0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-07 22:39:01 +01:00
construct/ircd/client.cc

808 lines
21 KiB
C++
Raw Normal View History

/*
2007-12-03 17:59:25 +01:00
* charybdis: an advanced ircd.
* client.c: Controls clients.
*
* Copyright (C) 1990 Jarkko Oikarinen and University of Oulu, Co Center
* Copyright (C) 1996-2002 Hybrid Development Team
* Copyright (C) 2002-2005 ircd-ratbox development team
2007-12-03 17:59:25 +01:00
* Copyright (C) 2007 William Pitcock
2016-09-10 21:57:33 +02:00
* Copyright (C) 2016 Charybdis Development Team
* Copyright (C) 2016 Jason Volk <jason@zemos.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*/
#include <ircd/asio.h>
#include <ircd/server.h>
namespace ircd
{
// Default time limit for how long a client connection can be in "async mode"
// (or idle mode) after which it is disconnected.
const auto async_timeout
{
35s
};
// Time limit for how long a connected client can be in "request mode." This
// should never be hit unless there's an error in the handling code.
const auto request_timeout
{
10s
};
// The pool of request contexts. When a client makes a request it does so by acquiring
// a stack from this pool. The request handling and response logic can then be written
// in a synchronous manner as if each connection had its own thread.
ctx::pool request
{
"request", 1_MiB
};
// Container for all active clients (connections) for iteration purposes.
client::list client::clients;
void async_recv_next(std::shared_ptr<client>, const milliseconds &timeout);
void async_recv_next(std::shared_ptr<client>);
void close_all();
2016-08-24 01:08:40 +02:00
template<class... args> std::shared_ptr<client> make_client(args&&...);
}
//
// init
//
2016-11-29 16:23:38 +01:00
ircd::client::init::init()
{
request.add(128);
}
void
ircd::client::init::interrupt()
{
if(request.active() || !client::clients.empty())
log::warning("Interrupting %zu requests; dropping %zu requests; closing %zu clients...",
request.active(),
request.pending(),
client::clients.size());
2016-11-29 16:23:38 +01:00
request.interrupt();
close_all();
}
ircd::client::init::~init()
noexcept
{
interrupt();
if(request.active())
log::warning("Joining %zu active of %zu remaining request contexts...",
request.active(),
request.size());
else
log::debug("Waiting for %zu request contexts to join...",
request.size());
2017-09-20 07:23:49 +02:00
request.join();
if(unlikely(!client::clients.empty()))
{
log::error("%zu clients are unterminated...", client::clients.size());
assert(client::clients.empty());
}
}
//
// util
//
2017-03-11 02:46:25 +01:00
ircd::http::response::write_closure
ircd::write_closure(client &client)
{
2017-03-31 00:46:40 +02:00
// returns a function that can be called to send an iovector of data to a client
return [&client](const ilist<const const_buffer> &iov)
{
//std::cout << "<<<< " << size(iov) << std::endl;
//std::cout << iov << std::endl;
//std::cout << "---- " << std::endl;
const auto written
{
write(*client.sock, iov)
};
};
}
ircd::parse::read_closure
ircd::read_closure(client &client)
{
2017-03-31 00:46:40 +02:00
// Returns a function the parser can call when it wants more data
return [&client](char *&start, char *const &stop)
{
try
{
char *const got(start);
read(client, start, stop);
//std::cout << ">>>> " << std::distance(got, start) << std::endl;
//std::cout << string_view{got, start} << std::endl;
//std::cout << "----" << std::endl;
}
catch(const boost::system::system_error &e)
{
2017-10-19 10:04:52 +02:00
using namespace boost::system::errc;
switch(e.code().value())
{
case operation_canceled:
throw http::error(http::REQUEST_TIMEOUT);
default:
throw;
}
}
};
}
2017-10-12 02:44:00 +02:00
char *
ircd::read(client &client,
char *&start,
char *const &stop)
{
assert(client.sock);
2017-10-12 02:44:00 +02:00
auto &sock(*client.sock);
const mutable_buffer buf
{
start, stop
};
2017-10-12 02:44:00 +02:00
char *const base(start);
start += net::read(sock, buf);
2017-10-12 02:44:00 +02:00
return base;
}
const char *
ircd::write(client &client,
