0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-29 10:12:39 +01:00

ircd::gpt: Add vocabulary tokenization; byte-pair merge encoding for natural language.

This commit is contained in:
Jason Volk 2021-02-25 19:05:02 -08:00
parent 3621fe025a
commit 57f9d3fdfb
5 changed files with 706 additions and 0 deletions

27
include/ircd/gpt/gpt.h Normal file
View file

@ -0,0 +1,27 @@
// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2021 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_GPT_GPT_H
/// Generative Pre-trained Transformer
///
namespace ircd::gpt
{
IRCD_EXCEPTION(ircd::error, error)
}
#include "vocab.h"
namespace ircd::gpt
{
using vocab::detokenize;
using vocab::tokenize;
}

38
include/ircd/gpt/vocab.h Normal file
View file

@ -0,0 +1,38 @@
// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2021 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_GPT_VOCAB_H
/// Vocabulary Tokenization & Encoding
///
namespace ircd::gpt::vocab
{
// Actual number of tokens and merges stored in following lists.
extern size_t
tokens,
merges;
// Lists of tokens and merges. Values are strings up to length maxlen which
// are null terminated if shorter.
extern char
token [65536][16],
merge [65536][2][16];
// Tokenize UTF-8 input string of any length into proper token values,
vector_view<u16>
tokenize(const vector_view<u16> &out,
const string_view &in) noexcept;
// Decode token values to build output text string.
string_view
detokenize(const mutable_buffer &out,
const vector_view<const u16> &in) noexcept;
}

View file

@ -99,6 +99,7 @@
#include "ios/ios.h"
#include "ctx/ctx.h"
#include "cl.h"
#include "gpt/gpt.h"
#include "exec.h"
#include "db/db.h"
#include "js.h"

View file

@ -217,6 +217,7 @@ libircd_la_SOURCES += png.cc
if OPENCL
libircd_la_SOURCES += cl.cc
endif
libircd_la_SOURCES += gpt.cc
libircd_la_SOURCES += openssl.cc
libircd_la_SOURCES += rfc1459.cc
libircd_la_SOURCES += rfc3986.cc

