// Matrix Construct // // Copyright (C) Matrix Construct Developers, Authors & Contributors // Copyright (C) 2016-2018 Jason Volk // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice is present in all copies. The // full license for this software is available in the LICENSE file. #include #include #include "ctx.h" /// Instance list linkage for the list of all ctx instances. template<> decltype(ircd::util::instance_list::list) ircd::util::instance_list::list {}; /// Public interface linkage for the list of all ctx instances decltype(ircd::ctx::ctxs) ircd::ctx::ctxs { ctx::ctx::list }; /// Monotonic ctx id counter state. This counter is incremented for each /// newly created context. decltype(ircd::ctx::ctx::id_ctr) ircd::ctx::ctx::id_ctr { 0 }; /// Spawn (internal) void ircd::ctx::spawn(ctx *const c, context::function func) { const boost::coroutines::attributes attrs { c->stack.max, boost::coroutines::stack_unwind }; auto bound { std::bind(&ctx::operator(), c, ph::_1, std::move(func)) }; boost::asio::spawn(c->strand, std::move(bound), attrs); } // linkage for dtor ircd::ctx::ctx::~ctx() noexcept { } /// Base frame for a context. /// /// This function is the first thing executed on the new context's stack /// and calls the user's function. void ircd::ctx::ctx::operator()(boost::asio::yield_context yc, const std::function func) noexcept try { this->yc = &yc; notes = 1; stack.base = uintptr_t(__builtin_frame_address(0)); ircd::ctx::current = this; mark(prof::event::CUR_ENTER); const unwind atexit([this] { mark(prof::event::CUR_LEAVE); adjoindre.notify_all(); ircd::ctx::current = nullptr; this->yc = nullptr; if(flags & context::DETACH) delete this; }); // Check for a precocious interrupt if(unlikely(flags & (context::INTERRUPTED | context::TERMINATED))) return; if(likely(bool(func))) func(); } catch(const ircd::ctx::interrupted &) { return; } catch(const ircd::ctx::terminated &) { return; } catch(const std::exception &e) { log::critical { "ctx('%s' id:%u): unhandled: %s", name, id, e.what() }; // Preserving the stacktrace from the throw point here is hopeless. // We can terminate for developer nuisance but we will never know // where this exception came from and where it is going. Bottom line // is that #ifdef'ing away this handler or rethrowing isn't as useful as // handling the exception here with a log message and calling it a day. return; } /// Direct context switch to this context. /// /// This currently doesn't work yet because the suspension state of this /// context has to be ready to be jumped to and that isn't implemented yet. void ircd::ctx::ctx::jump() { assert(this->yc); assert(current != this); // can't jump to self auto &yc(*this->yc); auto &target(*yc.coro_.lock()); // Jump from the currently running context (source) to *this (target) // with continuation of source after target { current->notes = 0; // Unconditionally cleared here const continuation continuation; target(); } assert(current != this); assert(current->notes == 1); // notes = 1; set by continuation dtor on wakeup } /// Yield (suspend) this context until notified. /// /// This context must be currently running otherwise bad things. Returns false /// if the context was notified before actually suspending; the note is then /// considered handled an another attempt to `wait()` can be made. Returns true /// if the context suspended and was notified. When a context wakes up the /// note counter is reset. bool ircd::ctx::ctx::wait() { namespace errc = boost::system::errc; assert(this->yc); assert(current == this); if(--notes > 0) return false; // An interrupt invokes this closure to force the alarm to return. const interruptor interruptor{[this] (ctx *const &interruptor) noexcept { wake(); }}; // This is currently a dummy predicate; this is where we can take the // user's real wakeup condition (i.e from a ctx::dock) and use it with // an internal scheduler. const predicate &predicate{[this] { return notes > 0; }}; // The register switch itself occurs inside the alarm.async_wait() call. // The construction of the arguments to the call on this stack comprise // our final control before the context switch. The destruction of the // arguments comprise the initial control after the context switch. boost::system::error_code ec; alarm.async_wait(yield_context{continuation{predicate, interruptor}}[ec]); assert(ec == errc::operation_canceled || ec == errc::success); assert(current == this); assert(notes == 1); // notes = 1; set by continuation dtor on wakeup return true; } /// Notifies this context to resume (wake up from waiting). /// /// Returns true if this note was the first note received by this context /// while it's been suspended or false if it's already been notified. bool ircd::ctx::ctx::note() { if(notes++ > 0) return false; if(this == current) return true; return wake(); } /// Wakes a context without a note (internal) bool ircd::ctx::ctx::wake() try { alarm.cancel(); return true; } catch(const boost::system::system_error &e) { log::error { "ctx::wake(%p): %s", this, e.what() }; return false; } /// Throws if this context has been flagged for interruption and clears /// the flag. void ircd::ctx::ctx::interruption_point() { static const auto &flags { context::TERMINATED | context::INTERRUPTED }; if(likely((this->flags & flags) == 0)) return; if(unlikely(termination_point(std::nothrow))) throw terminated{}; if(unlikely(interruption_point(std::nothrow))) throw interrupted { "ctx(%p) '%s'", (const void *)this, name }; } /// Returns true if this context has been flagged for termination. /// Does not clear the flag. bool ircd::ctx::ctx::termination_point(std::nothrow_t) { if(unlikely(flags & context::TERMINATED)) { // see: interruption_point(). if(flags & context::NOINTERRUPT) return false; flags |= context::NOINTERRUPT; mark(prof::event::CUR_TERMINATE); assert(flags & ~context::NOINTERRUPT); return true; } else return false; } /// Returns true if this context has been flagged for interruption and /// clears the flag. bool ircd::ctx::ctx::interruption_point(std::nothrow_t) { // Interruption shouldn't be used for normal operation, // so please eat this branch misprediction. if(unlikely(flags & context::INTERRUPTED)) { // The NOINTERRUPT flag works by pretending there is no INTERRUPTED // flag set and also does not clear the flag. This allows the interrupt // to remaing pending until the uninterruptible section is complete. if(flags & context::NOINTERRUPT) return false; flags &= ~context::INTERRUPTED; mark(prof::event::CUR_INTERRUPT); assert(~flags & context::NOINTERRUPT); return true; } else return false; } bool ircd::ctx::ctx::started() const { return stack.base != 0; } bool ircd::ctx::ctx::finished() const { return started() && yc == nullptr; } /////////////////////////////////////////////////////////////////////////////// // // ctx/ctx.h // /// Yield to context `ctx`. /// /// void ircd::ctx::yield(ctx &ctx) { assert(current); //ctx.jump(); // !!! TODO !!! // XXX: We can't jump directly to a context if it's waiting on its alarm, and // we don't know whether it's waiting on its alarm. We can add another flag to // inform us of that, but most contexts are usually waiting on their alarm anyway. // // Perhaps a better way to do this would be to centralize the alarms into a single // context with the sole job of waiting on a single alarm. Then it can schedule // things allowing for more direct jumps until all work is complete. // !!! TODO !!! notify(ctx); } /// Notifies `ctx` to wake up from another std::thread void ircd::ctx::notify(ctx &ctx, threadsafe_t) { signal(ctx, [&ctx] { notify(ctx); }); } /// Notifies `ctx` to wake up. This will enqueue the resumption, not jump /// directly to `ctx`. bool ircd::ctx::notify(ctx &ctx) { return ctx.note(); } /// Executes `func` sometime between executions of `ctx` with thread-safety /// so `func` and `ctx` are never executed concurrently no matter how many /// threads the io_service has available to execute events on. void ircd::ctx::signal(ctx &ctx, std::function func) { ctx.strand.post(std::move(func)); } /// Marks `ctx` for termination. Terminate is similar to interrupt() but the /// exception thrown is ctx::terminate which does not participate in the /// std::exception hierarchy. Project code is unlikely to catch this. void ircd::ctx::terminate(ctx &ctx) { if(finished(ctx)) return; if(termination(ctx)) return; ctx.flags |= context::TERMINATED; if(!interruptible(ctx)) return; if(likely(&ctx != current && ctx.cont != nullptr)) ctx.cont->intr(current); } /// Marks `ctx` for interruption and enqueues it for resumption to receive the /// interrupt which will be an exception coming out of the point where the /// `ctx` was yielding. void ircd::ctx::interrupt(ctx &ctx) { if(unlikely(ircd::runlevel == runlevel::QUIT)) return terminate(ctx); if(finished(ctx)) return; if(interruption(ctx)) return; ctx.flags |= context::INTERRUPTED; if(!interruptible(ctx)) return; if(likely(&ctx != current && ctx.cont != nullptr)) ctx.cont->intr(current); } /// Marks `ctx` for whether to allow or suppress interruption. Suppression /// does not ignore an interrupt itself, it only ignores the interruption /// points. Thus when a suppression ends if the interrupt flag was ever set /// the next interruption point will throw as expected. void ircd::ctx::interruptible(ctx &ctx, const bool &b) { if(b) ctx.flags &= ~context::NOINTERRUPT; else ctx.flags |= context::NOINTERRUPT; } /// started() && !finished() && !running bool ircd::ctx::waiting(const ctx &ctx) { return started(ctx) && !finished(ctx) && !running(ctx); } /// Indicates if `ctx` is the current ctx bool ircd::ctx::running(const ctx &ctx) { return &ctx == current; } /// Indicates if `ctx` was ever jumped to bool ircd::ctx::started(const ctx &ctx) { return ctx.started(); } /// Indicates if the base frame for `ctx` returned bool ircd::ctx::finished(const ctx &ctx) { return ctx.finished(); } /// Indicates if `ctx` was terminated; does not clear the flag bool ircd::ctx::termination(const ctx &c) noexcept { return c.flags & context::TERMINATED; } /// Indicates if `ctx` was interrupted; does not clear the flag bool ircd::ctx::interruption(const ctx &c) noexcept { return c.flags & context::INTERRUPTED; } /// Indicates if `ctx` will suppress any interrupts. bool ircd::ctx::interruptible(const ctx &c) noexcept { return ~c.flags & context::NOINTERRUPT; } /// Returns the cycle count for `ctx` const ulong & ircd::ctx::cycles(const ctx &ctx) { return ctx.profile.cycles; } /// Returns the yield count for `ctx` const uint64_t & ircd::ctx::yields(const ctx &ctx) { return ctx.profile.yields; } /// Returns the notification count for `ctx` const int32_t & ircd::ctx::notes(const ctx &ctx) { return ctx.notes; } /// Returns the notification count for `ctx` const size_t & ircd::ctx::stack_at(const ctx &ctx) { return ctx.stack.at; } /// Returns the notification count for `ctx` const size_t & ircd::ctx::stack_max(const ctx &ctx) { return ctx.stack.max; } /// Returns the developer's optional name literal for `ctx` ircd::string_view ircd::ctx::name(const ctx &ctx) { return ctx.name; } /// Returns a reference to unique ID for `ctx` (which will go away with `ctx`) const uint64_t & ircd::ctx::id(const ctx &ctx) { return ctx.id; } /////////////////////////////////////////////////////////////////////////////// // // ctx/this_ctx.h // // set by the continuation object and the base frame. __thread ircd::ctx::ctx * ircd::ctx::current; /// Yield the currently running context until `time_point` ignoring notes void ircd::ctx::this_ctx::sleep_until(const steady_clock::time_point &tp) { while(!wait_until(tp, std::nothrow)); } /// Yield the currently running context