// Matrix Construct // // Copyright (C) Matrix Construct Developers, Authors & Contributors // Copyright (C) 2016-2018 Jason Volk // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice is present in all copies. The // full license for this software is available in the LICENSE file. namespace ircd::net { ctx::dock dock; std::optional _dns_; static void init_ipv6(); static void wait_close_sockets(); } void ircd::net::wait_close_sockets() { while(socket::instances) if(!dock.wait_for(seconds(2))) log::warning { log, "Waiting for %zu sockets to destruct", socket::instances }; } void ircd::net::init_ipv6() { if(!enable_ipv6) { log::warning { log, "IPv6 is disabled by the configuration." " Not checking for usable interfaces." }; return; } if(!addrs::has_usable_ipv6_interface()) { log::dwarning { log, "No usable IPv6 interfaces detected." }; enable_ipv6.set("false"); return; } log::info { log, "Detected usable IPv6 interfaces." " Server will query AAAA records and attempt IPv6 connections. If this" " is an error please set ircd.net.enable_ipv6 to false or start with -no6." }; } /////////////////////////////////////////////////////////////////////////////// // // init // /// Network subsystem initialization ircd::net::init::init() { init_ipv6(); sslv23_client.set_verify_mode(asio::ssl::verify_peer); sslv23_client.set_default_verify_paths(); _dns_.emplace(); } /// Network subsystem shutdown ircd::net::init::~init() noexcept { _dns_.reset(); wait_close_sockets(); } /////////////////////////////////////////////////////////////////////////////// // // net/net.h // decltype(ircd::net::eof) ircd::net::eof { make_error_code(boost::system::error_code { boost::asio::error::eof, boost::asio::error::get_misc_category() }) }; decltype(ircd::net::enable_ipv6) ircd::net::enable_ipv6 { { "name", "ircd.net.enable_ipv6" }, { "default", true }, { "persist", false }, }; /// Network subsystem log facility decltype(ircd::net::log) ircd::net::log { "net", 'N' }; ircd::string_view ircd::net::peer_cert_der_sha256_b64(const mutable_buffer &buf, const socket &socket) { char shabuf alignas(32) [sha256::digest_size]; const auto hash { peer_cert_der_sha256(shabuf, socket) }; return b64::encode_unpadded(buf, hash); } ircd::const_buffer ircd::net::peer_cert_der_sha256(const mutable_buffer &buf, const socket &socket) { thread_local char derbuf[16384]; sha256 { buf, peer_cert_der(derbuf, socket) }; return { data(buf), sha256::digest_size }; } ircd::const_buffer ircd::net::peer_cert_der(const mutable_buffer &buf, const socket &socket) { const SSL &ssl(socket); const X509 &cert { openssl::peer_cert(ssl) }; return openssl::i2d(buf, cert); } std::pair ircd::net::calls(const socket &socket) noexcept { return { socket.in.calls, socket.out.calls }; } std::pair ircd::net::bytes(const socket &socket) noexcept { return { socket.in.bytes, socket.out.bytes }; } ircd::string_view ircd::net::loghead(const socket &socket) { thread_local char buf[512]; return loghead(buf, socket); } ircd::string_view ircd::net::loghead(const mutable_buffer &out, const socket &socket) { thread_local char buf[2][128]; return fmt::sprintf { out, "socket:%lu local:%s remote:%s", id(socket), string(buf[0], local_ipport(socket)), string(buf[1], remote_ipport(socket)), }; } ircd::net::ipport ircd::net::remote_ipport(const socket &socket) noexcept try { if(!opened(socket)) return {}; const auto &ep(socket.remote()); return make_ipport(ep); } catch(...) { return {}; } ircd::net::ipport ircd::net::local_ipport(const socket &socket) noexcept try { if(!opened(socket)) return {}; const auto &ep(socket.local()); return make_ipport(ep); } catch(...) { return {}; } size_t ircd::net::available(const socket &socket) noexcept { const ip::tcp::socket &sd(socket); boost::system::error_code ec; return sd.available(ec); } size_t ircd::net::readable(const socket &socket) { ip::tcp::socket &sd(const_cast(socket)); ip::tcp::socket::bytes_readable command{true}; sd.io_control(command); return command.get(); } bool ircd::net::opened(const socket &socket) noexcept try { const ip::tcp::socket &sd(socket); return sd.is_open(); } catch(...) { return false; } const uint64_t & ircd::net::id(const socket &socket) { return socket.id; } /////////////////////////////////////////////////////////////////////////////// // // net/write.h // void ircd::net::flush(socket &socket) { if(nodelay(socket)) return; nodelay(socket, true); nodelay(socket, false); } /// Yields ircd::ctx until all buffers are sent. /// /// This is blocking behavior; use this if the following are true: /// /// * You put a timer on the socket so if the remote slows us down the data /// will not occupy the daemon's memory for a long time. Remember, *all* of /// the data will be sitting in memory even after some of it was ack'ed by /// the remote. /// /// * You are willing to dedicate the ircd::ctx to sending all the data to /// the remote. The ircd::ctx will be yielding until everything is sent. /// size_t ircd::net::write_all(socket &socket, const vector_view &buffers) { return socket.write_all(buffers); } /// Yields ircd::ctx until at least some buffers are sent. /// /// This is blocking behavior; use this if the following are true: /// /// * You put a timer on the socket so if the remote slows us down the data /// will not occupy the daemon's memory for a long time. /// /// * You are willing to dedicate the ircd::ctx to sending the data to /// the remote. The ircd::ctx will be yielding until the kernel has at least /// some space to consume at least something from the supplied buffers. /// size_t ircd::net::write_few(socket &socket, const vector_view &buffers) { return socket.write_few(buffers); } /// Writes as much as possible until one of the following is true: /// /// * The kernel buffer for the socket is full. /// * The user buffer is exhausted. /// /// This is non-blocking behavior. No yielding will take place; no timer is /// needed. Multiple syscalls will be composed to fulfill the above points. /// size_t ircd::net::write_any(socket &socket, const vector_view &buffers) { return socket.write_any(buffers); } /// Writes one "unit" of data or less; never more. The size of that unit /// is determined by the system. Less may be written if one of the following /// is true: /// /// * The kernel buffer for the socket is full. /// * The user buffer is exhausted. /// /// If neither are true, more can be written using additional calls; /// alternatively, use other variants of write_ for that. /// /// This is non-blocking behavior. No yielding will take place; no timer is /// needed. Only one syscall will occur. /// size_t ircd::net::write_one(socket &socket, const vector_view &buffers) { return socket.write_one(buffers); } /////////////////////////////////////////////////////////////////////////////// // // net/read.h // /// Yields ircd::ctx until len bytes have been received and discarded from the /// socket. /// size_t ircd::net::discard_all(socket &socket, const size_t &len) { static char buffer[512]; size_t remain{len}; while(remain) { const mutable_buffer mb { buffer, std::min(remain, sizeof(buffer)) }; remain -= read_all(socket, mb); } return len; } /// Non-blocking discard of up to len bytes. The amount of bytes discarded /// is returned. Zero is only returned if len==0 because the EAGAIN is /// thrown. If any bytes have been discarded any EAGAIN encountered in /// this function's internal loop is not thrown, but used to exit the loop. /// size_t ircd::net::discard_any(socket &socket, const size_t &len) { static char buffer[512]; size_t remain{len}; while(remain) { const mutable_buffer mb { buffer, std::min(remain, sizeof(buffer)) }; size_t read; if(!