/* * charybdis: an advanced ircd. * client.c: Controls clients. * * Copyright (C) 1990 Jarkko Oikarinen and University of Oulu, Co Center * Copyright (C) 1996-2002 Hybrid Development Team * Copyright (C) 2002-2005 ircd-ratbox development team * Copyright (C) 2007 William Pitcock * Copyright (C) 2016 Charybdis Development Team * Copyright (C) 2016 Jason Volk * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA */ #include namespace ircd { // Default time limit for how long a client connection can be in "async mode" // (or idle mode) after which it is disconnected. const auto async_timeout { 3h }; // Time limit for how long a connected client can be in "request mode." This // should never be hit unless there's an error in the handling code. const auto request_timeout { 300s }; // Instance of socket::init is constructed and destructed manually to be in sync // with client::init. This is placed here so ircd::main() doesn't have to see // ircd/socket.h and do it there. It should be empty during static destruction. std::unique_ptr socket_init; // The pool of request contexts. When a client makes a request it does so by acquiring // a stack from this pool. The request handling and response logic can then be written // in a synchronous manner as if each connection had its own thread. ctx::pool request { "request", 1_MiB }; // Container for all active clients (connections) for iteration purposes. client::list client::clients; bool handle_ec_timeout(client &); bool handle_ec_eof(client &); bool handle_ec_success(client &); bool handle_ec(client &, const error_code &); void async_recv_next(std::shared_ptr, const milliseconds &timeout); void async_recv_next(std::shared_ptr); void disconnect(client &, const socket::dc & = socket::dc::RST); void disconnect_all(); template std::shared_ptr make_client(args&&...); } // namespace ircd ircd::client::init::init() { assert(!socket_init); socket_init = std::make_unique(); request.add(1); } ircd::client::init::~init() noexcept { request.interrupt(); ctx::yield(); disconnect_all(); socket_init.reset(nullptr); } ircd::string_view ircd::readline(client &client, char *&start, char *const &stop) { auto &sock(*client.sock); size_t pos; string_view ret; char *const base(start); do { const std::array bufs {{ { start, stop } }}; start += sock.read_some(bufs); ret = {base, start}; pos = ret.find("\r\n"); } while(pos != std::string_view::npos); return { begin(ret), std::next(begin(ret), pos + 2) }; } char * ircd::read(client &client, char *&start, char *const &stop) { auto &sock(*client.sock); const std::array bufs {{ { start, stop } }}; char *const base(start); start += sock.read_some(bufs); return base; } const char * ircd::write(client &client, const char *&start, const char *const &stop) { auto &sock(*client.sock); const std::array bufs {{ { start, stop } }}; const char *const base(start); start += sock.write(bufs); return base; } ircd::client::host_port ircd::local_addr(const client &client) { if(!client.sock) return { "0.0.0.0"s, 0 }; const auto &sock(*client.sock); const auto &ep(sock.local()); return { hostaddr(ep), port(ep) }; } ircd::client::host_port ircd::remote_addr(const client &client) { if(!client.sock) return { "0.0.0.0"s, 0 }; const auto &sock(*client.sock); const auto &ep(sock.remote()); return { hostaddr(ep), port(ep) }; } ircd::http::response::write_closure ircd::write_closure(client &client) { // returns a function that can be called to send an iovector of data to a client return [&client](const const_buffers &iov) { //std::cout << "<<<<" << std::endl; //std::cout << iov << std::endl; //std::cout << "----" << std::endl; const auto written { write(*client.sock, iov) }; }; } ircd::parse::read_closure ircd::read_closure(client &client) { static const auto handle_error([] (const boost::system::system_error &e) { using namespace boost::system::errc; switch(e.code().value()) { case operation_canceled: throw http::error(http::REQUEST_TIMEOUT); default: throw boost::system::system_error(e); } }); // Returns a function the parser can call when it wants more data return [&client](char *&start, char *const &stop) { try { const char *const got(start); read(client, start, stop); //std::cout << ">>>>" << std::endl; //std::cout << string_view{got, start} << std::endl; //std::cout << "----" << std::endl; } catch(const boost::system::system_error &e) { handle_error(e); } }; } ircd::client::client() :client{std::shared_ptr{}} { } ircd::client::client(const host_port &host_port, const seconds &timeout) :client { std::make_shared(host_port.first, host_port.second, timeout) } { } ircd::client::client(std::shared_ptr sock) :clit{clients, clients.emplace(end(clients), this)} ,sock{std::move(sock)} { } ircd::client::~client() noexcept { } bool ircd::client::main() noexcept try { return serve(); } catch(const boost::system::system_error &e) { using boost::asio::error::eof; using boost::asio::error::broken_pipe; using boost::asio::error::connection_reset; using namespace boost::system::errc; switch(e.code().value()) { case success: assert(0); return true; case eof: case broken_pipe: case connection_reset: case not_connected: case operation_canceled: return false; default: break; } log::critical("(unexpected) system_error: %s", e.what()); if(ircd::debugmode) std::terminate(); return false; } catch(const std::exception &e) { log::critical("exception: %s", e.what()); if(ircd::debugmode) std::terminate(); return false; } namespace ircd { void handle_request(client &client, parse::capstan &pc, const http::request::head &head); bool handle_request(client &client, parse::capstan &pc); } // namepace ircd bool ircd::client::serve() try { char buffer[8192]; parse::buffer