2020-09-09 09:27:29 +02:00
|
|
|
// The Construct
|
|
|
|
//
|
|
|
|
// Copyright (C) The Construct Developers, Authors & Contributors
|
|
|
|
// Copyright (C) 2016-2020 Jason Volk <jason@zemos.net>
|
|
|
|
//
|
|
|
|
// Permission to use, copy, modify, and/or distribute this software for any
|
|
|
|
// purpose with or without fee is hereby granted, provided that the above
|
|
|
|
// copyright notice and this permission notice is present in all copies. The
|
|
|
|
// full license for this software is available in the LICENSE file.
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
#define HAVE_IRCD_SIMD_STREAM_H
|
|
|
|
|
|
|
|
namespace ircd::simd
|
|
|
|
{
|
|
|
|
/// Transform block_t by pseudo-reference. The closure has an opportunity
|
|
|
|
/// to modify the block while it is being streamed from the source to the
|
|
|
|
/// destination. The mask indicates which elements of the block are valid
|
|
|
|
/// if the input is smaller than the block size. This function returns
|
|
|
|
/// a pair of integers which advance the output and input positions of the
|
|
|
|
/// streams for the next iteration.
|
|
|
|
template<class block_t>
|
|
|
|
using transform_prototype = u64x2 (block_t &, block_t mask);
|
|
|
|
|
|
|
|
template<class block_t_u,
|
|
|
|
class block_t,
|
|
|
|
class lambda>
|
|
|
|
u64x2 stream(const char *, const u64x2, lambda&&) noexcept;
|
|
|
|
|
|
|
|
template<class block_t_u,
|
|
|
|
class block_t,
|
|
|
|
class lambda>
|
|
|
|
u64x2 stream(char *, const char *, const u64x2, lambda&&) noexcept;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Streaming transform
|
|
|
|
///
|
|
|
|
/// This template performs the loop boiler-plate for the developer who can
|
|
|
|
/// simply supply a conforming closure. Characteristics:
|
|
|
|
///
|
|
|
|
/// * byte-aligned (unaligned): the input and output buffers do not have to
|
|
|
|
/// be aligned and can be any size.
|
|
|
|
///
|
|
|
|
/// * full-duplex: the operation involves both input and output and there are
|
|
|
|
/// separate pointers for progress across the input and output buffers which
|
|
|
|
/// are incremented independently.
|
|
|
|
///
|
|
|
|
/// * variable-stride: progress for each iteration of the loop across the input
|
|
|
|
/// and output buffers is not fixed; the transform function may advance either
|
|
|
|
/// pointer zero to sizeof(block_t) bytes each iteration. Due to these
|
|
|
|
/// characteristics, unaligned bytes may be redundantly loaded or stored and
|
|
|
|
/// non-temporal features are not used to optimize the operation.
|
|
|
|
///
|
|
|
|
/// u64x2 counter lanes = { output_length, input_length }; The argument `max`
|
|
|
|
/// gives the buffer size in that format. The return value is the consumed
|
|
|
|
/// bytes (final counter value) in that format.
|
|
|
|
///
|
|
|
|
template<class block_t_u,
|
|
|
|
class block_t,
|
|
|
|
class lambda>
|
|
|
|
inline ircd::u64x2
|
|
|
|
ircd::simd::stream(char *const __restrict__ out,
|
|
|
|
const char *const __restrict__ in,
|
|
|
|
const u64x2 max,
|
|
|
|
lambda&& closure)
|
|
|
|
noexcept
|
|
|
|
{
|
|
|
|
u64x2 count
|
|
|
|
{
|
|
|
|
0, // output pos
|
|
|
|
0, // input pos
|
|
|
|
};
|
|
|
|
|
|
|
|
// primary broadband loop
|
|
|
|
while(count[1] + sizeof(block_t) <= max[1] && count[0] + sizeof(block_t) <= max[0])
|
|
|
|
{
|
|
|
|
static const auto mask
|
|
|
|
{
|
|
|
|
~block_t{0}
|
|
|
|
};
|
|
|
|
|
|
|
|
const auto di
|
|
|
|
{
|
|
|
|
reinterpret_cast<block_t_u *>(out + count[0])
|
|
|
|
};
|
|
|
|
|
|
|
|
const auto si
|
|
|
|
{
|
|
|
|
reinterpret_cast<const block_t_u *>(in + count[1])
|
|
|
|
};
|
|
|
|
|
|
|
|
block_t block
|
|
|
|
(
|
|
|
|
*si
|
|
|
|
);
|
|
|
|
|
|
|
|
const auto consume
|
|
|
|
{
|
|
|
|
closure(block, mask)
|
|
|
|
};
|
|
|
|
|
|
|
|
*di = block;
|
|
|
|
count += consume;
|
|
|
|
}
|
|
|
|
|
|
|
|
// trailing narrowband loop
|
|
|
|
while(count[1] < max[1])
|
|
|
|
{
|
|
|
|
block_t block {0}, mask {0};
|
|
|
|
for(size_t i(0); count[1] + i < max[1] && i < sizeof(block_t); ++i)
|
|
|
|
{
|
|
|
|
block[i] = in[count[1] + i];
|
|
|
|
mask[i] = 0xff;
|
|
|
|
}
|
|
|
|
|
|
|
|
const auto consume
|
|
|
|
{
|
|
|
|
closure(block, mask)
|
|
|
|
};
|
|
|
|
|
|
|
|
for(size_t i(0); i < consume[0] && count[0] + i < max[0]; ++i)
|
|
|
|
out[count[0] + i] = block[i];
|
|
|
|
|
|
|
|
count += consume;
|
|
|
|
}
|
|
|
|
|
2020-09-13 11:56:24 +02:00
|
|
|
return u64x2
|
|
|
|
{
|
|
|
|
std::min(count[0], max[0]),
|
|
|
|
std::min(count[1], max[1]),
|
|
|
|
};
|
2020-09-09 09:27:29 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Streaming consumer
|
|
|
|
///
|
|
|
|
/// This template performs the loop boiler-plate for the developer who can
|
|
|
|
/// simply supply a conforming closure. Characteristics:
|
|
|
|
///
|
|
|
|
/// * byte-aligned (unaligned): the input buffer does not have to be aligned
|
|
|
|
/// and can be any size.