(read = read_one(socket, mb))) break; remain -= read; } return len - remain; } /// Yields ircd::ctx until buffers are full. /// /// Use this only if the following are true: /// /// * You know the remote has made a guarantee to send you a specific amount /// of data. /// /// * You put a timer on the socket so that if the remote runs short this /// call doesn't hang the ircd::ctx forever, otherwise it will until cancel. /// /// * You are willing to dedicate the ircd::ctx to just this operation for /// that amount of time. /// size_t ircd::net::read_all(socket &socket, const vector_view &buffers) { return socket.read_all(buffers); } /// Yields ircd::ctx until remote has sent at least one frame. The buffers may /// be filled with any amount of data depending on what has accumulated. /// /// Use this if the following are true: /// /// * You know there is data to be read; you can do this asynchronously with /// other features of the socket. Otherwise this will hang the ircd::ctx. /// /// * You are willing to dedicate the ircd::ctx to just this operation, /// which is non-blocking if data is known to be available, but may be /// blocking if this call is made in the blind. /// size_t ircd::net::read_few(socket &socket, const vector_view &buffers) { return socket.read_few(buffers); } /// Reads as much as possible. Non-blocking behavior. /// /// This is intended for lowest-level/custom control and not preferred by /// default for most users on an ircd::ctx. /// size_t ircd::net::read_any(socket &socket, const vector_view &buffers) { return socket.read_any(buffers); } /// Reads one message or less in a single syscall. Non-blocking behavior. /// /// This is intended for lowest-level/custom control and not preferred by /// default for most users on an ircd::ctx. /// size_t ircd::net::read_one(socket &socket, const vector_view &buffers) { return socket.read_one(buffers); } /////////////////////////////////////////////////////////////////////////////// // // net/check.h // void ircd::net::check(socket &socket, const ready &type) { const error_code ec { check(std::nothrow, socket, type) }; if(likely(!ec)) return; throw_system_error(ec); __builtin_unreachable(); } std::error_code ircd::net::check(std::nothrow_t, socket &socket, const ready &type) noexcept { return socket.check(std::nothrow, type); } /////////////////////////////////////////////////////////////////////////////// // // net/wait.h // decltype(ircd::net::wait_opts_default) ircd::net::wait_opts_default; /// Wait for socket to become "ready" using a ctx::future. ircd::ctx::future ircd::net::wait(use_future_t, socket &socket, const wait_opts &wait_opts) { ctx::promise p; ctx::future f{p}; wait(socket, wait_opts, [p(std::move(p))] (std::exception_ptr eptr) mutable { if(eptr) p.set_exception(std::move(eptr)); else p.set_value(); }); return f; } /// Wait for socket to become "ready"; yields ircd::ctx returning code. std::error_code ircd::net::wait(nothrow_t, socket &socket, const wait_opts &wait_opts) try { wait(socket, wait_opts); return {}; } catch(const std::system_error &e) { return e.code(); } /// Wait for socket to become "ready"; yields ircd::ctx; throws errors. void ircd::net::wait(socket &socket, const wait_opts &wait_opts) { socket.wait(wait_opts); } /// Wait for socket to become "ready"; callback with exception_ptr void ircd::net::wait(socket &socket, const wait_opts &wait_opts, wait_callback_eptr callback) { socket.wait(wait_opts, std::move(callback)); } void ircd::net::wait(socket &socket, const wait_opts &wait_opts, wait_callback_ec callback) { socket.wait(wait_opts, std::move(callback)); } ircd::string_view ircd::net::reflect(const ready &type) { switch(type) { case ready::ANY: return "ANY"_sv; case ready::READ: return "READ"_sv; case ready::WRITE: return "WRITE"_sv; case ready::ERROR: return "ERROR"_sv; } return "????"_sv; } /////////////////////////////////////////////////////////////////////////////// // // net/close.h // decltype(ircd::net::close_opts::default_timeout) ircd::net::close_opts::default_timeout { { "name", "ircd.net.close.timeout" }, { "default", 7500L }, }; /// Static instance of default close options. ircd::net::close_opts const ircd::net::close_opts_default { }; /// Static helper callback which may be passed to the callback-based overload /// of close(). This callback does nothing. ircd::net::close_callback const ircd::net::close_ignore{[] (std::exception_ptr eptr) { return; }}; ircd::ctx::future ircd::net::close(socket &socket, const close_opts &opts) { ctx::promise p; ctx::future f(p); close(socket, opts, [p(std::move(p))] (std::exception_ptr eptr) mutable { if(eptr) p.set_exception(std::move(eptr)); else p.set_value(); }); return f; } void ircd::net::close(socket &socket, const close_opts &opts, close_callback callback) { socket.disconnect(opts, std::move(callback)); } /////////////////////////////////////////////////////////////////////////////// // // net/open.h // decltype(ircd::net::open_opts::default_connect_timeout) ircd::net::open_opts::default_connect_timeout { { "name", "ircd.net.open.connect_timeout" }, { "default", 7500L }, }; decltype(ircd::net::open_opts::default_handshake_timeout) ircd::net::open_opts::default_handshake_timeout { { "name", "ircd.net.open.handshake_timeout" }, { "default", 7500L }, }; decltype(ircd::net::open_opts::default_verify_certificate) ircd::net::open_opts::default_verify_certificate { { "name", "ircd.net.open.verify_certificate" }, { "default", true }, }; decltype(ircd::net::open_opts::default_allow_self_signed) ircd::net::open_opts::default_allow_self_signed { { "name", "ircd.net.open.allow_self_signed" }, { "default", false }, }; decltype(ircd::net::open_opts::default_allow_self_chain) ircd::net::open_opts::default_allow_self_chain { { "name", "ircd.net.open.allow_self_chain" }, { "default", false }, }; decltype(ircd::net::open_opts::default_allow_expired) ircd::net::open_opts::default_allow_expired { { "name", "ircd.net.open.allow_expired" }, { "default", false }, }; /// Open new socket with future-based report. /// ircd::ctx::future> ircd::net::open(const open_opts &opts) { ctx::promise> p; ctx::future> f(p); auto s{std::make_shared()}; open(*s, opts, [s, p(std::move(p))] (std::exception_ptr eptr) mutable { if(eptr) p.set_exception(std::move(eptr)); else p.set_value(s); }); return f; } /// Open existing socket with callback-based report. /// std::shared_ptr ircd::net::open(const open_opts &opts, open_callback handler) { auto s{std::make_shared()}; open(*s, opts, std::move(handler)); return s; } /// Open existing socket with