const char *&start,
const char *const &stop)
{
assert(client.sock);
2017-10-12 02:44:00 +02:00
auto &sock(*client.sock);
const const_buffer buf
{
start, stop
};
2017-10-12 02:44:00 +02:00
const char *const base(start);
start += net::write(sock, buf);
2017-10-12 02:44:00 +02:00
return base;
}
std::shared_ptr<ircd::client>
ircd::add_client(std::shared_ptr<socket> s)
{
const auto client
{
make_client(std::move(s))
};
async_recv_next(client, async_timeout);
return client;
}
template<class... args>
std::shared_ptr<ircd::client>
ircd::make_client(args&&... a)
{
return std::make_shared<client>(std::forward<args>(a)...);
}
void
ircd::close_all()
{
auto it(begin(client::clients));
while(it != end(client::clients))
{
auto *const client(*it);
++it; try
{
close(*client, net::dc::RST, net::close_ignore);
}
catch(const std::exception &e)
{
log::warning("Error disconnecting client @%p: %s", client, e.what());
}
}
}
ircd::ctx::future<void>
ircd::close(client &client,
const net::close_opts &opts)
{
if(likely(client.sock))
return close(*client.sock, opts);
else
return {};
}
void
ircd::close(client &client,
const net::close_opts &opts,
net::close_callback callback)
{
close(*client.sock, opts, std::move(callback));
}
ircd::ipport
ircd::local(const client &client)
{
if(!client.sock)
return {};
return net::local_ipport(*client.sock);
}
ircd::ipport
ircd::remote(const client &client)
{
if(!client.sock)
return {};
return net::remote_ipport(*client.sock);
}
//
// async loop
//
namespace ircd
{
static bool handle_ec_default(client &, const error_code &);
static bool handle_ec_timeout(client &);
static bool handle_ec_short_read(client &);
static bool handle_ec_eof(client &);
static bool handle_ec(client &, const error_code &);
static void handle_client_request(std::shared_ptr<client>, milliseconds);
static void handle_client_ready(std::shared_ptr<client>, milliseconds, const error_code &ec);
}
void
ircd::async_recv_next(std::shared_ptr<client> client)
{
async_recv_next(std::move(client), milliseconds(-1));
}
/// This function is the basis for the client's request loop. We still use
/// an asynchronous pattern until there is activity on the socket (a request)
/// in which case the switch to synchronous mode is made by jumping into an
/// ircd::context drawn from the request pool. When the request is finished,
/// the client exits back into asynchronous mode until the next request is
/// received and rinse and repeat.
//
/// This sequence exists to avoid any possible c10k-style limitation imposed by
/// dedicating a context and its stack space to the lifetime of a connection.
/// This is similar to the thread-per-request pattern before async was in vogue.
///
/// This call returns immediately so we no longer block the current context and
/// its stack while waiting for activity on idle connections between requests.
void
ircd::async_recv_next(std::shared_ptr<client> client,
const milliseconds &timeout)
{
assert(bool(client));
assert(bool(client->sock));
auto &sock(*client->sock);
const net::wait_opts opts
{
net::ready::READ, timeout
};
auto handler
{
std::bind(ircd::handle_client_ready, std::move(client), timeout, ph::_1)
};
sock(opts, std::move(handler));
}
/// The client's socket is ready for reading. This intermediate handler
/// intercepts any errors otherwise dispatches the client to the request
/// pool to be married with a stack. Right here this handler is executing on
/// the main stack (not in any ircd::context).
///
/// The context the closure ends up getting is the next available from the
/// request pool, which may not be available immediately so this handler might
/// be queued for some time after this call returns.
void
ircd::handle_client_ready(std::shared_ptr<client> client,
const milliseconds timeout,
const error_code &ec)
{
if(!handle_ec(*client, ec))
return;
auto handler
{
std::bind(ircd::handle_client_request, std::move(client), timeout)
};
request(std::move(handler));
}
/// A request context has been dispatched and is now handling this client.