until notified or `time_point`. /// /// Returns true if this function returned because `time_point` was hit or /// false because this context was notified. bool ircd::ctx::this_ctx::wait_until(const steady_clock::time_point &tp, const std::nothrow_t &) { auto &c(cur()); c.alarm.expires_at(tp); c.wait(); // now you're yielding with portals c.interruption_point(); return steady_clock::now() >= tp; } /// Yield the currently running context for `duration` or until notified. /// /// Returns the duration remaining if notified, or <= 0 if suspended for /// the full duration, or unchanged if no suspend ever took place. ircd::microseconds ircd::ctx::this_ctx::wait(const microseconds &duration, const std::nothrow_t &) { auto &c(cur()); c.alarm.expires_from_now(duration); c.wait(); // now you're yielding with portals c.interruption_point(); const auto ret(c.alarm.expires_from_now()); // return remaining duration. // this is > 0 if notified // this is unchanged if a note prevented any wait at all return duration_cast(ret); } /// Yield the currently running context until notified. void ircd::ctx::this_ctx::wait() { auto &c(cur()); c.alarm.expires_at(steady_clock::time_point::max()); c.wait(); // now you're yielding with portals c.interruption_point(); } /// Post the currently running context to the event queue and then suspend to /// allow other contexts in the queue to run. /// /// Until we have our own queue the ios queue makes no guarantees if the queue /// is FIFO or LIFO etc :-/ It is generally bad practice to use this function, /// as one should make the effort to devise a specific cooperative strategy for /// how context switching occurs rather than this coarse/brute technique. void ircd::ctx::this_ctx::yield() { bool done(false); const auto restore([&done, &me(cur())] { done = true; notify(me); }); // All spurious notifications are ignored until `done` ircd::post(restore); do { wait(); } while(!done); } ulong ircd::ctx::this_ctx::cycles_here() { assert(current); return cycles(cur()) + prof::cur_slice_cycles(); } size_t ircd::ctx::this_ctx::stack_at_here() { assert(current); return cur().stack.base - uintptr_t(__builtin_frame_address(0)); } /// Throws interrupted if the currently running context was interrupted /// and clears the interrupt flag. void ircd::ctx::this_ctx::interruptible(const bool &b) { const bool theirs { interruptible(cur()) }; if(theirs && !b) interruption_point(); interruptible(cur(), b); if(!theirs && b) interruption_point(); } void ircd::ctx::this_ctx::interruptible(const bool &b, std::nothrow_t) noexcept { interruptible(cur(), b); } bool ircd::ctx::this_ctx::interruptible() noexcept { return interruptible(cur()); } /// Throws interrupted if the currently running context was interrupted /// and clears the interrupt flag. void ircd::ctx::this_ctx::interruption_point() { // Asserting to know if this call is useless as it's being made in // an uninterruptible scope anyway. It's okay to relax this assertion. assert(interruptible()); return cur().interruption_point(); } /// Returns true if the currently running context was interrupted and clears /// the interrupt flag. bool ircd::ctx::this_ctx::interruption_requested() { return interruption(cur()) || termination(cur()); } /// Returns unique ID of currently running context const uint64_t & ircd::ctx::this_ctx::id() { static const uint64_t zero{0}; return current? id(cur()) : zero; } /// Returns optional developer-given name for currently running context ircd::string_view ircd::ctx::this_ctx::name() { static const string_view nada{"*"}; return current? name(cur()) : nada; } // // uinterruptible // ircd::ctx::this_ctx::uninterruptible::uninterruptible() :theirs { interruptible(cur()) } { interruptible(false); } ircd::ctx::this_ctx::uninterruptible::~uninterruptible() noexcept(false) { interruptible(theirs); } // // uninterruptible::nothrow // ircd::ctx::this_ctx::uninterruptible::nothrow::nothrow() noexcept :theirs { interruptible(cur()) } { interruptible(false, std::nothrow); } ircd::ctx::this_ctx::uninterruptible::nothrow::~nothrow() noexcept { interruptible(theirs, std::nothrow); } // // exception_handler // ircd::ctx::this_ctx::exception_handler::exception_handler() noexcept :std::exception_ptr{std::current_exception()} { assert(bool(*this)); //assert(!std::uncaught_exceptions()); __cxa_end_catch(); // We don't yet support more levels of exceptions; after ending this // catch we can't still be in another one. This doesn't apply if we're // not on any ctx currently. assert(!current || !std::current_exception()); } // // critical_assertion // namespace ircd::ctx { bool critical_asserted; void assert_critical(); } #ifndef NDEBUG ircd::ctx::this_ctx::critical_assertion::critical_assertion() :theirs{critical_asserted} { critical_asserted = true; } #endif #ifndef NDEBUG ircd::ctx::this_ctx::critical_assertion::~critical_assertion() noexcept { assert(critical_asserted); critical_asserted = theirs; } #endif #ifndef NDEBUG void ircd::ctx::assert_critical() { if(unlikely(critical_asserted)) throw ircd::assertive { "%lu '%s' :Illegal context switch", id(), name() }; } #else void ircd::ctx::assert_critical() { } #endif // // stack_usage_assertion // #ifndef NDEBUG ircd::ctx::this_ctx::stack_usage_assertion::stack_usage_assertion() { const auto stack_usage(stack_at_here()); assert(stack_usage < cur().stack.max * double(prof::settings::stack_usage_assertion)); } #endif #ifndef NDEBUG ircd::ctx::this_ctx::stack_usage_assertion::~stack_usage_assertion() noexcept { const auto stack_usage(stack_at_here()); assert(stack_usage < cur().stack.max * double(prof::settings::stack_usage_assertion)); } #endif /////////////////////////////////////////////////////////////////////////////// // // ctx/slice_usage_warning.h // #ifndef NDEBUG ircd::ctx::this_ctx::slice_usage_warning::slice_usage_warning(const