callback-based report. /// void ircd::net::open(socket &socket, const open_opts &opts, open_callback handler) { auto complete{[s(shared_from(socket)), handler(std::move(handler))] (std::exception_ptr eptr) { if(eptr && !s->fini) close(*s, dc::RST, close_ignore); handler(std::move(eptr)); }}; const dns::callback_ipport connector{[&socket, opts, complete(std::move(complete))] (std::exception_ptr eptr, const hostport &hp, const ipport &ipport) { if(eptr) return complete(std::move(eptr)); const auto ep{make_endpoint(ipport)}; socket.connect(ep, opts, std::move(complete)); }}; if(!opts.ipport) dns::resolve(opts.hostport, dns::opts_default, std::move(connector)); else connector({}, opts.hostport, opts.ipport); } /////////////////////////////////////////////////////////////////////////////// // // net/sopts.h // /// Construct sock_opts with the current options from socket argument ircd::net::sock_opts::sock_opts(const socket &socket) :v6only{net::v6only(socket)} ,blocking{net::blocking(socket)} ,nodelay{net::nodelay(socket)} ,keepalive{net::keepalive(socket)} ,linger{net::linger(socket)} ,read_bufsz{ssize_t(net::read_bufsz(socket))} ,write_bufsz{ssize_t(net::write_bufsz(socket))} ,read_lowat{ssize_t(net::read_lowat(socket))} ,write_lowat{ssize_t(net::write_lowat(socket))} { } /// Updates the socket with provided options. Defaulted / -1'ed options are /// ignored for updating. void ircd::net::set(socket &socket, const sock_opts &opts) { if(opts.v6only != opts.IGN) net::v6only(socket, opts.v6only); if(opts.blocking != opts.IGN) net::blocking(socket, opts.blocking); if(opts.nodelay != opts.IGN) net::nodelay(socket, opts.nodelay); if(opts.keepalive != opts.IGN) net::keepalive(socket, opts.keepalive); if(opts.linger != opts.IGN) net::linger(socket, opts.linger); if(opts.read_bufsz != opts.IGN) net::read_bufsz(socket, opts.read_bufsz); if(opts.write_bufsz != opts.IGN) net::write_bufsz(socket, opts.write_bufsz); if(opts.read_lowat != opts.IGN) net::read_lowat(socket, opts.read_lowat); if(opts.write_lowat != opts.IGN) net::write_lowat(socket, opts.write_lowat); } void ircd::net::write_lowat(socket &socket, const size_t &bytes) { assert(bytes <= std::numeric_limits::max()); const ip::tcp::socket::send_low_watermark option { int(bytes) }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::read_lowat(socket &socket, const size_t &bytes) { assert(bytes <= std::numeric_limits::max()); const ip::tcp::socket::receive_low_watermark option { int(bytes) }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::write_bufsz(socket &socket, const size_t &bytes) { assert(bytes <= std::numeric_limits::max()); const ip::tcp::socket::send_buffer_size option { int(bytes) }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::read_bufsz(socket &socket, const size_t &bytes) { assert(bytes <= std::numeric_limits::max()); const ip::tcp::socket::receive_buffer_size option { int(bytes) }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::linger(socket &socket, const time_t &t) { assert(t >= std::numeric_limits::min()); assert(t <= std::numeric_limits::max()); const ip::tcp::socket::linger option { t >= 0, // ON / OFF boolean t >= 0? int(t) : 0 // Uses 0 when OFF }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::keepalive(socket &socket, const bool &b) { const ip::tcp::socket::keep_alive option{b}; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::nodelay(socket &socket, const bool &b) { const ip::tcp::no_delay option{b}; ip::tcp::socket &sd(socket); sd.set_option(option); } /// Toggles the behavior of non-async asio calls. /// /// This option affects very little in practice and only sets a flag in /// userspace in asio, not an actual ioctl(). Specifically: /// /// * All sockets are already set by asio to FIONBIO=1 no matter what, thus /// nothing really blocks the event loop ever by default unless you try hard. /// /// * All asio::async_ and sd.async_ and ssl.async_ calls will always do what /// the synchronous/blocking alternative would have accomplished but using /// the async methodology. i.e if a buffer is full you will always wait /// asynchronously: async_write() will wait for everything, async_write_some() /// will wait for something, etc -- but there will never be true non-blocking /// _effective behavior_ from these calls. /// /// * All asio non-async calls conduct blocking by (on linux) poll()'ing the /// socket to get a real kernel-blocking operation out of it (this is the /// try-hard part). /// /// This flag only controls the behavior of the last bullet. In practice, /// in this project there is never a reason to ever set this to true, /// however, sockets do get constructed by asio in blocking mode by default /// so we mostly use this function to set it to non-blocking. /// void ircd::net::blocking(socket &socket, const bool &b) { ip::tcp::socket &sd(socket); sd.non_blocking(!b); } void ircd::net::v6only(socket &socket, const bool &b) { const ip::v6_only option{b}; ip::tcp::socket &sd(socket); sd.set_option(option); } size_t ircd::net::write_lowat(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::send_low_watermark option{}; sd.get_option(option); return option.value(); } size_t ircd::net::read_lowat(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::receive_low_watermark option{}; sd.get_option(option); return option.value(); } size_t ircd::net::write_bufsz(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::send_buffer_size option{}; sd.get_option(option); return option.value(); } size_t ircd::net::read_bufsz(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::receive_buffer_size option{}; sd.get_option(option); return option.value(); } time_t ircd::net::linger(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::linger option; sd.get_option(option); return option.enabled()? option.timeout() : -1; } bool ircd::net::keepalive(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::keep_alive option; sd.get_option(option); return option.value(); } bool ircd::net::nodelay(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::no_delay option; sd.get_option(option); return option.value(); } bool ircd::net::blocking(const socket &socket) { const ip::tcp::socket &sd(socket); return !sd.non_blocking(); } bool ircd::net::v6only(const socket &socket) { const ip::tcp::socket &sd(socket); ip::v6_only option; sd.get_option(option); return option.value(); } /////////////////////////////////////////////////////////////////////////////// // // net/scope_timeout.h // ircd::net::scope_timeout::scope_timeout(socket &socket, const milliseconds &timeout) :s { timeout < 0ms? nullptr : &socket } { if(timeout < 0ms) return; socket.set_timeout(timeout); } ircd::net::scope_timeout::scope_timeout(socket &socket, const milliseconds &timeout, handler callback) :s { timeout < 0ms? nullptr : &socket } { if(timeout < 0ms) return; socket.set_timeout(timeout, [callback(std::move(callback))] (const error_code &ec) { const bool &timed_out{!ec}; // success = timeout callback(timed_out); }); } ircd::net::scope_timeout::scope_timeout(scope_timeout &&other) noexcept :s{std::move(other.s)} { other.s = nullptr; } ircd::net::scope_timeout & ircd::net::scope_timeout::operator=(scope_timeout &&other) noexcept { this->~scope_timeout(); s = std::move(other.s); other.s = nullptr; return *this; } ircd::net::scope_timeout::~scope_timeout() noexcept { cancel(); } bool ircd::net::scope_timeout::cancel() noexcept try { if(!this->s) return false; auto *const s{this->s}; this->s = nullptr; s->cancel_timeout(); return true; } catch(const std::exception &e) { log::error { log, "socket(%p) scope_timeout::cancel :%s", (const void *)s, e.what() }; return false; } bool ircd::net::scope_timeout::release() { const auto s{this->s}; this->s = nullptr; return s != nullptr; } /////////////////////////////////////////////////////////////////////////////// // // net/socket.h // decltype(ircd::net::ssl_curve_list) ircd::net::ssl_curve_list { { "name", "ircd.net.ssl.curve.list" }, { "default", string_view{} }, }; decltype(ircd::net::ssl_cipher_list) ircd::net::ssl_cipher_list { { "name", "ircd.net.ssl.cipher.list" }, { "default", string_view{} }, }; decltype(ircd::net::ssl_cipher_blacklist) ircd::net::ssl_cipher_blacklist { { "name", "ircd.net.ssl.cipher.blacklist" }, { "default", string_view{} }, }; boost::asio::ssl::context ircd::net::sslv23_client { boost::asio::ssl::context::method::sslv23_client }; decltype(ircd::net::socket::count) ircd::net::socket::count {}; decltype(ircd::net::socket::instances) ircd::net::socket::instances {}; decltype(ircd::net::socket::desc_connect) ircd::net::socket::desc_connect { "ircd.net.socket.connect" }; decltype(ircd::net::socket::desc_handshake) ircd::net::socket::desc_handshake { "ircd.net.socket.handshake" }; decltype(ircd::net::socket::desc_disconnect) ircd::net::socket::desc_disconnect { "ircd.net.socket.disconnect" }; decltype(ircd::net::socket::desc_timeout) ircd::net::socket::desc_timeout { "ircd.net.socket.timeout" }; decltype(ircd::net::socket::desc_wait) ircd::net::socket::desc_wait { { "ircd.net.socket.wait.ready.ANY" }, { "ircd.net.socket.wait.ready.READ" }, { "ircd.net.socket.wait.ready.WRITE" }, { "ircd.net.socket.wait.ready.ERROR" }, }; decltype(ircd::net::socket::total_bytes_in) ircd::net::socket::total_bytes_in { { "name", "ircd.net.socket.in.total.bytes" }, { "desc", "The total number of bytes received by all sockets" }, }; decltype(ircd::net::socket::total_bytes_out) ircd::net::socket::total_bytes_out { { "name", "ircd.net.socket.out.total.bytes" }, { "desc", "The total number of bytes received by all sockets" }, }; decltype(ircd::net::socket::total_calls_in) ircd::net::socket::total_calls_in { { "name", "ircd.net.socket.in.total.calls" }, { "desc", "The total number of read operations on all sockets" }, }; decltype(ircd::net::socket::total_calls_out) ircd::net::socket::total_calls_out { { "name", "ircd.net.socket.out.total.calls" }, { "desc", "The total number of write operations on all sockets" }, }; // // socket // ircd::net::socket::socket(asio::ssl::context &ssl) :sd { ios::get() } ,ssl { this->sd, ssl } ,timer { ios::get() } { ++instances; } /// The dtor asserts that the socket is not open/connected requiring a /// an SSL close_notify. There's no more room for async callbacks via /// shared_ptr after this dtor. ircd::net::socket::~socket() noexcept try { assert(instances > 0); if(unlikely(--instances == 0)) net::dock.notify_all(); if(unlikely(opened(*this))) throw panic { "Failed to ensure socket(%p) is disconnected from %s before dtor.", this, string(remote()) }; } catch(const std::exception &e) { log::critical { log, "socket(%p) close :%s", this, e.what() }; return; } catch(...) { log::critical { log, "socket(%p) close: unexpected", this, }; ircd::terminate(); } void ircd::net::socket::connect(const endpoint &ep, const open_opts &opts, eptr_handler callback) { char epbuf[128]; log::debug { log, "socket:%lu attempting connect remote[%s] to:%ld$ms", this->id, string(epbuf, ep), opts.connect_timeout.count() }; auto connect_handler { std::bind(&socket::handle_connect, this, weak_from(*this), opts, std::move(callback), ph::_1) }; set_timeout(opts.connect_timeout); sd.async_connect(ep, ios::handle(desc_connect, std::move(connect_handler))); } void ircd::net::socket::handshake(const open_opts &opts, eptr_handler callback) { assert(!fini); assert(sd.is_open()); log::debug { log, "%s handshaking to '%s' for '%s' to:%ld$ms", loghead(*this), opts.send_sni? server_name(opts): ""_sv, common_name(opts), opts.handshake_timeout.count() }; auto handshake_handler { std::bind(&socket::handle_handshake, this, weak_from(*this), std::move(callback), ph::_1) }; auto verify_handler { std::bind(&socket::handle_verify, this, ph::_1, ph::_2, opts) }; assert(!fini); set_timeout(opts.handshake_timeout); if(opts.send_sni && server_name(opts)) openssl::server_name(*this, server_name(opts)); ssl.set_verify_callback(std::move(verify_handler)); ssl.async_handshake(handshake_type::client, ios::handle(desc_handshake, std::move(handshake_handler))); } void ircd::net::socket::disconnect(const close_opts &opts, eptr_handler callback) try { if(!sd.is_open()) { call_user(callback, {}); return; } assert(!fini); log::debug { log, "%s disconnect type:%d user: in:%zu out:%zu", loghead(*this), uint(opts.type), in.bytes, out.bytes }; cancel(); assert(!fini); fini = true; if(opts.sopts) set(*this, *opts.sopts); switch(opts.type) { case dc::RST: sd.close(); break; case dc::FIN: sd.shutdown(ip::tcp::socket::shutdown_both); break; case dc::FIN_SEND: sd.shutdown(ip::tcp::socket::shutdown_send); break; case dc::FIN_RECV: sd.shutdown(ip::tcp::socket::shutdown_receive); break; case dc::SSL_NOTIFY: { auto disconnect_handler { std::bind(&socket::handle_disconnect, this, shared_from(*this), std::move(callback), ph::_1) }; set_timeout(opts.timeout); ssl.async_shutdown(ios::handle(desc_disconnect, std::move(disconnect_handler))); return; } } call_user(callback, {}); } catch(const boost::system::system_error &e) { log::derror { log, "socket:%lu disconnect type:%d :%s", this->id, uint(opts.type), e.what() }; call_user(callback, make_error_code(e)); } catch(const std::exception &e) { throw panic { "socket:%lu disconnect: type: %d :%s", this->id, uint(opts.type), e.what() }; } bool ircd::net::socket::cancel() noexcept { cancel_timeout(); boost::system::error_code ec; sd.cancel(ec); if(unlikely(ec)) { char ecbuf[64]; log::dwarning { log, "socket:%lu cancel :%s", this->id, string(ecbuf, ec) }; } return !ec; } void ircd::net::socket::wait(const wait_opts &opts, wait_callback_eptr callback) { wait(opts, [callback(std::move(callback))] (const error_code &ec) { if(likely(!ec)) return callback(std::exception_ptr{}); callback(make_system_eptr(ec)); }); } /// Asynchronous callback when the socket is ready /// /// Overload for operator() without a timeout. see: operator() /// void ircd::net::socket::wait(const wait_opts &opts) try { assert(!fini); const auto interruption{[this] (ctx::ctx *const &) { this->cancel(); }}; const scope_timeout timeout { *this, opts.timeout }; switch(opts.type) { case ready::READ: continuation { continuation::asio_predicate, interruption, [this] (auto &yield) { sd.async_wait(wait_type::wait_read, yield); } }; break; case