl::build_handle,
nullptr
);
}
catch(const opencl_error &e)
{
build_handle_error(*this, e);
throw;
}
catch(const std::exception &e)
{
log::error
{
log, "code(%p) :Failed to build :%s",
this,
e.what(),
};
throw;
}
void
ircd::cl::build_handle(cl_program program,
void *const priv)
{
ircd::always_assert(false);
}
void
ircd::cl::build_handle_error(code &code,
const opencl_error &e)
{
const auto string_closure
{
[&code](const mutable_buffer &buf)
{
size_t len {0}; call
(
clGetProgramBuildInfo,
cl_program(code.handle),
device[0][0],
CL_PROGRAM_BUILD_LOG,
ircd::size(buf),
ircd::data(buf),
&len
);
return len;
}
};
const auto error_message
{
ircd::string(8_KiB | SHRINK_TO_FIT, string_closure)
};
const auto lines
{
ircd::tokens(error_message, '\n', build_handle_error_log_line)
};
}
void
ircd::cl::build_handle_error_log_line(const string_view &line)
{
// note last line is just a CR
if(line.size() <= 1)
return;
const auto &[loc, line_] { split(line, ' ') };
const auto &[fac, msg] { split(line_, ' ') };
const auto &[fname, pos] { split(loc, ':') };
const auto &[row, col] { split(pos, ':') };
const auto level
{
startswith(fac, "warning")?
log::level::WARNING:
startswith(fac, "error")?
log::level::ERROR:
log::level::ERROR
};
log::logf
{
log, level, "%s", line
};
}
//
// data
//
ircd::cl::data::data(const size_t size_,
const mutable_buffer &buf,
const bool wonly)
{
const auto ptr
{
ircd::size(buf)? ircd::data(buf): nullptr
};
const auto size
{
ircd::size(buf)?: size_
};
cl_mem_flags flags {0};
flags |= wonly? CL_MEM_WRITE_ONLY: CL_MEM_READ_WRITE;
flags |= ircd::size(buf)? CL_MEM_COPY_HOST_PTR: 0;
int err {CL_SUCCESS};
handle = clCreateBuffer(primary, flags, size, ptr, &err);
throw_on_error(err);
primary_stats.alloc_count += 1;
primary_stats.alloc_bytes += size;
}
ircd::cl::data::data(const size_t size_,
const const_buffer &buf)
{
const auto ptr
{
ircd::size(buf)? ircd::data(buf): nullptr
};
const auto size
{
ircd::size(buf)?: size_
};
cl_mem_flags flags {0};
flags |= CL_MEM_READ_ONLY;
flags |= ircd::size(buf)? CL_MEM_COPY_HOST_PTR: 0;
int err {CL_SUCCESS};
handle = clCreateBuffer(primary, flags, size, mutable_cast(ptr), &err);
throw_on_error(err);
primary_stats.alloc_count += 1;
primary_stats.alloc_bytes += size;
}
ircd::cl::data::data(const mutable_buffer &buf,
const bool wonly)
{
cl_mem_flags flags {0};
flags |= CL_MEM_USE_HOST_PTR;
flags |= wonly? CL_MEM_WRITE_ONLY: CL_MEM_READ_WRITE;
int err {CL_SUCCESS};
handle = clCreateBuffer(primary, flags, ircd::size(buf), ircd::data(buf), &err);
throw_on_error(err);
}
ircd::cl::data::data(const const_buffer &buf)
{
cl_mem_flags flags {0};
flags |= CL_MEM_USE_HOST_PTR;
flags |= CL_MEM_READ_ONLY;
int err {CL_SUCCESS};
handle = clCreateBuffer(primary, flags, ircd::size(buf), mutable_cast(ircd::data(buf)), &err);
throw_on_error(err);
}
ircd::cl::data::data(data &master,
const pair<size_t, off_t> &slice)
{
cl_mem_flags flags {0};
cl_buffer_region region {0};
region.origin = slice.second;
region.size = slice.first;
int err {CL_SUCCESS};