string_view &fmt, va_rtti &&ap) :fmt { fmt } ,ap { std::move(ap) } ,start { // Set the start value to the total number of cycles accrued by this // context including the current time slice. ~cur().flags & context::SLICE_EXEMPT? cur().profile.cycles + prof::cur_slice_cycles(): 0 } { } #endif #ifndef NDEBUG ircd::ctx::this_ctx::slice_usage_warning::~slice_usage_warning() noexcept { if(cur().flags & context::SLICE_EXEMPT) return; // Set the final value by first adding the total number of cycles ever // for this context to the current time slice. Then subtract the start // sample. This way we're only counting the execution time of this context // and not counting any time while it's yielding. A simple difference of // two rdtsc() samples would be insufficient. const auto stop { cur().profile.cycles + prof::cur_slice_cycles() }; assert(stop >= start); const auto total(stop - start); if(!prof::slice_exceeded_warning(total)) return; thread_local char buf[256]; const string_view reason{fmt::vsprintf { buf, fmt, ap }}; const ulong &threshold{prof::settings::slice_warning}; log::dwarning { "context '%s' id:%lu watchdog: timeslice excessive; lim:%lu this:%lu pct:%.2lf :%s", name(cur()), id(cur()), threshold, total, (double(total) / double(threshold)) * 100.0, reason }; } #endif /////////////////////////////////////////////////////////////////////////////// // // ctx/continuation.h // decltype(ircd::ctx::continuation::true_predicate) ircd::ctx::continuation::true_predicate{[] () -> bool { return true; }}; decltype(ircd::ctx::continuation::false_predicate) ircd::ctx::continuation::false_predicate{[] () -> bool { return false; }}; decltype(ircd::ctx::continuation::noop_interruptor) ircd::ctx::continuation::noop_interruptor{[] (ctx *const &interruptor) -> void { return; }}; // // continuation // ircd::ctx::continuation::continuation(const predicate &pred, const interruptor &intr) :self { ircd::ctx::current } ,pred { pred } ,intr { intr } { assert(self != nullptr); assert(self->notes <= 1); // Check here if the developer has placed a critical assertion on the stack // but this yield is still occuring under its scope. That's bad. assert_critical(); assert(!critical_asserted); // Note: Construct an instance of ctx::exception_handler to enable yielding // in your catch block. // // GNU cxxabi uses a singly-linked forward list (aka the 'exception // stack') for pending exception activities. Due to this limitation we // cannot interleave _cxa_begin_catch() and __cxa_end_catch() by yielding // the ircd::ctx in an exception handler. assert(!std::current_exception()); //assert(!std::uncaught_exceptions()); // Tell the profiler this is the point where the context has concluded // its execution run and is now yielding. mark(prof::event::CUR_YIELD); // Point to this continuation instance (which is on the context's stack) // from the context's instance. This allows its features to be accessed // while the context is asleep (i.e interruptor and predicate functions). // NOTE that this pointer is not ever null'ed after being set here. It // will remain invalid once the context resumes. You know if this is a // valid pointer because the context is asleep. Otherwise it's invalid. self->cont = this; // Null the fundamental current context register as the last operation // during execution before yielding. When a context resumes it will // restore this register; otherwise it remains null for executions on // the program's main stack. ircd::ctx::current = nullptr; } ircd::ctx::continuation::~continuation() noexcept { // Set the fundamental current context register as the first operation // upon resuming execution. ircd::ctx::current = self; // Tell the profiler this is the point where the context is now resuming. // On some optimized builds this might lead nowhere. mark(prof::event::CUR_CONTINUE); // Unconditionally reset the notes counter to 1 because we're awake now. self->notes = 1; // self->continuation is not null'ed here; it remains an invalid // pointer while the context is awake. } ircd::ctx::continuation::operator boost::asio::yield_context &() { return *self->yc; } ircd::ctx::continuation::operator const boost::asio::yield_context &() const { return *self->yc; } // // to_asio // ircd::ctx::to_asio::to_asio(const interruptor &intr) :continuation { false_predicate, intr } { } /////////////////////////////////////////////////////////////////////////////// // // ctx/context.h // // Linkage here for default construction because ctx is internal. ircd::ctx::context::context() { } ircd::ctx::context::context(const string_view &name, const size_t &stack_sz, const flags &flags, function func) :c { std::make_unique(name, stack_sz, flags, ios::get()) } { auto spawn { std::bind(&ircd::ctx::spawn, c.get(), std::move(func)) }; // The profiler is told about the spawn request here, not inside the closure // which is probably the same event-slice as event::CUR_ENTER and not as useful. mark(prof::event::SPAWN); // When the user passes the DETACH flag we want to release the unique_ptr // of the ctx if and only if that ctx is committed to freeing itself. Our // commitment ends at the 180 of this function. If no exception was thrown // we expect the context to be committed to entry. If the POST flag is // supplied and it gets lost in the asio queue it will not be entered, and // will not be able to free itself; that will leak. const unwind::nominal release { [this, &flags] { if(flags & context::DETACH) this->detach(); } }; if(flags & POST) { ios::post(std::move(spawn)); return; } // The current context must be reasserted if spawn returns here auto *const theirs(ircd::ctx::current); const unwind recurrent([&theirs] { ircd::ctx::current = theirs; }); if(flags & DISPATCH) ios::dispatch(std::move(spawn)); else spawn(); } ircd::ctx::context::context(const string_view &name, const