/// This function is executing on that ircd::ctx stack. client::main() will
/// now be called and synchronous programming is possible. Afterward, the
/// client will release this ctx and its stack and fall back to async mode
/// or die.
void
ircd::handle_client_request(std::shared_ptr<client> client,
const milliseconds timeout)
{
if(!client->main())
{
close(*client, net::dc::SSL_NOTIFY).wait();
return;
}
async_recv_next(std::move(client), timeout);
}
/// This error handling switch is one of two places client errors
/// are handled. This handles the errors when the client is in async
/// mode rather than during a request. This executes on the main/callback
/// stack, not in any ircd::ctx, and must be asynchronous.
///
bool
ircd::handle_ec(client &client,
const error_code &ec)
{
using namespace boost::system::errc;
using boost::system::system_category;
using boost::asio::error::get_ssl_category;
using boost::asio::error::get_misc_category;
if(ec.category() == system_category()) switch(ec.value())
{
case success: return true;
case operation_canceled: return handle_ec_timeout(client);
default: return handle_ec_default(client, ec);
}
else if(ec.category() == get_misc_category()) switch(ec.value())
{
case asio::error::eof: return handle_ec_eof(client);
default: return handle_ec_default(client, ec);
}
else if(ec.category() == get_ssl_category()) switch(uint8_t(ec.value()))
{
case SSL_R_SHORT_READ: return handle_ec_short_read(client);
default: return handle_ec_default(client, ec);
}
else return handle_ec_default(client, ec);
}
/// The client indicated they will not be sending the data we have been
/// waiting for. The proper behavior now is to initiate a clean shutdown.
bool
ircd::handle_ec_eof(client &client)
try
{
log::debug("socket(%p) local[%s] remote[%s] end of file",
client.sock.get(),
string(local(client)),
string(remote(client)));
close(client, net::dc::SSL_NOTIFY, net::close_ignore);
return false;
}
catch(const std::exception &e)
{
log::error("socket(%p) EOF: %s",
client.sock.get(),
e.what());
return false;
}
/// The client terminated the connection, likely improperly, and SSL
/// is informing us with an opportunity to prevent truncation attacks.
/// Best behavior here is to just close the sd.
bool
ircd::handle_ec_short_read(client &client)
try
{
log::warning("socket(%p) local[%s] remote[%s] short_read",
client.sock.get(),
string(local(client)),
string(remote(client)));
close(client, net::dc::RST, net::close_ignore);
return false;
}
catch(const std::exception &e)
{
log::error("socket(%p) short_read: %s",
client.sock.get(),
e.what());
return false;
}
/// The net:: system determined the client timed out because we set a timer
/// on the socket waiting for data which never arrived. The client may very
/// well still be there, so the best thing to do is to attempt a clean
/// disconnect.
bool
ircd::handle_ec_timeout(client &client)
try
{
assert(bool(client.sock));
log::warning("socket(%p) local[%s] remote[%s] disconnecting after inactivity timeout",
client.sock.get(),
string(local(client)),
string(remote(client)));
close(client, net::dc::SSL_NOTIFY, net::close_ignore);
return false;
}
catch(const std::exception &e)
{
log::error("socket(%p) timeout: %s",
client.sock.get(),
e.what());
return false;
}
/// Unknown/untreated error. Probably not worth attempting a clean shutdown
/// so a hard / immediate disconnect given instead.