639
ircd/gpt.cc Normal file
View file

@ -0,0 +1,639 @@
// Tensor Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2021 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
namespace ircd::gpt::vocab
{
static u16 find_token(const u8x16) noexcept;
static uint find_tokens(u16x16 &, const uint, const u8x16 (&)[16], const uint) noexcept;
static u16 find_merge(const u8x16, const u8x16) noexcept;
static u16 bpe_score(u16 (&)[16], const u8x16 (&)[16][2], const uint) noexcept;
static uint bpe_merge(u8x16 (&)[16][2], u16 (&)[16], const uint, const u16) noexcept;
static uint bpe_postpare(u8x16 (&)[16], const u8x16 (&)[16][2], const uint) noexcept;
static uint bpe_prepare(u8x16 (&)[16][2], const u8x16) noexcept;
static uint bpe_tokenize(u8x16 (&)[16], const u8x16) noexcept;
static u64x2 pre_tokenize_split(u8x16 (&)[16], u32x16, u32x16, u32x16) noexcept;
static u64x2 pre_tokenize(u8x16 (&)[16], const u8x16, const u8x16) noexcept;
static u64x2 tokenize_block(u16x16 &, const u8x16, const u8x16) noexcept;
static void init_tokens() noexcept;
static void init_merges() noexcept;
extern conf::item<std::string> tokens_path;
extern conf::item<std::string> merges_path;
}
decltype(ircd::gpt::vocab::tokens)
ircd::gpt::vocab::tokens;
decltype(ircd::gpt::vocab::merges)
ircd::gpt::vocab::merges;
decltype(ircd::gpt::vocab::token)
ircd::gpt::vocab::token
alignas(64);
decltype(ircd::gpt::vocab::merge)
ircd::gpt::vocab::merge
alignas(64);
decltype(ircd::gpt::vocab::tokens_path)
ircd::gpt::vocab::tokens_path
{
{
{ "name", "ircd.gpt.vocab.tokens.path" },
{ "default", string_view{} },
},
init_tokens
};
decltype(ircd::gpt::vocab::merges_path)
ircd::gpt::vocab::merges_path
{
{
{ "name", "ircd.gpt.vocab.merges.path" },
{ "default", string_view{} },
},
init_merges
};
void
ircd::gpt::vocab::init_tokens()
noexcept
{
if(!tokens_path)
return;
const ircd::fs::fd file
{
string_view{tokens_path}
};
const ircd::fs::map vocab_json
{
file, ircd::fs::map::opts{}
};
tokens = 0;
for(const auto &[key, val] : json::object(vocab_json))
{
assert(tokens == lex_cast<uint16_t>(val));
json::unescape(token[tokens++], key);
}
}
void
ircd::gpt::vocab::init_merges()
noexcept
{
if(!merges_path)
return;
const ircd::fs::fd file
{
string_view{merges_path}
};
const ircd::fs::map merges_txt
{
file, ircd::fs::map::opts{}
};
merges = 0;
ircd::tokens(split(merges_txt, '\n').second, '\n', []
(const string_view &line)
{
const auto &[a, b]
{
split(line, ' ')
};
copy(merge[merges][0], a);
copy(merge[merges][1], b);
++merges;
});
}
//
// detokenize
//
ircd::string_view
ircd::gpt::vocab::detokenize(const mutable_buffer &out,
const vector_view<const u16> &in)
noexcept
{
mutable_buffer buf(out);
for(const u16 &token : in)
consume(buf, copy(buf, const_buffer(vocab::token[token], simd::strlen(vocab::token[token]))));
return string_view
{
data(out), data(buf)
};
}
//
// tokenize
//
ircd::vector_view<ircd::u16>
ircd::gpt::vocab::tokenize(const vector_view<u16> &out,
const string_view &in)
noexcept
{
using input_t = u8x16;
using block_t = u16x16;
assert(out.size() >= simd::lanes<block_t>());
const u64x2 max
{
out.size(), in.size(),
};
const auto block
{
reinterpret_cast<block_t *>(out.data())
};
const auto consumed
{
simd::tokens<input_t, block_t>(block, in.data(), max, gpt::vocab::tokenize_block)
};
assert(consumed[0] <= out.size());
return vector_view<u16>
(
out.data(), consumed[0]
);
}
ircd::u64x2
ircd::gpt::vocab::tokenize_block(u16x16 &token,
const u8x16 in,
const u8x16 in_mask)
noexcept
{
u8x16 pre_token[16];
const auto &[pre_tokens, consumed]
{