size_t &stack_size, function func, const flags &flags) :context { name, stack_size, flags, std::move(func) } { } ircd::ctx::context::context(const string_view &name, const flags &flags, function func) :context { name, DEFAULT_STACK_SIZE, flags, std::move(func) } { } ircd::ctx::context::context(const string_view &name, function func, const flags &flags) :context { name, DEFAULT_STACK_SIZE, flags, std::move(func) } { } ircd::ctx::context::context(function func, const flags &flags) :context { "", DEFAULT_STACK_SIZE, flags, std::move(func) } { } ircd::ctx::context::context(context &&other) noexcept :c{std::move(other.c)} { } ircd::ctx::context & ircd::ctx::context::operator=(context &&other) noexcept { std::swap(this->c, other.c); return *this; } ircd::ctx::context::~context() noexcept { if(!c) return; // Can't join to bare metal, only from within another context. if(current) { const uninterruptible::nothrow ui; terminate(); join(); return; } // because *this uses unique_ptr's, if we dtor the ircd::ctx from // right here and ircd::ctx hasn't been entered yet because the user // passed the POST flag, the ctx::spawn() is still sitting in the ios // queue. if(!started(*c)) { detach(); return; } // When this is bare metal the above join branch will not have been // taken. In that case we should detach the context so it frees itself, // but only if the context has not already finished. if(!current && !finished(*c)) { detach(); return; } } void ircd::ctx::context::join() { if(joined()) return; assert(bool(c)); mark(prof::event::JOIN); c->adjoindre.wait([this] { return joined(); }); mark(prof::event::JOINED); } ircd::ctx::ctx * ircd::ctx::context::detach() { assert(bool(c)); c->flags |= DETACH; return c.release(); } /////////////////////////////////////////////////////////////////////////////// // // ctx_pool.h // const ircd::string_view & ircd::ctx::name(const pool &pool) { return pool.name; } // // pool::pool // ircd::ctx::pool::pool(const string_view &name, const size_t &stack_size, const size_t &size) :name{name} ,stack_size{stack_size} ,running{0} ,working{0} { add(size); } ircd::ctx::pool::~pool() noexcept { terminate(); join(); assert(ctxs.empty()); assert(q.empty()); } void ircd::ctx::pool::join() { set(0); } void ircd::ctx::pool::interrupt() { for(auto &context : ctxs) context.interrupt(); } void ircd::ctx::pool::terminate() { for(auto &context : ctxs) context.terminate(); } void ircd::ctx::pool::set(const size_t &num) { if(size() > num) del(size() - num); else add(num - size()); } void ircd::ctx::pool::del(const size_t &num) { const auto requested { ssize_t(size()) - ssize_t(num) }; const auto target { size_t(std::max(requested, 0L)) }; while(ctxs.size() > target) ctxs.pop_back(); } void ircd::ctx::pool::add(const size_t &num) { for(size_t i(0); i < num; ++i) ctxs.emplace_back(this->name, stack_size, context::POST, std::bind(&pool::main, this)); } void ircd::ctx::pool::operator()(closure closure) { q.push(std::move(closure)); } void ircd::ctx::pool::main() noexcept try { ++running; const unwind avail([this] { --running; }); while(1) next(); } catch(const interrupted &e) { // log::debug // { // "pool(%p) ctx(%p): %s", this, &cur(), e.what() // }; } catch(const terminated &e) { // log::debug // { // "pool(%p) ctx(%p): %s", this, &cur(), e.what() // }; } void ircd::ctx::pool::next() try { const auto func { std::move(q.pop()) }; ++working; const unwind avail([this] { --working; }); func(); } catch(const interrupted &e) { // Interrupt is stopped here so this ctx can be reused for a new job. return; } catch(const std::exception &e) { log::critical { "pool(%p) ctx(%p '%s' id:%u): unhandled: %s", this, current, ircd::ctx::name(cur()), ircd::ctx::id(cur()), e.what() }; } void ircd::ctx::debug_stats(const pool &pool) { log::debug { "pool '%s' (stack size: %zu) total: %zu avail: %zu queued: %zu active: %zu pending: %zu", pool.name, pool.stack_size, pool.size(), pool.avail(), pool.queued(), pool.active(), pool.pending() }; } /////////////////////////////////////////////////////////////////////////////// // // ctx_prof.h // namespace ircd::ctx::prof { ulong _slice_start; // Current/last time slice started ulong _slice_stop; // Last time slice ended ulong _slice_total; // Monotonic accumulator void check_stack(); void check_slice(); void slice_enter(); void slice_leave(); void handle_cur_continue(); void handle_cur_yield(); void handle_cur_leave(); void handle_cur_enter(); } // stack_usage_warning at 1/3 engineering tolerance decltype(ircd::ctx::prof::settings::stack_usage_warning) ircd::ctx::prof::settings::stack_usage_warning { { "name", "ircd.ctx.prof.stack_usage_warning" }, { "default", 0.33 }, }; // stack_usage_assertion at 1/2 engineering tolerance decltype(ircd::ctx::prof::settings::stack_usage_assertion) ircd::ctx::prof::settings::stack_usage_assertion { { "name", "ircd.ctx.prof.stack_usage_assertion" }, { "default", 0.50 }, }; // slice_warning after this number of tsc ticks... decltype(ircd::ctx::prof::settings::slice_warning) ircd::ctx::prof::settings::slice_warning { { "name", "ircd.ctx.prof.slice_warning" }, { "default", 280 * 1000000L }, }; // slice_interrupt after this number of tsc ticks... decltype(ircd::ctx::prof::settings::slice_interrupt) ircd::ctx::prof::settings::slice_interrupt { { "name", "ircd.ctx.prof.slice_interrupt" }, { "default", 0L }, { "persist", false }, }; // slice_assertion after this number of tsc ticks... decltype(ircd::ctx::prof::settings::slice_assertion) ircd::ctx::prof::settings::slice_assertion { { "name", "ircd.ctx.prof.slice_assertion" }, { "default", 0L }, { "persist", false }, }; #ifdef RB_DEBUG void ircd::ctx::prof::mark(const event &e) { switch(e) { case event::CUR_ENTER: handle_cur_enter(); break; case event::CUR_LEAVE: handle_cur_leave(); break; case event::CUR_YIELD: handle_cur_yield(); break; case