bool
ircd::handle_ec_default(client &client,
const error_code &ec)
{
log::warning("socket(%p) local[%s] remote[%s] %s",
client.sock.get(),
string(local(client)),
string(remote(client)),
string(ec));
close(client, net::dc::RST, net::close_ignore);
return false;
}
2017-10-12 02:44:00 +02:00
//
// client
//
2017-03-11 02:46:25 +01:00
ircd::client::client()
:client{std::shared_ptr<socket>{}}
{
}
ircd::client::client(const hostport &hostport,
2017-03-11 02:46:25 +01:00
const seconds &timeout)
:client
{
net::open(hostport)
2017-03-11 02:46:25 +01:00
}
{
}
ircd::client::client(std::shared_ptr<socket> sock)
:clit{clients, clients.emplace(end(clients), this)}
2017-03-11 02:46:25 +01:00
,sock{std::move(sock)}
,request_timer{ircd::timer::nostart}
2017-03-11 02:46:25 +01:00
{
}
ircd::client::~client()
2017-10-25 18:49:16 +02:00
noexcept try
{
//assert(!sock || !connected(*sock));
2017-10-25 18:49:16 +02:00
}
catch(const std::exception &e)
2017-03-11 02:46:25 +01:00
{
log::critical("socket(%p) ~client(%p): %s",
sock.get(),
this,
e.what());
2017-10-25 18:49:16 +02:00
return;
2017-03-11 02:46:25 +01:00
}
namespace ircd
{
bool handle_request(client &client, parse::capstan &pc, const http::request::head &head, size_t &content_consumed);
bool handle_request(client &client, parse::capstan &pc);
}
/// Client main.
///
/// Before main(), the client had been sitting in async mode waiting for
/// socket activity. Once activity with data was detected indicating a request,
/// the client was dispatched to the request pool where it is paired to an
/// ircd::ctx with a stack. main() is then invoked on that ircd::ctx stack.
/// Nothing from the socket has been read into userspace before main().
///
2017-03-11 02:46:25 +01:00
bool
ircd::client::main()
noexcept try
{
const auto header_max{4_KiB};
char header_buffer[header_max];
parse::buffer pb{header_buffer};
return handle(pb);
}
catch(const std::exception &e)
{
log::error("client[%s] [500 Internal Error]: %s",
string(remote(*this)),
e.what());
#ifdef RB_DEBUG
throw;
#else
return false;
#endif
}
/// Main request loop.
///
/// This function parses requests off the socket in a loop until there are no
/// more requests or there is a fatal error. The ctx will "block" to wait for
/// more data off the socket during the middle of a request until the request
/// timeout is reached. main() will not "block" to wait for more data after a
/// request; it will simply `return true` which puts this client back into
/// async mode and relinquishes this stack. returning false will disconnect
/// the client rather than putting it back into async mode.
///
/// Exceptions do not pass below main() therefor anything unhandled is an
/// internal server error and the client is disconnected. The exception handler
/// here though is executing on a request ctx stack, and we can choose to take
/// advantage of that; in contrast to the handle_ec() switch which handles
/// errors on the main/callback stack and must be asynchronous.
///
bool
ircd::client::handle(parse::buffer &pb)
try
{
parse::capstan pc{pb, read_closure(*this)}; do
{
request_timer = ircd::timer{};
const socket::scope_timeout timeout
{
*sock, request_timeout
};
if(!handle_request(*this, pc))
return false;
// Should have nothing left in the userspace parse buffer after
// request otherwise too much was read and the pb.remove() will
// have to memmove() it; should never happen with good grammar.
assert(pb.unparsed() == 0);
pb.remove();
}
while(pc.unparsed());
return true;
2017-03-11 02:46:25 +01:00
}
2016-11-29 16:23:38 +01:00
catch(const boost::system::system_error &e)
{
using namespace boost::system::errc;
2017-12-29 23:53:39 +01:00
using boost::system::system_category;
using boost::asio::error::get_ssl_category;
using boost::asio::error::get_misc_category;
log::debug("socket(%p) local[%s] remote[%s] error during request: %s",
sock.get(),
string(local(*this)),
string(remote(*this)),
string(e.code()));
const error_code &ec{e.code()};
const int &value{ec.value()};
2017-12-29 23:53:39 +01:00
if(ec.category() == system_category()) switch(value)
{
case success:
assert(0);
return true;
case broken_pipe:
case connection_reset:
case not_connected:
close(*this, net::dc::RST, net::close_ignore);
return false;
case operation_canceled:
close(*this, net::dc::SSL_NOTIFY).wait();
return false;
case bad_file_descriptor:
return false;
default:
break;
}
else if(ec.category() == get_ssl_category()) switch(uint8_t(value))
{
case SSL_R_SHORT_READ:
close(*this, net::dc::RST, net::close_ignore);
return false;
case SSL_R_PROTOCOL_IS_SHUTDOWN:
close(*this, net::dc::RST, net::close_ignore);
return false;
default:
break;
}
else if(ec.category() == get_misc_category()) switch(value)
{
case boost::asio::error::eof:
close(*this, net::dc::SSL_NOTIFY).wait();
return false;
default:
break;
}
log::error("socket(%p) (unexpected) %s: (%d) %s",
sock.get(),
ec.category().name(),
value,
ec.message());
close(*this, net::dc::RST, net::close_ignore);
return false;
}
/// Handle a single request within the client main() loop.