handle = clCreateSubBuffer(cl_mem(master.handle), flags, CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
throw_on_error(err);
}
ircd::cl::data::data(data &&o)
noexcept
:handle{std::move(o.handle)}
{
o.handle = nullptr;
}
ircd::cl::data &
ircd::cl::data::operator=(data &&o)
noexcept
{
this->~data();
handle = std::move(o.handle);
o.handle = nullptr;
return *this;
}
ircd::cl::data::~data()
noexcept try
{
if(likely(handle))
{
const auto size
{
this->size()
};
call(clReleaseMemObject, cl_mem(handle));
primary_stats.dealloc_count += 1;
primary_stats.dealloc_bytes += size;
}
}
catch(const std::exception &e)
{
log::critical
{
log, "Memory Release :%s",
e.what(),
};
return;
}
char *
ircd::cl::data::ptr()
const
{
assert(handle);
char buf[sizeof(void *)] {0};
return info<char *>(clGetMemObjectInfo, cl_mem(mutable_cast(handle)), CL_MEM_SIZE, buf);
}
size_t
ircd::cl::data::size()
const
{
assert(handle);
char buf[sizeof(size_t)] {0};
return info<size_t>(clGetMemObjectInfo, cl_mem(mutable_cast(handle)), CL_MEM_SIZE, buf);
}
uint
ircd::cl::data::flags()
const
{
assert(handle);
char buf[sizeof(uint)] {0};
return info<uint>(clGetMemObjectInfo, cl_mem(mutable_cast(handle)), CL_MEM_FLAGS, buf);
}
//
// cl::work (event)
//
namespace ircd::cl
{
struct completion;
static void handle_event(cl_event, cl_int, void *) noexcept;
static int wait_status(work &, const int, const int);
}
struct ircd::cl::completion
{
cl_event event {nullptr};
cl_int status {CL_COMPLETE};
ctx::dock dock;
};
void
ircd::cl::work::init()
{
}
void
ircd::cl::work::fini()
noexcept
{
cl::sync();
}
//
// work::work
//
ircd::cl::work::work()
noexcept
{
}
ircd::cl::work::work(void *const &handle)
{
call(clRetainEvent, cl_event(handle));
this->handle = handle;
}
ircd::cl::work::~work()
noexcept try
{
if(!handle)
return;
2021-03-18 19:15:49 +01:00
const unwind free{[this]
{
assert(handle);
call(clReleaseEvent, cl_event(handle));
2021-03-18 19:15:49 +01:00
}};
wait();
}
catch(const std::exception &e)
{
log::critical
{
log, "Work Release :%s",
e.what(),
};
return;
}
void
ircd::cl::work::wait(const uint desired)
try
{
static_assert(CL_COMPLETE == 0);
assert(handle);
char buf[4];
int status
{
info<int>(clGetEventInfo, cl_event(handle), CL_EVENT_COMMAND_EXECUTION_STATUS, buf)
};
if(status > int(desired))
status = wait_status(*this, status, desired);
if(unlikely(status < 0))
throw_on_error(status);
assert(int(status) == int(desired));
}
catch(const std::exception &e)
{
log::error
{
log, "work(%p)::wait(%u) :%s",
this,
desired,
e.what(),
};
throw;
}
std::array<uint64_t, 4>
ircd::cl::work::profile()
const
{
const auto handle
{
cl_event(this->handle)
};
if(!profile_queue || !handle)
return {0};
char buf[4][8];
return std::array<uint64_t, 4>
{
info<size_t>(clGetEventProfilingInfo, handle, CL_PROFILING_COMMAND_QUEUED, buf[0]),
info<size_t>(clGetEventProfilingInfo, handle, CL_PROFILING_COMMAND_SUBMIT, buf[1]),
info<size_t>(clGetEventProfilingInfo, handle, CL_PROFILING_COMMAND_START, buf[2]),