pb{buffer, buffer + sizeof(buffer)}; parse::capstan pc{pb, read_closure(*this)}; do { if(!handle_request(*this, pc)) return false; pb.remove(); } while(pc.unparsed()); return true; } catch(const ircd::exception &e) { log::error("client[%s] [500 Internal Error]: %s", string(remote_addr(*this)), e.what()); if(ircd::debugmode) throw; return false; } bool ircd::handle_request(client &client, parse::capstan &pc) try { client.sock->set_timeout(request_timeout, [&client] (const error_code &ec) { if(!ec) client.sock->cancel(); }); http::request { pc, nullptr, write_closure(client), [&client, &pc] (const auto &head) { client.sock->timer.cancel(); handle_request(client, pc, head); } }; return true; } catch(const http::error &e) { log::debug("client[%s] HTTP %s %s", string(remote_addr(client)), e.what(), e.content); switch(e.code) { case http::BAD_REQUEST: return false; case http::INTERNAL_SERVER_ERROR: return false; case http::REQUEST_TIMEOUT: return false; default: return true; } } void ircd::handle_request(client &client, parse::capstan &pc, const http::request::head &head) { log::debug("client[%s] HTTP %s `%s' (content-length: %zu)", string(remote_addr(client)), head.method, head.path, head.content_length); auto &resource(ircd::resource::find(head.path)); resource(client, pc, head); } std::shared_ptr ircd::add_client(std::shared_ptr s) { const auto client { make_client(std::move(s)) }; log::debug("client[%s] CONNECTED local[%s]", string(remote_addr(*client)), string(local_addr(*client))); async_recv_next(client, async_timeout); return client; } template std::shared_ptr ircd::make_client(args&&... a) { return std::make_shared(std::forward(a)...); } void ircd::disconnect_all() { for(auto &client : client::clients) try { disconnect(*client, socket::dc::RST); } catch(const std::exception &e) { log::warning("Error disconnecting client @%p: %s", &client, e.what()); } } void ircd::disconnect(client &client, const socket::dc &type) { auto &sock(*client.sock); sock.disconnect(type); } void ircd::async_recv_next(std::shared_ptr client) { async_recv_next(std::move(client), milliseconds(-1)); } // // This function is the basis for the client's request loop. We still use // an asynchronous pattern until there is activity on the socket (a request) // in which case we switch to synchronous mode by jumping into an ircd::context // drawn from the request pool. When the request is finished, we exit back // into asynchronous mode until the next request is received and rinse and repeat. // // This sequence exists to avoid any possible c10k-style limitation imposed by // dedicating a context and its stack space to the lifetime of a connection. // This is similar to the thread-per-request pattern before async was in vogue. // Except now with userspace threads, a context switch has a cost on the order // of a function call, not nearly that of a system thread. So after enduring // several years of non-blocking stackless callback asynchronous web-scale hell, // we have now made it out alive on the other side. Enjoy. // // Pay close attention to the comments to know exactly where you are and what // you can do at any given point in this sequence. // void ircd::async_recv_next(std::shared_ptr client, const milliseconds &timeout) { auto &sock(*client->sock); // This call returns immediately so we no longer block the current context and // its stack while waiting for activity on idle connections between requests. sock(timeout, [client(std::move(client)), timeout](const error_code &ec) noexcept { // Right here this handler is executing on the main stack (not in any // ircd::context). We handle any socket errors now, and if this function // returns here the client's shared_ptr may expire and that will be the // end of this client, socket, and connection... if(!handle_ec(*client, ec)) return; // This call returns immediately because we can never block the main stack outside // of the ircd::context system. The context the closure ends up getting is the next // available from the request pool, which may not be available immediately so this // handler might be queued for some time after this call returns. request([client(std::move(client)), timeout] { // Right here this handler is executing on an ircd::context with its own // stack dedicated to the lifetime of this request. If client::main() // returns true, we bring the client back into async mode to wait for // the next request. if(client->main()) async_recv_next(client, timeout); }); }); } bool ircd::handle_ec(client &client, const error_code &ec) { using namespace boost::system::errc; using boost::asio::error::eof; switch(ec.value()) { case success: return handle_ec_success(client); case eof: return handle_ec_eof(client); case operation_canceled: return handle_ec_timeout(client); default: throw boost::system::system_error(ec); } } bool ircd::handle_ec_success(client &client) { return true; } bool ircd::handle_ec_eof(client &client) try { log::debug("client[%s]: EOF", string(remote_addr(client))); client.sock->disconnect(socket::FIN_RECV); return false; } catch(const std::exception &e) { log::warning("client(%p): EOF: %s", &client, e.what()); return false; } bool ircd::handle_ec_timeout(client &client) try { auto &sock(*client.sock); log::debug("client[%s]: disconnecting after inactivity timeout", string(remote_addr(client))); sock.disconnect(); return false; } catch(const std::exception &e) { log::warning("client(%p): timeout: %s", &client, e.what()); return false; } std::string ircd::string(const client::host_port &pair) { std::string ret(64, '\0'); ret.resize(snprintf(&ret.front(), ret.size(), "%s:%u", pair.first.c_str(), pair.second)); return ret; }