pre_tokenize(pre_token, in, in_mask)
};
uint tokens(0);
for(uint i(0); i < pre_tokens; ++i)
{
u8x16 str[16];
const uint strs
{
bpe_tokenize(str, pre_token[i])
};
const uint addl_tokens
{
find_tokens(token, tokens, str, strs)
};
tokens += addl_tokens;
}
return u64x2
{
tokens, consumed
};
}
//
// pre-tokenizer
//
/// Pre-tokenizationis formalized by the regular expression:
///
/// 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
///
/// The return value in [0] indicates the number of tokens populated in the
/// array; the value in [1] indicates the bytes consumed from the input.
///
ircd::u64x2
ircd::gpt::vocab::pre_tokenize(u8x16 (&token)[16],
const u8x16 in,
const u8x16 in_mask)
noexcept
{
const u8x16 is_ascii_ctrl
{
in < 0x20
};
const u8x16 is_ascii_space
{
in == ' '
};
const u8x16 is_ascii_number
{
in >= '0' && in <= '9'
};
const u8x16 is_ascii_letter
{
(in >= 'a' && in <= 'z') || (in >= 'A' && in <= 'Z')
};
const u8x16 ascii_identified
{
is_ascii_space | is_ascii_number | is_ascii_letter
};
const u8x16 maybe_notascii
{
~ascii_identified & in_mask
};
const u32x16 ch
{
utf8::decode(in)
};
const u32x16 uc_cat
{
icu::category(ch & (lane_cast<u32x16>(maybe_notascii) != 0))
};
const u32x16 is_L
{0
| ((uc_cat & 0x0000003eU) != 0)
| (lane_cast<u32x16>(is_ascii_letter) != 0)
};
const u32x16 is_N
{0
| ((uc_cat & 0x00000e00U) != 0)
| (lane_cast<u32x16>(is_ascii_number) != 0)
};
const u32x16 is_Z
{0
| ((uc_cat & 0x00007000U) != 0)
| (lane_cast<u32x16>(is_ascii_space) != 0)
};
const u32x16 is_trail
{0
| (is_L & shl<32>(is_L))
| (is_N & shl<32>(is_N))
| (is_Z & shl<32>(is_Z))
};
const u32x16 fat_mask
{
lane_cast<u32x16>(in_mask) != 0
};
const u32x16 is_head
{
~is_trail & fat_mask
};
// mask if token is preceded by a space
const u32x16 leading_space
{
is_head & shl<32>(is_Z)
};
// zero or one preceding space becomes prefixed to the next token
const u32x16 tok_head
{0
| (is_head & ~leading_space)
| shr<32>(leading_space)
};
const u32x16 tok_trail
{
~tok_head
};
const u32x16 tok_mask
{
tok_trail
};
const u64x2 ret
{
pre_tokenize_split(token, ch, fat_mask, tok_mask)
};
return ret;
}
/// Split single vector of UTF-32 codepoints into vectors of UTF-8 strings for
/// each token determined by the input masks. Returns the number of tokens in
/// [0] and the number of codepoints consumed in [1].
ircd::u64x2
ircd::gpt::vocab::pre_tokenize_split(u8x16 (&token)[16],
u32x16 ch,
u32x16 ch_mask,
u32x16 tok_mask)
noexcept
{
const u32x16 lane0_mask
{
-1U
};
u64x2 ret
{
0, 0
};
for(uint i(0); ret[0] == i && ret[1] < 16; ++i)
{
// Create a mask from all non-leading characters of input tokens with
// a mask of just the leading character of the first token. To be sure
// extra characters are not included we rinse it with the ch_mask.
const u32x16 cover_mask
{
(lane0_mask | tok_mask) & ch_mask
};
// Get the length of the first token from the cover.
const u64 len
{
std::min(simd::lzcnt(~cover_mask) / 32, 16U)
};
// When the first token is too large, we truncate that token here and
// return, effectively splitting the token into multiple. If the token
// after the first is too large (input potentially spans into the next
// block), we kick it to the next iteration entirely.
const bool skip
{
len >= 16 - ret[1] && ret[0]
};
// Generate utf-8 codepoints
const u32x16 ch8
{
utf8::encode(ch & cover_mask)
};
// Pack the utf-8 codepoints into the result token
token[i] = {0};
for(uint j(0); j < 16; ++j)
token[i][j] = ch8[j];
// Shift the token off the input to consume the next.
for(uint j(0); j < len; ++j)
{
ch = shr<32>(ch);