info<size_t>(clGetEventProfilingInfo, handle, CL_PROFILING_COMMAND_END, buf[3]),
};
}
int
ircd::cl::wait_status(work &work,
const int status,
const int desired)
{
assert(status > desired);
assert(work.handle);
completion c
{
cl_event(work.handle),
status,
};
call
(
clSetEventCallback,
c.event,
desired,
&handle_event,
&c
);
c.dock.wait([&c, &desired]
{
return !c.event || c.status <= desired;
});
return c.status;
}
void
ircd::cl::handle_event(cl_event event,
cl_int status,
void *const priv)
noexcept
{
auto *const c
{
reinterpret_cast<completion *>(priv)
};
assert(event != nullptr);
c->status = status;
c->dock.notify_one();
}
//
// callback surface
//
void
ircd::cl::handle_notify(const char *errstr,
const void *token,
size_t cb,
void *priv)
noexcept
{
if(errstr)
log::error
{
log, "OpenCL t:%p cb:%zu :%s",
token,
cb,
errstr,
};
}
//
// util
//
template<class T,
class F,
class id,
class param>
T
ircd::cl::info(F&& func,
const id &i,
const param &p,
const mutable_buffer &out)
{
using ircd::data;
using ircd::size;
size_t len {0};
call(std::forward<F>(func), i, p, size(out), data(out), &len);
const string_view str
{
data(out), len
};
return byte_view<T>(str);
}
template<class T,
class F,
class id0,
class id1,
class param>
T
ircd::cl::info(F&& func,
const id0 &i0,
const id1 &i1,
const param &p,
const mutable_buffer &out)
{
using ircd::data;
using ircd::size;
size_t len {0};
call(std::forward<F>(func), i0, i1, p, size(out), data(out), &len);
const string_view str
{
data(out), len
};
return byte_view<T>(str);
}
template<class func,
class... args>
int
ircd::cl::call(func&& f,
args&&... a)
{
const int ret
{
f(std::forward<args>(a)...)
};
return throw_on_error(ret);
}
int
ircd::cl::throw_on_error(const int &code)
{
if(unlikely(is_error(code)))
throw opencl_error
{
"(%d) :%s",
code,
reflect_error(code),
};
return code;
}
bool
ircd::cl::is_error(const int &code)
noexcept
{
return code < 0;
}
ircd::string_view
ircd::cl::reflect_error(const int code)
noexcept
{
switch(code)
{
case CL_SUCCESS: return "SUCCESS";
case CL_DEVICE_NOT_FOUND: return "DEVICE_NOT_FOUND";
case CL_DEVICE_NOT_AVAILABLE: return "DEVICE_NOT_AVAILABLE";
case CL_COMPILER_NOT_AVAILABLE: return "COMPILER_NOT_AVAILABLE";
case CL_MEM_OBJECT_ALLOCATION_FAILURE: return "MEM_OBJECT_ALLOCATION_FAILURE";
case CL_OUT_OF_RESOURCES: return "OUT_OF_RESOURCES";
case CL_OUT_OF_HOST_MEMORY: return "OUT_OF_HOST_MEMORY";
case CL_PROFILING_INFO_NOT_AVAILABLE: return "PROFILING_INFO_NOT_AVAILABLE";
case CL_MEM_COPY_OVERLAP: return "MEM_COPY_OVERLAP";
case CL_IMAGE_FORMAT_MISMATCH: return "IMAGE_FORMAT_MISMATCH";
case CL_IMAGE_FORMAT_NOT_SUPPORTED: return "IMAGE_FORMAT_NOT_SUPPORTED";
case CL_BUILD_PROGRAM_FAILURE: return "BUILD_PROGRAM_FAILURE";
case CL_MAP_FAILURE: return "MAP_FAILURE";
case CL_INVALID_VALUE: return "INVALID_VALUE";
case CL_INVALID_DEVICE_TYPE: return "INVALID_DEVICE_TYPE";
case CL_INVALID_PLATFORM: return "INVALID_PLATFORM";
case CL_INVALID_DEVICE: return "INVALID_DEVICE";
case CL_INVALID_CONTEXT: return "INVALID_CONTEXT";
