0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2025-01-24 21:39:59 +01:00
construct/include/ircd/util/typography.h

415 lines
9.6 KiB
C
Raw Normal View History

2018-02-03 18:22:01 -08:00
// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
2018-02-03 18:22:01 -08:00
// Copyright (C) 2016-2018 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
2018-02-03 18:22:01 -08:00
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_UTIL_TYPOGRAPHY_H
namespace ircd {
inline namespace util {
//
// Overloading macros
//
/// Macro to arrange a function overload scheme based on the following
/// convention: An available `name` is chosen, from this name a strong type
/// is created by appending `_t`. The name itself becomes a static constexpr
/// instance of this `name_t`. Functions can be declared with an argument
/// accepting `name_t`, and called by passing `name`
///
/// IRCD_OVERLOAD(foo) // declare overload
/// void function(int, foo_t) {} // overloaded version
/// void function(int) { function(0, foo); } // calls overloaded version
/// function(0); // calls regular version
///
#define IRCD_OVERLOAD(NAME) \
static constexpr struct NAME##_t {} NAME {};
/// Imports an overload scheme from elsewhere without redeclaring the type_t.
#define IRCD_USING_OVERLOAD(ALIAS, ORIGIN) \
static constexpr const auto &ALIAS{ORIGIN}
//
// Typedef macros
//
/// Creates a type `NAME` from original type `TYPE` by inheriting from `TYPE`
/// and passing through construction to `TYPE`. These implicit conversions
/// we consider to be a "weak" typedef
#define IRCD_WEAK_TYPEDEF(TYPE, NAME) \
struct NAME \
:TYPE \
{ \
using TYPE::TYPE; \
};
/// Creates a type `NAME` by wrapping instance of `TYPE` as a member and
/// providing explicit conversions to `TYPE` and aggregate construction only. We
/// consider this a "strong" typedef which is useful for wrapping POD types
/// for overloaded functions, etc.
#define IRCD_STRONG_TYPEDEF(TYPE, NAME) \
struct NAME \
{ \
TYPE val; \
\
explicit operator const TYPE &() const { return val; } \
explicit operator TYPE &() { return val; } \
};
/// Convenience for weak typedef statements
#define IRCD_WEAK_T(TYPE) \
IRCD_WEAK_TYPEDEF(TYPE, IRCD_UNIQUE(weak_t))
/// Convenience for strong typedef statements
/// ex: using foo_t = IRCD_STRONG_T(int)
#define IRCD_STRONG_T(TYPE) \
IRCD_STRONG_TYPEDEF(TYPE, IRCD_UNIQUE(strong_t))
//
// Debug sizeof structure at compile time
//
/// Output the sizeof a structure at compile time.
/// This stops the compiler with an error (good) containing the size of the target
/// in the message.
///
/// example: struct foo {}; IRCD_TEST_SIZEOF(foo)
///
#define IRCD_TEST_SIZEOF(name) \
ircd::util::_TEST_SIZEOF_<sizeof(name)> _test_;
2018-01-28 08:43:43 -08:00
/// Internal use only
template<size_t SIZE>
struct _TEST_SIZEOF_;
//
// signed sizeof
//
template<class T>
constexpr ssize_t
ssizeof(T&&)
{
return sizeof(T);
}
template<class T>
constexpr ssize_t
ssizeof()
{
return sizeof(T);
}
//
// Test if type is forward declared or complete
//
template<class T,
class = void>
struct is_complete
:std::false_type
{};
template<class T>
struct is_complete<T, decltype(void(sizeof(T)))>
:std::true_type
{};
//
// Test if type is a specialization of a template
//
template<class,
template<class...>
class>
struct is_specialization_of
:std::false_type
{};
template<template<class...>
class T,
class... args>
struct is_specialization_of<T<args...>, T>
:std::true_type
{};
//
// Convenience signedness cast template
//
template<class T>
using enable_if_s2u = std::enable_if<std::is_signed<T>::value, typename std::make_unsigned<T>::type>;
template<class T>
[[using gnu: always_inline, gnu_inline, artificial]]
extern inline typename enable_if_s2u<T>::type *
sign_cast(T *const t)
{
using type = typename std::make_unsigned<T>::type;
return reinterpret_cast<type *>(t);
}
template<class T>
using enable_if_u2s = std::enable_if<std::is_unsigned<T>::value, typename std::make_signed<T>::type>;
template<class T>
[[using gnu: always_inline, gnu_inline, artificial]]
extern inline typename enable_if_u2s<T>::type *
sign_cast(T *const t)
{
using type = typename std::make_signed<T>::type;
return reinterpret_cast<type *>(t);
}
//
// Convenience const_cast deduction template
//
template<class T>
[[using gnu: always_inline, gnu_inline, artificial]]
extern inline typename std::remove_const<T>::type &
mutable_cast(T &t)
{
using type = typename std::remove_const<T>::type;
return const_cast<type &>(t);
}