ready::WRITE: continuation { continuation::asio_predicate, interruption, [this] (auto &yield) { sd.async_wait(wait_type::wait_write, yield); } }; break; case ready::ERROR: continuation { continuation::asio_predicate, interruption, [this] (auto &yield) { sd.async_wait(wait_type::wait_error, yield); } }; break; default: throw ircd::not_implemented{}; } } catch(const boost::system::system_error &e) { if(e.code() == boost::system::errc::operation_canceled && timedout) throw_system_error(std::errc::timed_out); throw_system_error(e); } /// Asynchronous callback when the socket is ready /// /// This function calls back the handler when the socket is ready /// for the operation of the specified type. /// void ircd::net::socket::wait(const wait_opts &opts, wait_callback_ec callback) try { assert(!fini); set_timeout(opts.timeout); const unwind_exceptional unset{[this] { cancel_timeout(); }}; auto handle { std::bind(&socket::handle_ready, this, weak_from(*this), opts.type, std::move(callback), ph::_1) }; switch(opts.type) { case ready::READ: { // The problem here is that waiting on the sd doesn't account for bytes // read into SSL that we didn't consume yet. If something is stuck in // those userspace buffers, the socket won't know about it and perform // the wait. ASIO should fix this by adding a ssl::stream.wait() method // which will bail out immediately in this case before passing up to the // real socket wait. static char buf[64]; static const ilist bufs{buf}; if(SSL_peek(ssl.native_handle(), buf, sizeof(buf)) > 0) { ircd::post(desc_wait[1], [handle(std::move(handle))] { handle(error_code{}); }); return; } // The problem here is that the wait operation gives ec=success on both a // socket error and when data is actually available. We then have to check // using a non-blocking peek in the handler. By doing it this way here we // just get the error in the handler's ec. //sd.async_wait(bufs, sd.message_peek, ios::handle(desc_wait[1], [handle(std::move(handle))] sd.async_receive(bufs, sd.message_peek, ios::handle(desc_wait[1], [handle(std::move(handle))] (const auto &ec, const size_t bytes) { handle ( !ec && bytes? error_code{}: !ec && !bytes? net::eof: make_error_code(ec) ); })); return; } case ready::WRITE: { sd.async_wait(wait_type::wait_write, ios::handle(desc_wait[2], std::move(handle))); return; } case ready::ERROR: { sd.async_wait(wait_type::wait_error, ios::handle(desc_wait[3], std::move(handle))); return; } default: throw ircd::not_implemented{}; } } catch(const boost::system::system_error &e) { throw_system_error(e); } std::error_code ircd::net::socket::check(std::nothrow_t, const ready &type) noexcept { static char buf[64]; static const ilist bufs { buf }; if(!sd.is_open()) return make_error_code(std::errc::bad_file_descriptor); if(fini) return make_error_code(std::errc::not_connected); std::error_code ret; if(SSL_peek(ssl.native_handle(), buf, sizeof(buf)) > 0) return ret; assert(!blocking(*this)); boost::system::error_code ec; if(sd.receive(bufs, sd.message_peek, ec) > 0) { assert(!ec.value()); return ret; } if(ec.value()) ret = make_error_code(ec); else ret = eof; if(ret == std::errc::resource_unavailable_try_again) ret = {}; return ret; } /// Yields ircd::ctx until buffers are full. template size_t ircd::net::socket::read_all(iov&& bufs) try { static const auto completion { asio::transfer_all() }; assert(!fini); const auto interruption{[this] (ctx::ctx *const &) { this->cancel(); }}; size_t ret; continuation { continuation::asio_predicate, interruption, [this, &ret, &bufs] (auto &yield) { ret = asio::async_read(ssl, std::forward(bufs), completion, yield); } }; if(!ret) throw std::system_error { eof }; ++in.calls; in.bytes += ret; ++total_calls_in; total_bytes_in += ret; return ret; } catch(const boost::system::system_error &e) { throw_system_error(e); } /// Yields ircd::ctx until remote has sent at least some data. template size_t ircd::net::socket::read_few(iov&& bufs) try { assert(!fini); const auto interruption{[this] (ctx::ctx *const &) { this->cancel(); }}; size_t ret; continuation { continuation::asio_predicate, interruption, [this, &ret, &bufs] (auto &yield) { ret = ssl.async_read_some(std::forward(bufs), yield); } }; if(!ret) throw std::system_error { eof }; ++in.calls; in.bytes += ret; ++total_calls_in; total_bytes_in += ret; return ret; } catch(const boost::system::system_error &e) { throw_system_error(e); } /// Non-blocking; as much as possible without blocking template size_t ircd::net::socket::read_any(iov&& bufs) { static const auto completion { asio::transfer_all() }; assert(!fini); assert(!blocking(*this)); boost::system::error_code ec; const size_t ret { asio::read(ssl, std::forward(bufs), completion, ec) }; ++in.calls; in.bytes += ret; ++total_calls_in; total_bytes_in += ret; if(likely(!ec)) return ret; if(ec == boost::system::errc::resource_unavailable_try_again) return ret; throw_system_error(ec); __builtin_unreachable(); } /// Non-blocking; One system call only; never throws eof; template size_t ircd::net::socket::read_one(iov&& bufs) { assert(!fini); assert(!blocking(*this)); boost::system::error_code ec; const size_t ret { ssl.read_some(std::forward(bufs), ec) }; ++in.calls; in.bytes += ret; ++total_calls_in; total_bytes_in += ret; if(likely(!ec)) return ret; if(ec == boost::system::errc::resource_unavailable_try_again) return ret; throw_system_error(ec); __builtin_unreachable(); } /// Yields ircd::ctx until all buffers are sent. template size_t ircd::net::socket::write_all(iov&& bufs) try { static const auto completion { asio::transfer_all() }; assert(!fini); assert(!blocking(*this)); const auto interruption{[this] (ctx::ctx *const &) { this->cancel(); }}; size_t ret; continuation { continuation::asio_predicate, interruption, [this, &ret, &bufs] (auto &yield) { ret = asio::async_write(ssl, std::forward(bufs), completion, yield); } }; ++out.calls; out.bytes += ret; ++total_calls_out; total_bytes_out += ret; return ret; } catch(const boost::system::system_error &e) { throw_system_error(e); } /// Yields ircd::ctx until one or more bytes are sent. template size_t ircd::net::socket::write_few(iov&& bufs) try { assert(!fini); assert(!blocking(*this)); const auto interruption{[this] (ctx::ctx *const &) { this->cancel(); }}; size_t ret; continuation { continuation::asio_predicate, interruption, [this, &ret, &bufs] (auto &yield) { ret = ssl.async_write_some(std::forward(bufs), yield); } }; ++out.calls; out.bytes += ret; ++total_calls_out; total_bytes_out += ret; return ret; } catch(const boost::system::system_error &e) { throw_system_error(e); } /// Non-blocking; writes as much as possible without blocking template size_t ircd::net::socket::write_any(iov&& bufs) try { static const auto completion { asio::transfer_all() }; assert(!fini); assert(!blocking(*this)); const size_t ret { asio::write(ssl, std::forward(bufs), completion) }; ++out.calls; out.bytes += ret; ++total_calls_out; total_bytes_out += ret; return ret; } catch(const boost::system::system_error &e) { throw_system_error(e); } /// Non-blocking; Writes one "unit" of data or