///
/// This function returns false if the main() loop should exit
/// and thus disconnect the client. It should return true in most
/// cases even for lightly erroneous requests that won't affect
/// the next requests on the tape.
///
/// This function is timed. The timeout will prevent a client from
/// sending a partial request and leave us waiting for the rest.
/// As of right now this timeout extends to our handling of the
/// request too.
bool
ircd::handle_request(client &client,
parse::capstan &pc)
try
{
// This is the first read off the wire. The headers are entirely read and
// the tape is advanced.
const http::request::head head{pc};
// The size of HTTP headers are never initially known, which means
// the above head parse could have read too much off the socket bleeding
// into the content or even the next request entirely. That's ok because
// the state of `pc` will reflect that back to the main() loop for the
// next request, but for this request we have to figure out how much of
// the content was accidentally read so far.
size_t content_consumed
{
std::min(pc.unparsed(), head.content_length)
};
bool ret
{
handle_request(client, pc, head, content_consumed)
};
if(ret && iequals(head.connection, "close"_sv))
ret = false;
return ret;
}
catch(const ircd::error &e)
{
log::error("socket(%p) local[%s] remote[%s] in %ld$us: %s",
client.sock.get(),
string(local(client)),
string(remote(client)),
client.request_timer.at<microseconds>().count(),
e.what());
resource::response
{
client, e.what(), {}, http::INTERNAL_SERVER_ERROR
};
throw;
}
bool
ircd::handle_request(client &client,
parse::capstan &pc,
const http::request::head &head,
size_t &content_consumed)
try
{
// The resource is responsible for reading content at its discretion, if
// at all. If we accidentally read some content it has to be presented.
const string_view content_partial
{
pc.parsed, pc.unparsed()
};
// Advance the tape up to the end of the partial content read. We no
// longer use the capstan after this point because the resource reads
// directly off the socket. The `pc` will be positioned properly for the
// next request so long as any remaining content is read off the socket.
pc.parsed += content_consumed;
assert(pc.parsed <= pc.read);
assert(content_partial.size() == content_consumed);
log::debug("socket(%p) local[%s] remote[%s] HTTP %s `%s' content-length:%zu part:%zu",
client.sock.get(),
string(local(client)),
string(remote(client)),
head.method,
head.path,
head.content_length,
content_consumed);
auto &resource
{
ircd::resource::find(head.path)
};
resource(client, head, content_partial, content_consumed);
return true;
}
catch(const http::error &e)
{
resource::response
{
client, e.content, "text/html; charset=utf8", e.code, e.headers
};
switch(e.code)
{
// These codes are "recoverable" and allow the next HTTP request in
// a pipeline to take place. In order for that to happen, any content
// which wasn't read because of the exception has to be read now.
default:
{
assert(client.sock);
const size_t unconsumed{head.content_length - content_consumed};
log::debug("socket(%p) local[%s] remote[%s] discarding %zu of %zu unconsumed content...",
client.sock.get(),
string(local(client)),
string(remote(client)),
unconsumed,
head.content_length);
net::discard_all(*client.sock, unconsumed);
return true;
}
// These codes are "unrecoverable" errors and no more HTTP can be
// conducted with this tape. The client must be disconnected.
case http::BAD_REQUEST:
case http::PAYLOAD_TOO_LARGE:
case http::REQUEST_TIMEOUT:
close(client).wait();
return false;
// The client must also be disconnected at some point down the stack.
case http::INTERNAL_SERVER_ERROR:
throw;
}
}