event::CUR_CONTINUE: handle_cur_continue(); break; default: break; } } #else void ircd::ctx::prof::mark(const event &e) { } #endif ulong ircd::ctx::prof::cur_slice_cycles() { return rdtsc() - cur_slice_start(); } const ulong & ircd::ctx::prof::cur_slice_start() { return _slice_start; } const ulong & ircd::ctx::prof::total_slice_cycles() { return _slice_total; } void ircd::ctx::prof::handle_cur_enter() { slice_enter(); } void ircd::ctx::prof::handle_cur_leave() { slice_leave(); check_slice(); } void ircd::ctx::prof::handle_cur_yield() { slice_leave(); check_slice(); check_stack(); } void ircd::ctx::prof::handle_cur_continue() { slice_enter(); } void ircd::ctx::prof::slice_enter() { _slice_start = rdtsc(); } void ircd::ctx::prof::slice_leave() { _slice_stop = rdtsc(); auto &c(cur()); assert(_slice_stop >= _slice_start); const auto last_slice(_slice_stop - _slice_start); c.stack.at = stack_at_here(); c.profile.cycles += last_slice; _slice_total += last_slice; c.profile.yields++; } void ircd::ctx::prof::check_slice() { auto &c(cur()); const bool slice_exempt { c.flags & context::SLICE_EXEMPT }; assert(_slice_stop >= _slice_start); const auto last_slice { _slice_stop - _slice_start }; // Slice warning if(unlikely(slice_exceeded_warning(last_slice) && !slice_exempt)) log::dwarning { "context '%s' id:%lu watchdog: timeslice excessive; lim:%lu last:%lu pct:%.2lf", name(c), id(c), ulong(settings::slice_warning), last_slice, ((double(last_slice) / double(ulong(settings::slice_warning))) * 100.0) }; // Slice assertion assert(!slice_exceeded_assertion(last_slice) || slice_exempt); // Slice interrupt if(unlikely(slice_exceeded_interrupt(last_slice) && !slice_exempt)) throw interrupted { "context '%s' id:%lu watchdog interrupt; lim:%lu last:%lu total:%lu", name(c), id(c), ulong(settings::slice_interrupt), last_slice, cycles(c), }; } void ircd::ctx::prof::check_stack() { auto &c(cur()); const bool stack_exempt { c.flags & context::STACK_EXEMPT }; const auto &stack_at { c.stack.at }; // Stack warning if(unlikely(!stack_exempt && stack_exceeded_warning(stack_at))) log::dwarning { "context '%s' id:%lu watchdog: stack used %zu of %zu bytes", name(c), id(c), stack_at, c.stack.max }; // Stack assertion assert(stack_exempt || !stack_exceeded_assertion(stack_at)); } bool ircd::ctx::prof::stack_exceeded_assertion(const size_t &stack_at) { const auto &c(cur()); const auto &stack_max(c.stack.max); const double &stack_usage_assertion(settings::stack_usage_assertion); return stack_usage_assertion > 0.0? stack_at >= c.stack.max * settings::stack_usage_assertion: false; } bool ircd::ctx::prof::stack_exceeded_warning(const size_t &stack_at) { const auto &c(cur()); const auto &stack_max(c.stack.max); const double &stack_usage_warning(settings::stack_usage_warning); return stack_usage_warning > 0.0? stack_at >= c.stack.max * stack_usage_warning: false; } bool ircd::ctx::prof::slice_exceeded_interrupt(const ulong &cycles) { const ulong &threshold(settings::slice_interrupt); return threshold > 0 && cycles >= threshold; } bool ircd::ctx::prof::slice_exceeded_assertion(const ulong &cycles) { const ulong &threshold(settings::slice_assertion); return threshold > 0 && cycles >= threshold; } bool ircd::ctx::prof::slice_exceeded_warning(const ulong &cycles) { const ulong &threshold(settings::slice_warning); return threshold > 0 && cycles >= threshold; } #ifdef HAVE_X86INTRIN_H ulong ircd::ctx::prof::rdtsc() { return __rdtsc(); } #else ulong ircd::ctx::prof::rdtsc() { static_assert ( 0, "TODO: Implement fallback here" ); return 0; } #endif /////////////////////////////////////////////////////////////////////////////// // // ctx_ole.h // namespace ircd::ctx::ole { using closure = std::function; extern conf::item thread_max; std::mutex mutex; std::condition_variable cond; bool termination; std::deque queue; std::vector threads; closure pop(); void push(closure &&); void worker() noexcept; } decltype(ircd::ctx::ole::thread_max) ircd::ctx::ole::thread_max { { "name", "ircd.ctx.ole.thread.max" }, { "default", int64_t(1) }, }; ircd::ctx::ole::init::init() { assert(threads.empty()); termination = false; } ircd::ctx::ole::init::~init() noexcept { std::unique_lock lock(mutex); termination = true; cond.notify_all(); cond.wait(lock, [] { return threads.empty(); }); } void ircd::ctx::ole::offload(const std::function &func) { bool done(false); auto *const context(current); const auto kick([&context, &done] { done = true; notify(*context); }); std::exception_ptr eptr; auto closure([&func, &eptr, &context, &kick] () noexcept { try { func(); } catch(...) { eptr = std::current_exception(); } // To wake the context on the IRCd thread we give it the kick signal(*context, kick); }); // interrupt(ctx) is suppressed while this context has offloaded some work // to another thread. This context must stay right here and not disappear // until the other thread signals back. Note that the destructor is // capable of throwing an interrupt that was received during this scope. const uninterruptible uninterruptible; push(std::move(closure)); do { wait(); } while(!done); // Don't throw any exception if there is a pending interrupt for this ctx. // Two exceptions will be thrown in that case and if there's an interrupt // we don't care about eptr anyway. if(eptr && likely(!interruption_requested())) std::rethrow_exception(eptr); } void ircd::ctx::ole::push(closure &&func) { if(unlikely(threads.size() < size_t(thread_max))) threads.emplace_back(&worker); const std::lock_guard lock(mutex); queue.emplace_back(std::move(func)); cond.notify_all(); } void ircd::ctx::ole::worker() noexcept try { while(1) { const auto func(pop()); func(); } } catch(const interrupted &) { std::unique_lock lock(mutex); const auto it(std::find_if(begin(threads), end(threads), [] (const auto &thread) { return