less; never more. template size_t ircd::net::socket::write_one(iov&& bufs) try { assert(!fini); assert(!blocking(*this)); const size_t ret { ssl.write_some(std::forward(bufs)) }; ++out.calls; out.bytes += ret; ++total_calls_out; total_bytes_out += ret; return ret; } catch(const boost::system::system_error &e) { throw_system_error(e); } void ircd::net::socket::handle_ready(const std::weak_ptr wp, const net::ready type, const ec_handler callback, error_code ec) noexcept try { using std::errc; // After life_guard is constructed it is safe to use *this in this frame. const life_guard s{wp}; if(!timedout && !is(ec, errc::operation_canceled) && !fini) cancel_timeout(); if(timedout && is(ec, errc::operation_canceled)) ec = make_error_code(errc::timed_out); if(unlikely(!ec && !sd.is_open())) ec = make_error_code(errc::bad_file_descriptor); if(unlikely(!ec && fini)) ec = make_error_code(errc::not_connected); #ifdef IRCD_DEBUG_NET_SOCKET_READY const auto has_pending { #if OPENSSL_VERSION_NUMBER >= 0x10100000L SSL_has_pending(ssl.native_handle()) #else 0 #endif }; char ecbuf[64]; log::debug { log, "%s ready %s %s avail:%zu:%zu:%d:%d", loghead(*this), reflect(type), string(ecbuf, ec), type == ready::READ? bytes : 0UL, type == ready::READ? available(*this) : 0UL, has_pending, SSL_pending(ssl.native_handle()), }; #endif call_user(callback, ec); } catch(const std::bad_weak_ptr &e) { // This handler may still be registered with asio after the socket destructs, so // the weak_ptr will indicate that fact. However, this is never intended and is // a debug assertion which should be corrected. log::warning { log, "socket(%p) belated callback to handler... (%s)", this, e.what() }; assert(0); } catch(const std::exception &e) { log::critical { log, "socket(%p) handle :%s", this, e.what() }; const ctx::exception_handler eh; call_user(callback, ec); } void ircd::net::socket::handle_timeout(const std::weak_ptr wp, ec_handler callback, error_code ec) noexcept try { if(unlikely(wp.expired())) return; // We increment our end of the timer semaphore. If the count is still // behind the other end of the semaphore, this callback was sitting in // the ios queue while the timer was given a new task; any effects here // will be erroneously bleeding into the next timeout. However the callback // is still invoked to satisfy the user's expectation for receiving it. assert(timer_sem[0] < timer_sem[1]); if(++timer_sem[0] == timer_sem[1] && timer_set) switch(ec.value()) { // A 'success' for this handler means there was a timeout on the socket case 0: { assert(timedout == false); timedout = true; sd.cancel(); break; } // A cancelation means there was no timeout. case int(std::errc::operation_canceled): { assert(ec.category() == std::system_category()); assert(timedout == false); break; } // All other errors are unexpected, logged and ignored here. default: throw panic { "socket(%p): unexpected :%s", (const void *)this, string(ec) }; } else ec = make_error_code(std::errc::operation_canceled); if(callback) call_user(callback, ec); } catch(const boost::system::system_error &e) { using std::errc; const auto ec_(e.code()); if(system_category(ec_)) switch(ec_.value()) { case int(errc::bad_file_descriptor): { if(fini) break; [[fallthrough]]; } default: { assert(0); log::critical { log, "socket(%p) handle timeout :%s", (const void *)this, string(e) }; break; } } if(callback) { const ctx::exception_handler eh; call_user(callback, ec_); } } catch(const std::exception &e) { log::critical { log, "socket(%p) handle timeout :%s", (const void *)this, e.what() }; if(callback) { const ctx::exception_handler eh; call_user(callback, ec); } } void ircd::net::socket::handle_connect(std::weak_ptr wp, const open_opts &opts, eptr_handler callback, error_code ec) noexcept try { using std::errc; const life_guard s{wp}; char ecbuf[64], epbuf[128]; log::debug { log, "%s connect to %s :%s", loghead(*this), string(epbuf, opts.ipport), string(ecbuf, ec) }; // The timer was set by socket::connect() and may need to be canceled. if(!timedout && !is(ec, errc::operation_canceled) && !fini) cancel_timeout(); if(timedout && is(ec, errc::operation_canceled)) ec = make_error_code(errc::timed_out); if(!ec && opts.handshake && fini) ec = make_error_code(errc::operation_canceled); // A connect error; abort here by calling the user back with error. if(ec) return call_user(callback, ec); // Try to set the user's socket options now; if something fails we can // invoke their callback with the error from the exception handler. if(opts.sopts && !fini) set(*this, *opts.sopts); // The user can opt out of performing the handshake here. if(!opts.handshake) return call_user(callback, ec); assert(!fini); handshake(opts, std::move(callback)); } catch(const std::bad_weak_ptr &e) { log::warning { log, "socket(%p) belated callback to handle_connect... (%s)", this, e.what() }; assert(0); } catch(const std::exception &e) { log::critical { log, "socket(%p) handle_connect :%s", this, e.what() }; const ctx::exception_handler eh; call_user(callback, ec); } void ircd::net::socket::handle_disconnect(std::shared_ptr s, eptr_handler callback, error_code ec) noexcept try { using std::errc; assert(fini); if(!timedout && ec != errc::operation_canceled) cancel_timeout(); if(timedout && ec == errc::operation_canceled) ec = make_error_code(errc::timed_out); char ecbuf[64]; log::debug { log, "%s disconnect %s", loghead(*this), string(ecbuf, ec) }; // This ignores EOF and turns it into a success to alleviate user concern. if(ec == eof) ec = error_code{}; sd.close(); call_user(callback, ec); } catch(const boost::system::system_error &e) { log::error { log, "socket(%p) disconnect :%s", this, e.what() }; const auto code(e.code()); const ctx::exception_handler eh; call_user(callback, code); } catch(const std::exception &e) { log::critical { log, "socket(%p) disconnect :%s", this, e.what() }; const ctx::exception_handler eh; call_user(callback, ec); } void ircd::net::socket::handle_handshake(std::weak_ptr wp, eptr_handler callback, error_code ec) noexcept try { using std::errc; const life_guard s{wp}; if(!timedout && ec != errc::operation_canceled && !fini) cancel_timeout(); if(timedout && ec == errc::operation_canceled) ec = make_error_code(errc::timed_out); #ifdef RB_DEBUG const auto *const current_cipher { !ec? openssl::current_cipher(*this): nullptr }; char ecbuf[64]; log::debug { log, "%s handshake cipher:%s %s", loghead(*this), current_cipher? openssl::name(*current_cipher): ""_sv, string(ecbuf, ec) }; #endif // Toggles the behavior of non-async functions; see func comment if(!ec) blocking(*this, false); // This is the end of the asynchronous call chain; the user is called // back with or without error here. call_user(callback, ec); } catch(const boost::system::system_error &e) { log::error { log, "socket(%p) after handshake :%s", this, e.what() }; const auto code(e.code()); const ctx::exception_handler eh; call_user(callback, e.code()); } catch(const std::bad_weak_ptr &e) { log::warning { log, "socket(%p) belated callback to handle_handshake... (%s)", this, e.what() }; assert(0); } catch(const