|
|
|
|
///
|
|
|
|
/// * variable-stride: progress for each iteration of the loop across the input
|
2020-09-10 22:23:37 +02:00
|
|
|
/// and buffer is not fixed; the transform function may advance the pointer
|
|
|
|
/// one to sizeof(block_t) bytes each iteration. Due to these characteristics,
|
|
|
|
/// unaligned bytes may be redundantly loaded and non-temporal features are
|
|
|
|
/// not used to optimize the operation.
|
2020-09-09 09:27:29 +02:00
|
|
|
///
|
|
|
|
/// u64x2 counter lanes = { available_to_user, input_length }; The argument
|
|
|
|
/// `max` gives the buffer size in that format. The return value is the
|
|
|
|
/// consumed bytes (final counter value) in that format. The first lane is
|
|
|
|
/// available to the user; its initial value is max[0] (also unused); it is
|
|
|
|
/// then accumulated with the first lane of the closure's return value; its
|
|
|
|
/// final value is returned in [0] of the return value.
|
|
|
|
///
|
|
|
|
/// Note that the closure must advance the stream one or more bytes each
|
|
|
|
/// iteration; a zero value is available for loop control: the loop will
|
|
|
|
/// break without another iteration.
|
|
|
|
///
|
|
|
|
template<class block_t_u,
|
|
|
|
class block_t,
|
|
|
|
class lambda>
|
|
|
|
inline ircd::u64x2
|
|
|
|
ircd::simd::stream(const char *const __restrict__ in,
|
|
|
|
const u64x2 max,
|
|
|
|
lambda&& closure)
|
|
|
|
noexcept
|
|
|
|
{
|
|
|
|
u64x2 count
|
|
|
|
{
|
|
|
|
max[0], // preserved for caller
|
|
|
|
0, // input pos
|
|
|
|
};
|
|
|
|
|
|
|
|
u64x2 consume
|
|
|
|
{
|
|
|
|
0,
|
|
|
|
-1UL // non-zero to start loop
|
|
|
|
};
|
|
|
|
|
|
|
|
// primary broadband loop
|
|
|
|
while(consume[1] && count[1] + sizeof(block_t) <= max[1])
|
|
|
|
{
|
|
|
|
static const auto mask
|
|
|
|
{
|
|
|
|
~block_t{0}
|
|
|
|
};
|
|
|
|
|
|
|
|
const auto si
|
|
|
|
{
|
|
|
|
reinterpret_cast<const block_t_u *>(in + count[1])
|
|
|
|
};
|
|
|
|
|
|
|
|
const block_t block
|
|
|
|
(
|
|
|
|
*si
|
|
|
|
);
|
|
|
|
|
|
|
|
consume = closure(block, mask);
|
|
|
|
count += consume;
|
|
|
|
}
|
|
|
|
|
|
|
|
// trailing narrowband loop
|
|
|
|
while(consume[1] && count[1] < max[1])
|
|
|
|
{
|
|
|
|
block_t block {0}, mask {0};
|
|
|
|
for(size_t i(0); count[1] + i < max[1] && i < sizeof(block_t); ++i)
|
|
|
|
{
|
|
|
|
block[i] = in[count[1] + i];
|
|
|
|
mask[i] = 0xff;
|
|
|
|
}
|
|
|
|
|
|
|
|
consume = closure(block, mask);
|
|
|
|
count += consume;
|
|
|
|
}
|
|
|
|
|
2020-09-13 11:56:24 +02:00
|
|
|
return u64x2
|
|
|
|
{
|
|
|
|
count[0],
|
|
|
|
std::min(count[1], max[1])
|
|
|
|
};
|
2020-09-09 09:27:29 +02:00
|
|
|
}
|