thread.get_id() == std::this_thread::get_id(); })); assert(it != end(threads)); auto &this_thread(*it); this_thread.detach(); threads.erase(it); cond.notify_all(); } ircd::ctx::ole::closure ircd::ctx::ole::pop() { std::unique_lock lock(mutex); cond.wait(lock, [] { if(!queue.empty()) return true; if(unlikely(termination)) throw interrupted{}; return false; }); auto c(std::move(queue.front())); queue.pop_front(); return std::move(c); } /////////////////////////////////////////////////////////////////////////////// // // ctx/promise.h // // // promise // void ircd::ctx::promise::set_value() { check_pending(); make_ready(); } ircd::ctx::shared_state & ircd::ctx::promise::state() { return promise_base::state(); } const ircd::ctx::shared_state & ircd::ctx::promise::state() const { return promise_base::state(); } // // promise_base::promise_base // ircd::ctx::promise_base::promise_base(promise_base &&o) noexcept :st{std::move(o.st)} ,next{std::move(o.next)} { if(st) { update(*this, o); o.st = nullptr; } } ircd::ctx::promise_base::promise_base(const promise_base &o) :st{o.st} ,next{nullptr} { append(*this, const_cast(o)); } ircd::ctx::promise_base & ircd::ctx::promise_base::operator=(promise_base &&o) noexcept { this->~promise_base(); st = std::move(o.st); next = std::move(o.next); if(!st) return *this; update(*this, o); o.st = nullptr; return *this; } ircd::ctx::promise_base::~promise_base() noexcept { if(!valid()) return; if(refcount(state()) == 1) set_exception(std::make_exception_ptr(broken_promise())); else remove(state(), *this); } void ircd::ctx::promise_base::set_exception(std::exception_ptr eptr) { check_pending(); state().eptr = std::move(eptr); make_ready(); } void ircd::ctx::promise_base::make_ready() { auto &st(state()); // First we have to chase the linked list of promises reachable // from this shared_state. invalidate() will null their pointer // to the shared_state indicating the promise was already satisfied. // This is done first because the set() to the READY writes to the // same union as the promise pointer (see shared_state.h). invalidate(st); // Now set the shared_state to READY. We know the location of the // shared state by saving it in this frame earlier, otherwise invalidate() // would have nulled it. set(st, future_state::READY); // Finally call the notify() routine which will tell the future the promise // was satisfied and the value/exception is ready for them. This call may // notify an ircd::ctx and/or post a function to the ircd::ios for a then() // callback etc. notify(st); // At this point the future should no longer be considered valid; no longer // referring to the shared_state. assert(!valid()); } void ircd::ctx::promise_base::check_pending() const { assert(valid()); if(unlikely(!is(state(), future_state::PENDING))) throw promise_already_satisfied{}; } bool ircd::ctx::promise_base::operator!() const { return !valid(); } ircd::ctx::promise_base::operator bool() const { return valid(); } bool ircd::ctx::promise_base::valid() const { return bool(st); } ircd::ctx::shared_state_base & ircd::ctx::promise_base::state() { assert(valid()); return *st; } const ircd::ctx::shared_state_base & ircd::ctx::promise_base::state() const { assert(valid()); return *st; } /// Internal semantics; chases the linked list of promises and adds a reference /// to a new copy at the end (for copy semantic). void ircd::ctx::promise_base::append(promise_base &new_, promise_base &old) { if(!old.next) { old.next = &new_; return; } promise_base *next{old.next}; for(; next->next; next = next->next); next->next = &new_; } /// Internal semantics; updates the location of a promise within the linked /// list of related promises (for move semantic). void ircd::ctx::promise_base::update(promise_base &new_, promise_base &old) { assert(old.st); auto &st{*old.st}; if(!is(st, future_state::PENDING)) return; if(st.p == &old) { st.p = &new_; return; } promise_base *last{st.p}; for(promise_base *next{last->next}; next; last = next, next = last->next) if(next == &old) { last->next = &new_; break; } } /// Internal semantics; removes the promise from the linked list of promises. /// Because the linked list of promises is a forward singly-linked list this /// operation requires a reference to the list's head in shared_state_base /// (for dtor semantic). void ircd::ctx::promise_base::remove(shared_state_base &st, promise_base &p) { if(!is(st, future_state::PENDING)) return; if(st.p == &p) { st.p = p.next; return; } promise_base *last{st.p}; for(promise_base *next{last->next}; next; last = next, next = last->next) if(next == &p) { last->next = p.next; break; } } /////////////////////////////////////////////////////////////////////////////// // // ctx/shared_shared.h // /// Internal use void ircd::ctx::notify(shared_state_base &st) { if(!st.then) { st.cond.notify_all(); return; } if(!current) { st.cond.notify_all(); assert(bool(st.then)); st.then(st); return; } const stack_usage_assertion sua; st.cond.notify_all(); assert(bool(st.then)); st.then(st); } /// Internal use; chases the linked list of promises starting from the head /// in the shared_state and invalidates all of their references to the shared /// state. This will cause the promise to no longer be valid(). /// void ircd::ctx::invalidate(shared_state_base &st) { if(is(st, future_state::PENDING)) for(promise_base *p{st.p}; p; p = p->next) p->st = nullptr; } /// Internal use; chases the linked list of promises starting from the head in /// the shared_state and updates the location of the shared_state within each /// promise. This is used to tell the promises when the shared_state itself /// has relocated. /// void ircd::ctx::update(shared_state_base &st) { if(is(st, future_state::PENDING)) for(promise_base *p{st.p}; p; p = p->next) p->st = &st; } /// Internal use; returns the number of copies of the promise reachable from /// the linked list headed by the shared state. This is used to indicate when /// the last copy has destructed which may result in a broken_promise exception /// being sent to the future. size_t ircd::ctx::refcount(const shared_state_base &st) { size_t ret{0}; if(is(st, future_state::PENDING)) for(const promise_base *p{st.p}; p; p = p->next) ++ret; return ret; } /// Internal use; sets the state indicator within the shared_state object. Take /// special note that this data is unionized. Setting a state here will clobber /// the shared_state's reference to its promise. void ircd::ctx::set(shared_state_base &st, const future_state &state) { switch(state) { case future_state::INVALID: assert(0); return; case future_state::PENDING: assert(0); return; case future_state::OBSERVED: case future_state::READY: case future_state::RETRIEVED: default: st.st = state; return; } } /// Internal; check if the current state is something; safe but unnecessary /// for public use. Take special note here that the state value is unionized. /// /// A PENDING state returned here does not mean the state contains the /// enumerated PENDING value itself, but instead contains a valid pointer /// to a promise. /// /// An INVALID state shares a zero/null value in the unionized data. bool ircd::ctx::is(const shared_state_base &st, const future_state &state_) { switch(st.st) { case future_state::READY: case future_state::OBSERVED: case future_state::RETRIEVED: return state_ == st.st; default: switch(state_) { case future_state::INVALID: return st.p == nullptr; case future_state::PENDING: return uintptr_t(st.p) >= 0x1000; default: return false; } } } /// Internal; get the current state of the shared_state; safe but unnecessary /// for public use. /// /// NOTE: This operates over a union of a pointer and an enum class. The /// way we determine whether the data is a pointer or an enum value is /// with a test of the value being >= the system's page size. This assumes /// the system does not use the first page of a process's address space /// to fault on null pointer dereference. This assumption may not hold on /// all systems or in all environments. /// /// Alternatively, we can switch this to checking whether the value is simply /// above the few low-numbered enum values. ircd::ctx::future_state ircd::ctx::state(const shared_state_base &st) { return uintptr_t(st.p) >= ircd::info::page_size? future_state::PENDING: st.st; } // // shared_state_base::shared_state_base // ircd::ctx::shared_state_base::shared_state_base(promise_base &p) :p{&p} { } // Linkage ircd::ctx::shared_state_base::~shared_state_base() noexcept { then = {}; } /////////////////////////////////////////////////////////////////////////////// // // ctx_list.h // void ircd::ctx::list::remove(ctx *const &c) { assert(c); if(c == head) { pop_front(); return; } if(c == tail) { pop_back(); return; } assert(next(c) && prev(c)); prev(next(c)) = prev(c); next(prev(c)) = next(c); next(c) = nullptr; prev(c) = nullptr; } ircd::ctx::ctx * ircd::ctx::list::pop_back() { const auto tail { this->tail }; if(!tail) { assert(!head); return tail; } assert(head); assert(!next(tail)); if(!prev(tail)) { this->head = nullptr; this->tail = nullptr; } else { assert(next(prev(tail)) == tail); next(prev(tail)) = nullptr; this->tail = prev(tail); } prev(tail) = nullptr; next(tail) = nullptr; return tail; } ircd::ctx::ctx * ircd::ctx::list::pop_front() { const auto head { this->head }; if(!head) { assert(!tail); return head; } assert(tail); assert(!prev(head)); if(!next(head)) { this->head = nullptr; this->tail = nullptr; } else { assert(prev(next(head)) == head); prev(next(head)) = nullptr; this->head = next(head); } prev(head) = nullptr; next(head) = nullptr; return head; } void ircd::ctx::list::push_front(ctx *const &c) { assert(next(c) == nullptr); assert(prev(c) == nullptr); if(!head) { assert(!tail); head = c; tail = c; return; } assert(prev(head) == nullptr); prev(head) = c; next(c) = head; head = c; } void ircd::ctx::list::push_back(ctx *const &c) { assert(next(c) == nullptr); assert(prev(c) == nullptr); if(!tail) { assert(!head); head = c; tail = c; return; } assert(next(tail) == nullptr); next(tail) = c; prev(c) = tail; tail = c; } void ircd::ctx::list::rfor_each(const std::function &closure) { for(ctx *tail{this->tail}; tail; tail = prev(tail)) closure(*tail); } void ircd::ctx::list::rfor_each(const std::function &closure) const { for(const ctx *tail{this->tail}; tail; tail = prev(tail)) closure(*tail); } bool ircd::ctx::list::rfor_each(const std::function &closure) { for(ctx *tail{this->tail}; tail; tail = prev(tail)) if(!closure(*tail)) return false; return true; } bool ircd::ctx::list::rfor_each(const std::function &closure) const { for(const ctx *tail{this->tail}; tail; tail = prev(tail)) if(!closure(*tail)) return false; return true; } void ircd::ctx::list::for_each(const std::function &closure) { for(ctx *head{this->head}; head; head = next(head)) closure(*head); } void ircd::ctx::list::for_each(const std::function &closure) const { for(const ctx *head{this->head}; head; head = next(head)) closure(*head); } bool ircd::ctx::list::for_each(const std::function &closure) { for(ctx *head{this->head}; head; head = next(head)) if(!closure(*head)) return false; return true; } bool ircd::ctx::list::for_each(const std::function &closure) const { for(const ctx *head{this->head}; head; head = next(head)) if(!closure(*head)) return false; return true; } ircd::ctx::ctx *& ircd::ctx::list::prev(ctx *const &c) { assert(c); return c->node.prev; } ircd::ctx::ctx *& ircd::ctx::list::next(ctx *const &c) { assert(c); return c->node.next; } const ircd::ctx::ctx * ircd::ctx::list::prev(const ctx *const &c) { assert(c); return c->node.prev; } const ircd::ctx::ctx * ircd::ctx::list::next(const ctx *const &c) { assert(c); return c->node.next; }