std::exception &e) { log::critical { log, "socket(%p) handle_handshake :%s", this, e.what() }; const ctx::exception_handler eh; call_user(callback, ec); } bool ircd::net::socket::handle_verify(const bool valid, asio::ssl::verify_context &vc, const open_opts &opts) noexcept try { // `valid` indicates whether or not there's an anomaly with the // certificate; if so, it is usually enumerated by the `switch()` // statement below. If `valid` is false, this function can return // true to still continue. // Socket ordered to shut down. We abort the verification here // to allow the open_opts out of scope with the user. if(fini || !sd.is_open()) return false; // The user can set this option to bypass verification. if(!opts.verify_certificate) return true; // X509_STORE_CTX & assert(vc.native_handle()); const auto &stctx{*vc.native_handle()}; const auto &cert{openssl::current_cert(stctx)}; const auto reject{[&stctx, &opts] { throw inauthentic { "%s #%ld: %s", common_name(opts), openssl::get_error(stctx), openssl::get_error_string(stctx) }; }}; if(!valid) { thread_local char buf[16_KiB]; const critical_assertion ca; log::warning { log, "verify[%s] :%s :%s", common_name(opts), openssl::get_error_string(stctx), openssl::print_subject(buf, cert) }; } const auto err { openssl::get_error(stctx) }; if(!valid) switch(err) { case X509_V_OK: assert(0); default: reject(); __builtin_unreachable(); case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: assert(openssl::get_error_depth(stctx) == 0); if(opts.allow_self_signed) return true; reject(); __builtin_unreachable(); case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE: case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: if(opts.allow_self_signed || opts.allow_self_chain) return true; reject(); __builtin_unreachable(); case X509_V_ERR_CERT_HAS_EXPIRED: if(opts.allow_expired) return true; reject(); __builtin_unreachable(); } const bool verify_common_name { opts.verify_common_name && (opts.verify_self_signed_common_name && err == X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT) }; if(verify_common_name) { if(unlikely(!common_name(opts))) throw inauthentic { "No common name specified in connection options" }; boost::asio::ssl::rfc2818_verification verifier { common_name(opts) }; if(!verifier(true, vc)) { thread_local char buf[rfc1035::NAME_BUFSIZE]; const critical_assertion ca; throw inauthentic { "/CN=%s does not match target host %s :%s", openssl::subject_common_name(buf, cert), common_name(opts), openssl::get_error_string(stctx) }; } } #ifdef RB_DEBUG thread_local char buf[16_KiB]; const critical_assertion ca; log::debug { log, "verify[%s] %s", common_name(opts), openssl::print_subject(buf, cert) }; #endif return true; } catch(const inauthentic &e) { log::error { log, "Certificate rejected :%s", e.what() }; return false; } catch(const std::exception &e) { log::critical { log, "Certificate error :%s", e.what() }; return false; } void ircd::net::socket::call_user(const ec_handler &callback, const error_code &ec) noexcept try { callback(ec); } catch(const std::exception &e) { log::critical { log, "socket(%p) async handler: unhandled exception :%s", this, e.what() }; close(*this, dc::RST, close_ignore); } void ircd::net::socket::call_user(const eptr_handler &callback, const error_code &ec) noexcept try { if(likely(!ec)) return callback(std::exception_ptr{}); callback(make_system_eptr(ec)); } catch(const std::exception &e) { log::critical { log, "socket(%p) async handler: unhandled exception :%s", this, e.what() }; } ircd::milliseconds ircd::net::socket::cancel_timeout() noexcept { const auto exp { timer.expires_from_now() }; const milliseconds ret { exp.total_milliseconds() }; timer_set = false; timedout = false; boost::system::error_code ec; timer.cancel(ec); assert(!ec); return ret; } void ircd::net::socket::set_timeout(const milliseconds &t) { set_timeout(t, nullptr); } void ircd::net::socket::set_timeout(const milliseconds &t, ec_handler callback) { cancel_timeout(); if(t < milliseconds(0)) return; auto handler { std::bind(&socket::handle_timeout, this, weak_from(*this), std::move(callback), ph::_1) }; // The sending-side of the semaphore is incremented here to invalidate any // pending/queued callbacks to handle_timeout as to not conflict now. The // required companion boolean timer_set is also lit here. assert(timer_sem[0] <= timer_sem[1]); assert(timer_set == false); assert(timedout == false); ++timer_sem[1]; timer_set = true; const boost::posix_time::milliseconds pt { t.count() }; timer.expires_from_now(pt); timer.async_wait(ios::handle(desc_timeout, std::move(handler))); } boost::asio::ip::tcp::endpoint ircd::net::socket::local() const { return sd.local_endpoint(); } boost::asio::ip::tcp::endpoint ircd::net::socket::remote() const { return sd.remote_endpoint(); } ircd::net::socket::operator SSL &() { assert(ssl.native_handle()); return *ssl.native_handle(); } ircd::net::socket::operator const SSL &() const { using type = typename std::remove_const::type; auto &ssl(const_cast(this->ssl)); assert(ssl.native_handle()); return *ssl.native_handle(); } /////////////////////////////////////////////////////////////////////////////// // // net/ipport.h // std::ostream & ircd::net::operator<<(std::ostream &s, const ipport &t) { thread_local char buf[128]; const critical_assertion ca; s << net::string(buf, t); return s; } ircd::string_view ircd::net::string(const mutable_buffer &buf, const ipport &ipp) { mutable_buffer out{buf}; const bool has_port(port(ipp)); const bool need_bracket { has_port && is_v6(ipp) && !is_null(ipp) }; if(need_bracket) consume(out, copy(out, '[')); if(ipp) consume(out, size(string(out, std::get(ipp)))); if(need_bracket) consume(out, copy(out, ']')); if(has_port) { consume(out, copy(out, ':')); consume(out, size(lex_cast(port(ipp), out))); } return { data(buf), data(out) }; } ircd::net::ipport ircd::net::make_ipport(const boost::asio::ip::udp::endpoint &ep) { return ipport { ep.address(), ep.port() }; } ircd::net::ipport ircd::net::make_ipport(const boost::asio::ip::tcp::endpoint &ep) { return ipport { ep.address(), ep.port() }; } boost::asio::ip::udp::endpoint ircd::net::make_endpoint_udp(const ipport &ipport) { return { make_address(std::get(ipport)), port(ipport) }; } boost::asio::ip::tcp::endpoint ircd::net::make_endpoint(const ipport &ipport) { return { make_address(std::get(ipport)), port(ipport) }; } // // cmp // bool ircd::net::ipport::cmp_ip::operator()(const ipport &a, const ipport &b) const { return ipaddr::cmp()(std::get(a), std::get(b)); } bool ircd::net::ipport::cmp_port::operator()(const ipport &a, const ipport &b) const { return std::get(a) < std::get(b); } /////////////////////////////////////////////////////////////////////////////// // // net/ipaddr.h // boost::asio::ip::address ircd::net::make_address(const ipaddr &ipaddr) { return is_v4(ipaddr)? ip::address(make_address(ipaddr.v4)): ip::address(make_address(ipaddr.v6)); } boost::asio::ip::address ircd::net::make_address(const string_view &ip) try { return ip && ip == "*"? boost::asio::ip::address_v6::any(): ip? boost::asio::ip::make_address(ip): boost::asio::ip::address{}; } catch(const