0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2025-01-24 21:39:59 +01:00
construct/include/ircd/allocator/node.h

174 lines
4.4 KiB
C
Raw Normal View History

// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2023 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_ALLOCATOR_NODE_H
namespace ircd::allocator
{
template<class T>
struct node;
}
/// Allows elements of an STL container to be manually handled by the user.
///
/// C library containers usually allow the user to manually construct a node
/// and then insert it and remove it from the container. With STL containers
/// we can use devices like allocator::fixed, but what if we don't want to have
/// a bound on the allocator's size either at compile time or at runtime? What
/// if we simply want to manually handle the container's elements, like on the
/// stack, and in different frames, and then manipulate the container -- or
/// even better and safer: have the elements add and remove themselves while
/// storing the container's node data too?
///
/// This device helps the user achieve that by simply providing a variable
/// set by the user indicating where the 'next' block of memory is when the
/// container requests it. Whether the container is requesting memory which
/// should be fulfilled by that 'next' block must be ensured and asserted by
/// the user, but this is likely the case.
///
template<class T>
struct ircd::allocator::node
{
struct allocator;
struct scope;
T *next {nullptr};
node() = default;
};
/// The container will use provided node when it calls for an allocation during
/// the lifetime of this object. Construct this object ahead of the insertion.
template<class T>
struct ircd::allocator::node<T>::scope
{
node<T> *state;
template<class C,
class N>
scope(C &container, N &node);
scope(const scope &) = delete;
~scope() noexcept;
};
/// The actual template passed to containers for using the allocator.
///
/// See the notes for ircd::allocator::fixed::allocator for details.
///
template<class T>
struct ircd::allocator::node<T>::allocator
{
using value_type = T;
using pointer = T *;
using const_pointer = const T *;
using reference = T &;
using const_reference = const T &;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
node *s;
public:
template<class U> struct rebind
{
using other = typename node<U>::allocator;
};
size_type max_size() const { return std::numeric_limits<size_t>::max(); }
auto address(reference x) const { return &x; }
auto address(const_reference x) const { return &x; }
template<class U, class... args>
void construct(U *p, args&&... a) noexcept
{
new (p) U(std::forward<args>(a)...);
}
void construct(pointer p, const_reference val)
{
new (p) T(val);
}
pointer
__attribute__((returns_nonnull, warn_unused_result))
allocate(const size_type &n, const const_pointer &hint = nullptr)
{
assert(n == 1);
assert(hint == nullptr);
assert(s->next != nullptr);
return s->next;
}
void deallocate(const pointer &p, const size_type &n)
{
assert(n == 1);
}
template<class U>
allocator(const typename node<U>::allocator &s) noexcept
:s{reinterpret_cast<node *>(s.s)}
{
}
template<class U>
allocator(const U &s) noexcept
:s{reinterpret_cast<node *>(s.s)}
{
}
allocator(node &s) noexcept
:s{&s}
{
}
allocator() = default;
allocator(allocator &&) noexcept = default;
allocator(const allocator &) = default;
friend bool operator==(const allocator &a, const allocator &b)
{
return &a == &b;
}
friend bool operator!=(const allocator &a, const allocator &b)
{
return &a == &b;
}
};
template<class T>
template<class C,
class N>
inline
ircd::allocator::node<T>::scope::scope(C &container,
N &node)
:state
{
container.get_allocator().s
}
{
using value_type = typename C::value_type;
assert(state);
assert(!state->next);
state->next = reinterpret_cast<value_type *>(&node);
}
template<class T>
inline
ircd::allocator::node<T>::scope::~scope()
noexcept
{
assert(state);
assert(state->next);
state->next = nullptr;
}