case CL_INVALID_QUEUE_PROPERTIES: return "INVALID_QUEUE_PROPERTIES";
case CL_INVALID_COMMAND_QUEUE: return "INVALID_COMMAND_QUEUE";
case CL_INVALID_HOST_PTR: return "INVALID_HOST_PTR";
case CL_INVALID_MEM_OBJECT: return "INVALID_MEM_OBJECT";
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR: return "INVALID_IMAGE_FORMAT_DESCRIPTOR";
case CL_INVALID_IMAGE_SIZE: return "INVALID_IMAGE_SIZE";
case CL_INVALID_SAMPLER: return "INVALID_SAMPLER";
case CL_INVALID_BINARY: return "INVALID_BINARY";
case CL_INVALID_BUILD_OPTIONS: return "INVALID_BUILD_OPTIONS";
case CL_INVALID_PROGRAM: return "INVALID_PROGRAM";
case CL_INVALID_PROGRAM_EXECUTABLE: return "INVALID_PROGRAM_EXECUTABLE";
case CL_INVALID_KERNEL_NAME: return "INVALID_KERNEL_NAME";
case CL_INVALID_KERNEL_DEFINITION: return "INVALID_KERNEL_DEFINITION";
case CL_INVALID_KERNEL: return "INVALID_KERNEL";
case CL_INVALID_ARG_INDEX: return "INVALID_ARG_INDEX";
case CL_INVALID_ARG_VALUE: return "INVALID_ARG_VALUE";
case CL_INVALID_ARG_SIZE: return "INVALID_ARG_SIZE";
case CL_INVALID_KERNEL_ARGS: return "INVALID_KERNEL_ARGS";
case CL_INVALID_WORK_DIMENSION: return "INVALID_WORK_DIMENSION";
case CL_INVALID_WORK_GROUP_SIZE: return "INVALID_WORK_GROUP_SIZE";
case CL_INVALID_WORK_ITEM_SIZE: return "INVALID_WORK_ITEM_SIZE";
case CL_INVALID_GLOBAL_OFFSET: return "INVALID_GLOBAL_OFFSET";
case CL_INVALID_EVENT_WAIT_LIST: return "INVALID_EVENT_WAIT_LIST";
case CL_INVALID_EVENT: return "INVALID_EVENT";
case CL_INVALID_OPERATION: return "INVALID_OPERATION";
case CL_INVALID_GL_OBJECT: return "INVALID_GL_OBJECT";
case CL_INVALID_BUFFER_SIZE: return "INVALID_BUFFER_SIZE";
case CL_INVALID_MIP_LEVEL: return "INVALID_MIP_LEVEL";
case CL_INVALID_GLOBAL_WORK_SIZE: return "INVALID_GLOBAL_WORK_SIZE";
#ifdef CL_VERSION_1_1
case CL_INVALID_PROPERTY: return "INVALID_PROPERTY";
case CL_MISALIGNED_SUB_BUFFER_OFFSET: return "MISALIGNED_SUB_BUFFER_OFFSET";
case CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST: return "EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST";
#endif
#ifdef CL_VERSION_1_2
case CL_COMPILE_PROGRAM_FAILURE: return "COMPILE_PROGRAM_FAILURE";
case CL_LINKER_NOT_AVAILABLE: return "LINKER_NOT_AVAILABLE";
case CL_LINK_PROGRAM_FAILURE: return "LINK_PROGRAM_FAILURE";
case CL_DEVICE_PARTITION_FAILED: return "DEVICE_PARTITION_FAILED";
case CL_KERNEL_ARG_INFO_NOT_AVAILABLE: return "KERNEL_ARG_INFO_NOT_AVAILABLE";
case CL_INVALID_IMAGE_DESCRIPTOR: return "INVALID_IMAGE_DESCRIPTOR";
case CL_INVALID_COMPILER_OPTIONS: return "INVALID_COMPILER_OPTIONS";
case CL_INVALID_LINKER_OPTIONS: return "INVALID_LINKER_OPTIONS";
case CL_INVALID_DEVICE_PARTITION_COUNT: return "INVALID_DEVICE_PARTITION_COUNT";
#endif
#ifdef CL_VERSION_2_0
case CL_INVALID_PIPE_SIZE: return "INVALID_PIPE_SIZE";
case CL_INVALID_DEVICE_QUEUE: return "INVALID_DEVICE_QUEUE";
#endif
#ifdef CL_VERSION_2_2
case CL_INVALID_SPEC_ID: return "INVALID_SPEC_ID";
case CL_MAX_SIZE_RESTRICTION_EXCEEDED: return "MAX_SIZE_RESTRICTION_EXCEEDED";
#endif
}
return "???????";
}