boost::system::system_error &e) { throw_system_error(e); } boost::asio::ip::address_v4 ircd::net::make_address(const uint32_t &ip) { return ip::address_v4{ip}; } boost::asio::ip::address_v6 ircd::net::make_address(const uint128_t &ip) { const auto &pun { reinterpret_cast(ip) }; auto punpun { reinterpret_cast &>(pun) }; std::reverse(begin(punpun), end(punpun)); return ip::address_v6{punpun}; } std::ostream & ircd::net::operator<<(std::ostream &s, const ipaddr &ipa) { thread_local char buf[128]; const critical_assertion ca; s << net::string(buf, ipa); return s; } ircd::string_view ircd::net::string(const mutable_buffer &buf, const ipaddr &ipaddr) { return is_v4(ipaddr)? string_ip4(buf, ipaddr.v4): string_ip6(buf, ipaddr.v6); } ircd::string_view ircd::net::string_ip4(const mutable_buffer &buf, const uint32_t &ip) { return string(buf, make_address(ip)); } ircd::string_view ircd::net::string_ip6(const mutable_buffer &buf, const uint128_t &ip) { return string(buf, make_address(ip)); } bool ircd::net::is_loop(const ipaddr &ipaddr) { return is_v4(ipaddr)? make_address(ipaddr.v4).is_loopback(): make_address(ipaddr.v6).is_loopback(); } // // ipaddr::ipaddr // static_assert ( SIZEOF_LONG_LONG >= 8, "8 byte integer literals are required." ); decltype(ircd::net::ipaddr::v4_max) ircd::net::ipaddr::v4_min { 0x0000ffff00000000ULL }; decltype(ircd::net::ipaddr::v4_max) ircd::net::ipaddr::v4_max { v4_min + 0x00000000ffffffffULL }; ircd::net::ipaddr::ipaddr(const string_view &ip) :ipaddr { make_address(ip) } { } ircd::net::ipaddr::ipaddr(const rfc1035::record::A &rr) :ipaddr { rr.ip4 } { } ircd::net::ipaddr::ipaddr(const rfc1035::record::AAAA &rr) :ipaddr { rr.ip6 } { } ircd::net::ipaddr::ipaddr(const uint32_t &ip) :ipaddr { make_address(ip) } { } ircd::net::ipaddr::ipaddr(const uint128_t &ip) :ipaddr { make_address(ip) } { } ircd::net::ipaddr::ipaddr(const asio::ip::address &address) { const auto address_ { address.is_v6()? address.to_v6(): make_address_v6(ip::v4_mapped, address.to_v4()) }; byte = address_.to_bytes(); std::reverse(byte.begin(), byte.end()); } // // ipaddr::ipaddr // bool ircd::net::ipaddr::cmp::operator()(const ipaddr &a, const ipaddr &b) const { return a.byte < b.byte; } /////////////////////////////////////////////////////////////////////////////// // // net/hostport.h // /// Creates a host:service or host:port pair from the single string literally /// containing the colon deliminated values. If the suffix is a port number /// then the behavior for the port number constructor applies; if a service /// string then the service constructor applies. ircd::net::hostport::hostport(const string_view &amalgam) :host { rfc3986::host(amalgam) } ,port { rfc3986::port(amalgam) } { // When the amalgam has no port || a valid integer port if(amalgam == host || port) return; // When the port is actually a service string this->service = rsplit(amalgam, ':').second; } ircd::net::hostport::hostport(const string_view &amalgam, verbatim_t) :host { rfc3986::host(amalgam) } ,service { amalgam != host && !rfc3986::port(amalgam)? rsplit(amalgam, ':').second: string_view{} } ,port { rfc3986::port(amalgam) } {} std::ostream & ircd::net::operator<<(std::ostream &s, const hostport &t) { thread_local char buf[rfc3986::DOMAIN_BUFSIZE * 2]; const critical_assertion ca; s << string(buf, t); return s; } std::string ircd::net::canonize(const hostport &hostport) { const size_t len { size(host(hostport)) // host + 1 + size(service(hostport)) // ':' + service + 1 + 5 + 1 // ':' + portnum (optimistic) }; return ircd::string(len, [&hostport] (const mutable_buffer &buf) { return canonize(buf, hostport); }); } ircd::string_view ircd::net::canonize(const mutable_buffer &buf, const hostport &hostport) { thread_local char svc[32], tlbuf[2][rfc3986::DOMAIN_BUFSIZE * 2]; assert(service(hostport) || port(hostport)); const string_view &service_name { !service(hostport)? net::dns::service_name(std::nothrow, svc, port(hostport), "tcp"): service(hostport) }; if(likely(service_name)) return fmt::sprintf { buf, "%s:%s", tolower(tlbuf[0], host(hostport)), tolower(tlbuf[1], service_name), }; if(unlikely(!port(hostport))) throw error { "Missing service suffix in hostname:service string.", }; return fmt::sprintf { buf, "%s:%u", tolower(tlbuf[0], host(hostport)), port(hostport), }; } ircd::string_view ircd::net::string(const mutable_buffer &buf, const hostport &hp) { thread_local char tlbuf[2][rfc3986::DOMAIN_BUFSIZE * 2]; if(empty(service(hp)) && port(hp) == 0) return fmt::sprintf { buf, "%s", tolower(tlbuf[0], host(hp)), }; if(empty(service(hp)) && port(hp) != 0) return fmt::sprintf { buf, "%s:%u", tolower(tlbuf[0], host(hp)), port(hp) }; if(!empty(service(hp)) && port(hp) == 0) return fmt::sprintf { buf, "%s:%s", tolower(tlbuf[0], host(hp)), tolower(tlbuf[1], service(hp)), }; return fmt::sprintf { buf, "%s:%u (%s)", tolower(tlbuf[0], host(hp)), port(hp), tolower(tlbuf[1], service(hp)), }; } /////////////////////////////////////////////////////////////////////////////// // // net/asio.h // std::string ircd::net::string(const ip::tcp::endpoint &ep) { return string(make_ipport(ep)); } ircd::string_view ircd::net::string(const mutable_buffer &buf, const ip::tcp::endpoint &ep) { return string(buf, make_ipport(ep)); } std::string ircd::net::host(const ip::tcp::endpoint &ep) { return string(addr(ep)); } boost::asio::ip::address ircd::net::addr(const ip::tcp::endpoint &ep) { return ep.address(); } uint16_t ircd::net::port(const ip::tcp::endpoint &ep) { return ep.port(); } std::string ircd::net::string(const ip::address &addr) { return addr.is_v4()? string(addr.to_v4()): string(addr.to_v6()); } std::string ircd::net::string(const ip::address_v4 &addr) { return util::string(16, [&addr] (const mutable_buffer &out) { return string(out, addr); }); } std::string ircd::net::string(const ip::address_v6 &addr) { return addr.to_string(); } ircd::string_view ircd::net::string(const mutable_buffer &out, const ip::address &addr) { return addr.is_v4()? string(out, addr.to_v4()): string(out, addr.to_v6()); } ircd::string_view ircd::net::string(const mutable_buffer &out, const ip::address_v4 &addr) { const uint32_t a(addr.to_ulong()); return fmt::sprintf { out, "%u.%u.%u.%u", (a & 0xFF000000U) >> 24, (a & 0x00FF0000U) >> 16, (a & 0x0000FF00U) >> 8, (a & 0x000000FFU) >> 0, }; } ircd::string_view ircd::net::string(const mutable_buffer &out, const ip::address_v6 &addr) { return { data(out), string(addr).copy(data(out), size(out)) }; } /////////////////////////////////////////////////////////////////////////////// // // buffer.h - provide definition for the null buffers and asio conversion // const ircd::buffer::mutable_buffer ircd::buffer::null_buffer { nullptr, nullptr }; const ircd::ilist ircd::buffer::null_buffers {{ null_buffer }}; ircd::buffer::mutable_buffer::operator boost::asio::mutable_buffer() const { return boost::asio::mutable_buffer { data(*this), size(*this) }; } ircd::buffer::const_buffer::operator boost::asio::const_buffer() const { return boost::asio::const_buffer { data(*this), size(*this) }; }