/* * charybdis: oh just a little chat server * ctx.h: userland context switching (stackful coroutines) * * Copyright (C) 2016 Charybdis Development Team * Copyright (C) 2016 Jason Volk * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice is present in all copies. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #pragma once #define HAVE_IRCD_CTX_H /// Userspace Contexts: cooperative threading from stackful coroutines. /// /// This is the public interface to the userspace context system. No 3rd party /// symbols are included from here. This file is included automatically in stdinc.h /// and you do not have to include it manually. /// /// There are two primary objects at work in the context system: /// /// `struct context` /// Public interface emulating std::thread; included automatically from here. /// To spawn and manipulate contexts, deal with this object. /// /// `struct ctx` (ircd/ctx.cc) /// Internal implementation of the context. This is not included here. /// Several low-level functions are exposed for library creators. This file is usually /// included when boost/asio.hpp is also included and calls are actually made into boost. /// /// boost::asio is not included from here. To access that include boost in a /// definition file with #include . That include contains some /// devices we use to yield a context to asio. /// namespace ircd::ctx { IRCD_EXCEPTION(ircd::error, error) IRCD_EXCEPTION(error, interrupted) IRCD_EXCEPTION(error, timeout) using std::chrono::steady_clock; using time_point = steady_clock::time_point; struct ctx; const uint64_t &id(const ctx &); // Unique ID for context string_view name(const ctx &); // User's optional label for context const int64_t ¬es(const ctx &); // Peeks at internal semaphore count bool interruption(const ctx &); // Context was marked for interruption bool finished(const ctx &); // Context function returned (or exception). bool started(const ctx &); // Context was ever entered. IRCD_OVERLOAD(threadsafe) void interrupt(ctx &); // Interrupt the context for termination. void signal(ctx &, std::function); // Post function to context strand void notify(ctx &, threadsafe_t); // Notify context with threadsafety. bool notify(ctx &); // Queue a context switch to arg void yield(ctx &); // Direct context switch to arg } /// Interface to the currently running context namespace ircd::ctx { inline namespace this_ctx { struct critical_assertion; // Assert no yielding for a section // Always set to the currently running context or null for main stack extern __thread struct ctx *current; ctx &cur(); // Assumptional reference to *current const uint64_t &id(); // Unique ID for cur ctx string_view name(); // Optional label for cur ctx void wait(); // Returns when context is woken up. void yield(); // Allow other contexts to run before returning. void interruption_point(); // throws interrupted if interruption_requested() bool interruption_requested(); // interruption(cur()) // Return remaining time if notified; or <= 0 if not, and timeout thrown on throw overloads microseconds wait(const microseconds &, const std::nothrow_t &); template nothrow_overload wait(const duration &); template throw_overload wait(const duration &); // Returns false if notified; true if time point reached, timeout thrown on throw_overloads bool wait_until(const time_point &tp, const std::nothrow_t &); template nothrow_overload wait_until(const time_point &tp); template throw_overload wait_until(const time_point &tp); // Ignores notes. Throws if interrupted. void sleep_until(const time_point &tp); template void sleep(const duration &); void sleep(const int &secs); }} #include "context.h" #include "prof.h" #include "dock.h" #include "queue.h" #include "mutex.h" #include "shared_mutex.h" #include "peek.h" #include "view.h" #include "shared_view.h" #include "shared_state.h" #include "promise.h" #include "future.h" #include "async.h" #include "pool.h" #include "ole.h" #include "fault.h" namespace ircd { //using yield = boost::asio::yield_context; using ctx::timeout; using ctx::context; using ctx::sleep; using ctx::promise; using ctx::future; } /// An instance of critical_assertion detects an attempt to context switch /// when the developer specifically does not want any yielding in that section /// or anywhere up the stack from it. This device does not prevent a switch /// and may carry no meaning outside of debug-mode compilation. It is good /// practice to use this device even when it appears obvious the section's /// callgraph has no chance of yielding; code changes, and everything up the /// graph can change without taking notice of your section. /// class ircd::ctx::this_ctx::critical_assertion { bool theirs; public: critical_assertion(); ~critical_assertion() noexcept; }; /// This overload matches ::sleep() and acts as a drop-in for ircd contexts. /// interruption point. inline void ircd::ctx::this_ctx::sleep(const int &secs) { sleep(seconds(secs)); } /// Yield the context for a period of time and ignore notifications. sleep() /// is like wait() but it only returns after the timeout and not because of a /// note. /// interruption point. template void ircd::ctx::this_ctx::sleep(const duration &d) { sleep_until(steady_clock::now() + d); } /// Wait for a notification until a point in time. If there is a notification /// then context continues normally. If there's never a notification then an /// exception (= timeout) is thrown. /// interruption point. template ircd::throw_overload ircd::ctx::this_ctx::wait_until(const time_point &tp) { if(wait_until(tp)) throw E(); } /// Wait for a notification until a point in time. If there is a notification /// then returns true. If there's never a notification then returns false. /// interruption point. this is not noexcept. template ircd::nothrow_overload ircd::ctx::this_ctx::wait_until(const time_point &tp) { return wait_until(tp, std::nothrow); } /// Wait for a notification for at most some amount of time. If the duration is /// reached without a notification then E (= timeout) is thrown. Otherwise, /// returns the time remaining on the duration. /// interruption point template ircd::throw_overload ircd::ctx::this_ctx::wait(const duration &d) { const auto ret(wait(d)); return ret <= duration(0)? throw E() : ret; } /// Wait for a notification for some amount of time. This function returns /// when a context is notified. It always returns the duration remaining which /// will be <= 0 to indicate a timeout without notification. /// interruption point. this is not noexcept. template ircd::nothrow_overload ircd::ctx::this_ctx::wait(const duration &d) { using std::chrono::duration_cast; const auto ret(wait(duration_cast(d), std::nothrow)); return duration_cast(ret); } /// Reference to the currently running context. Call if you expect to be in a /// context. Otherwise use the ctx::current pointer. inline ircd::ctx::ctx & ircd::ctx::cur() { assert(current); return *current; }