template<class T>
[[using gnu: always_inline, gnu_inline, artificial]]
extern inline typename std::remove_const<T>::type *
mutable_cast(T *const t)
{
using type = typename std::remove_const<T>::type;
return const_cast<type *>(t);
}
//
// Convenience involatile cast template
//
template<class T>
[[using gnu: always_inline, gnu_inline, artificial]]
extern inline typename std::remove_volatile<T>::type &
involatile_cast(T &t)
{
using type = typename std::remove_volatile<T>::type;
return const_cast<type &>(t);
}
template<class T>
[[using gnu: always_inline, gnu_inline, artificial]]
extern inline typename std::remove_volatile<T>::type *
involatile_cast(T *const t)
{
using type = typename std::remove_volatile<T>::type;
return const_cast<type *>(t);
}
//
// Test if type is shared_from_this
//
/// Tests if type inherits from std::enable_shared_from_this<>
template<class T>
constexpr typename std::enable_if<is_complete<T>::value, bool>::type
is_shared_from_this()
{
return std::is_base_of<std::enable_shared_from_this<T>, T>();
}
/// Unconditional failure for fwd-declared incomplete types, which
/// obviously don't inherit from std::enable_shared_from_this<>
template<class T>
constexpr typename std::enable_if<!is_complete<T>::value, bool>::type
is_shared_from_this()
{
return false;
}
//
// Misc type testing boilerplates
//
template<class T>
constexpr bool
is_bool()
{
using type = typename std::remove_reference<T>::type;
return std::is_same<type, bool>::value;
}
template<class T>
constexpr bool
is_number()
{
using type = typename std::remove_reference<T>::type;
return std::is_arithmetic<type>::value;
}
template<class T>
constexpr bool
is_floating()
{
using type = typename std::remove_reference<T>::type;
return is_number<T>() && std::is_floating_point<type>();
}
template<class T>
constexpr bool
is_integer()
{
return is_number<T>() && !is_floating<T>();
}
template<class T>
constexpr bool
is_pod()
{
return std::is_standard_layout<T>::value && std::is_trivial<T>::value;
}
//
// Convenience constexprs for iterators
//
template<class It>
constexpr auto
is_iterator()
{
return std::is_base_of<typename std::iterator_traits<It>::value_type, It>::value;
}
template<class It>
constexpr auto
is_forward_iterator()
{
return std::is_base_of<std::forward_iterator_tag, typename std::iterator_traits<It>::iterator_category>::value;
}
template<class It>
constexpr auto
is_input_iterator()
{
return std::is_base_of<std::forward_iterator_tag, typename std::iterator_traits<It>::iterator_category>::value;
}
//
// Completing std::remove_pointer<>
//
template<class T>
struct remove_all_pointers
{
using type = T;
};
template<class T>
struct remove_all_pointers<T *>
{
using type = typename remove_all_pointers<T>::type;
};
/// Convenience loop to test std::is* on a character sequence
template<int (&test)(int) = std::isprint>
ssize_t
ctype(const char *const &begin,
const char *const &end)
{
for(const char *it(begin); it != end; ++it)
if(test(static_cast<unsigned char>(*it)) != 0)
return std::distance(begin, it);
return -1;
}
/// ctype test for a const_buffer. Returns the character position where the
/// test fails. Returns -1 on success. The test is a function specified in
/// the template simply as `ctype<std::isprint>(const_buffer{"hi"});` which
/// should fail because const_buffer's over a string literal see the trailing
/// null character.
template<int (*test)(int)>
ssize_t
ctype(const const_buffer &s)
{
return ctype<test>(begin(s), end(s));
}
/// Boolean alternative for ctype(const_buffer)
template<int (*test)(int)>
bool
all_of(const const_buffer &s)
{
return std::all_of(begin(s), end(s), [](const char &c)
{
return test(c) != 0;
});
}
/// Boolean alternative for ctype(const_buffer)
template<int (*test)(int)>
bool
none_of(const const_buffer &s)
{
return std::all_of(begin(s), end(s), [](const char &c)
{
return test(c) == 0;
});
}
/// Zero testing functor (work in progress)
///
struct is_zero
{
template<class T>
typename std::enable_if
<
is_bool<T>(),
bool>::type
test(const bool &value)
const
{
return !value;
}
template<class T>
typename std::enable_if
<
is_integer<T>() &&
!is_bool<T>(),
bool>::type
test(const size_t &value)
const
{
return value == 0;
}
template<class T>
typename std::enable_if
<
is_floating<T>() &&
!is_bool<T>(),
bool>::type
test(const double &value)
const
{
return !(value > 0.0 || value < 0.0);
}
template<class T>
bool operator()(T&& t)
const
{
return test<T>(std::forward<T>(t));
}
};
} // namespace util
} // namespace ircd