ch_mask = shr<32>(ch_mask);
tok_mask = shr<32>(tok_mask);
}
ret[0] += bool(len) && !skip;
ret[1] += len & boolmask<u64>(!skip);
}
return ret;
}
//
// byte-pair encoding
//
[[gnu::noinline]]
uint
ircd::gpt::vocab::bpe_tokenize(u8x16 (&str)[16],
const u8x16 pre_token)
noexcept
{
u8x16 pair[16][2];
auto pairs
{
bpe_prepare(pair, pre_token)
};
u16 score[16] {0};
for(uint j(0); j < 16 && pairs > 1; ++j)
{
const auto best_score
{
bpe_score(score, pair, pairs)
};
if(best_score >= u16(-1))
break;
const auto merges
{
bpe_merge(pair, score, pairs, best_score)
};
pairs -= merges;
if(!merges)
break;
}
const uint strs
{
bpe_postpare(str, pair, pairs)
};
return strs;
}
uint
ircd::gpt::vocab::bpe_prepare(u8x16 (&out)[16][2],
const u8x16 in)
noexcept
{
uint di, si;
for(di = 0, si = 0; si < 16 && di < 16; si += 2, di += 2)
{
out[di][0] = {0};
out[di][1] = {0};
if(!in[si] || !in[si + 1])
break;
//TODO: XXX
if(!si && in[si] == ' ')
{
out[di][0][0] = 0xc4;
out[di][0][1] = 0xa0;
out[di][1][0] = in[si + 1];
continue;
}
out[di][0][0] = in[si];
out[di][1][0] = in[si + 1];
}
for(di = 1, si = 1; si < 16 && di < 16; si += 2, di += 2)
{
out[di][0] = {0};
out[di][1] = {0};
if(!in[si] || !in[si + 1])
break;
out[di][0][0] = in[si];
out[di][1][0] = in[si + 1];
}
return di;
}
uint
ircd::gpt::vocab::bpe_postpare(u8x16 (&out)[16],
const u8x16 (&in)[16][2],
const uint num)
noexcept
{
uint ret(0);
for(uint j(0); j < num; ++j)
if(simd::strlen(in[j][0]))
out[ret++] = in[j][0];
if(likely(num))
if(simd::strlen(in[num - 1][1]))
out[ret++] = in[num - 1][1];
return ret;
}
uint
ircd::gpt::vocab::bpe_merge(u8x16 (&pair)[16][2],
u16 (&score)[16],
const uint num,
const u16 best_score)
noexcept
{
uint ret(0);
for(uint i(0); i < num - ret; ++i)
{
if(score[i] != best_score)
continue;
pair[i][0] = simd::strcat(pair[i][0], pair[i][1]);
score[i] = 0;
if(i > 0)
{
pair[i - 1][1] = simd::strcat(pair[i - 1][1], pair[i][1]);
score[i - 1] = 0;
}
if(i < 15)
pair[i][1] = pair[i + 1][1];
for(uint j(i + 1); j + 1 < num; ++j)
{
pair[j][0] = pair[j + 1][0];
pair[j][1] = pair[j + 1][1];
score[j] = score[j + 1];
}
++ret;
}
return ret;
}
ircd::u16
ircd::gpt::vocab::bpe_score(u16 (&score)[16],
const u8x16 (&pair)[16][2],
const uint num)
noexcept
{
uint best(-1U), is_min;
for(uint i(0); i < num; i++)
{
// Only find the merge if the score is set to zero.
if(!score[i])
score[i] = find_merge(pair[i][0], pair[i][1]);
// If the score is set to -1 this index is inactive or wasn't a
// valid pair.
is_min = boolmask<uint>(score[i] != u16(-1));
is_min &= boolmask<uint>(score[i] < best);
best = (is_min & score[i]) | (~is_min & best);
}
return best;
}
//
// queries
//
uint
ircd::gpt::vocab::find_tokens(u16x16 &token,
const uint tokens,
const u8x16 (&str)[16],
const uint strs)
noexcept
{
uint ret(0);
for(; tokens + ret < 16 && ret < strs; ++ret)
{
const auto val
{
find_token(str[ret])
};
const bool found
{
val != u16(-1)
};
assert(found);
token[tokens + ret] = val;
}
return ret;
}
ircd::u16
ircd::gpt::vocab::find_token(const u8x16 string)
noexcept
{
const auto *const __restrict__ token
{
reinterpret_cast<const u8x16 *>(vocab::token)
};
for(uint i(0); i < tokens; ++i)
if(simd::streq(string, token[i]))
return i;
return u16(-1U);
}
ircd::u16
ircd::gpt::vocab::find_merge(const u8x16 a,
const u8x16 b)
noexcept
{
const auto &__restrict__ merge
{
reinterpret_cast<const u8x16 (&)[65536][2]>(vocab::merge)
};
for(uint i(0); i < merges; ++i)
{
if(likely(!simd::streq(a, merge[i][0])))
continue;
if(likely(!simd::streq(b, merge[i][1])))
continue;
return i;
}
return u16(-1U);
}