/* * Copyright (C) 2017 Charybdis Development Team * Copyright (C) 2017 Jason Volk * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice is present in all copies. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include /////////////////////////////////////////////////////////////////////////////// // // net/net.h // /// Network subsystem log facility with dedicated SNOMASK. struct ircd::log::log ircd::net::log { "net", 'N' }; ircd::const_raw_buffer ircd::net::peer_cert_der(const mutable_raw_buffer &buf, const socket &socket) { const SSL &ssl(socket); const X509 &cert{openssl::peer_cert(ssl)}; return openssl::i2d(buf, cert); } ircd::net::ipport ircd::net::remote_ipport(const socket &socket) noexcept try { const auto &ep(socket.remote()); return make_ipport(ep); } catch(...) { return {}; } ircd::net::ipport ircd::net::local_ipport(const socket &socket) noexcept try { const auto &ep(socket.local()); return make_ipport(ep); } catch(...) { return {}; } size_t ircd::net::available(const socket &socket) noexcept { const ip::tcp::socket &sd(socket); boost::system::error_code ec; return sd.available(ec); } size_t ircd::net::readable(const socket &socket) { ip::tcp::socket &sd(const_cast(socket)); ip::tcp::socket::bytes_readable command{true}; sd.io_control(command); return command.get(); } bool ircd::net::connected(const socket &socket) noexcept try { const ip::tcp::socket &sd(socket); return sd.is_open(); } catch(...) { return false; } /////////////////////////////////////////////////////////////////////////////// // // net/write.h // void ircd::net::flush(socket &socket) { if(nodelay(socket)) return; nodelay(socket, true); nodelay(socket, false); } /// Yields ircd::ctx until all buffers are sent. /// /// This is blocking behavior; use this if the following are true: /// /// * You put a timer on the socket so if the remote slows us down the data /// will not occupy the daemon's memory for a long time. Remember, *all* of /// the data will be sitting in memory even after some of it was ack'ed by /// the remote. /// /// * You are willing to dedicate the ircd::ctx to sending all the data to /// the remote. The ircd::ctx will be yielding until everything is sent. /// size_t ircd::net::write_all(socket &socket, const vector_view &buffers) { return socket.write_all(buffers); } /// Yields ircd::ctx until at least some buffers are sent. /// /// This is blocking behavior; use this if the following are true: /// /// * You put a timer on the socket so if the remote slows us down the data /// will not occupy the daemon's memory for a long time. /// /// * You are willing to dedicate the ircd::ctx to sending the data to /// the remote. The ircd::ctx will be yielding until the kernel has at least /// some space to consume at least something from the supplied buffers. /// size_t ircd::net::write_few(socket &socket, const vector_view &buffers) { return socket.write_few(buffers); } /// Writes as much as possible until one of the following is true: /// /// * The kernel buffer for the socket is full. /// * The user buffer is exhausted. /// /// This is non-blocking behavior. No yielding will take place; no timer is /// needed. Multiple syscalls will be composed to fulfill the above points. /// size_t ircd::net::write_any(socket &socket, const vector_view &buffers) { return socket.write_any(buffers); } /// Writes one "unit" of data or less; never more. The size of that unit /// is determined by the system. Less may be written if one of the following /// is true: /// /// * The kernel buffer for the socket is full. /// * The user buffer is exhausted. /// /// If neither are true, more can be written using additional calls; /// alternatively, use other variants of write_ for that. /// /// This is non-blocking behavior. No yielding will take place; no timer is /// needed. Only one syscall will occur. /// size_t ircd::net::write_one(socket &socket, const vector_view &buffers) { return socket.write_one(buffers); } /////////////////////////////////////////////////////////////////////////////// // // net/read.h // /// Yields ircd::ctx until len bytes have been received and discarded from the /// socket. /// size_t ircd::net::discard_all(socket &socket, const size_t &len) { static char buffer[512] alignas(16); size_t remain{len}; while(remain) { const mutable_buffer mb { buffer, std::min(remain, sizeof(buffer)) }; __builtin_prefetch(data(mb), 1, 0); // 1 = write, 0 = no cache remain -= read_all(socket, mb); } return len; } /// Non-blocking discard of up to len bytes. The amount of bytes discarded /// is returned. Zero is only returned if len==0 because the EAGAIN is /// thrown. If any bytes have been discarded any EAGAIN encountered in /// this function's internal loop is not thrown, but used to exit the loop. /// size_t ircd::net::discard_any(socket &socket, const size_t &len) { static char buffer[512] alignas(16); size_t remain{len}; while(remain) try { const mutable_buffer mb { buffer, std::min(remain, sizeof(buffer)) }; __builtin_prefetch(data(mb), 1, 0); // 1 = write, 0 = no cache remain -= read_one(socket, mb); } catch(const boost::system::system_error &e) { if(e.code() == boost::system::errc::resource_unavailable_try_again) if(remain <= len) break; throw; } return len - remain; } /// Yields ircd::ctx until buffers are full. /// /// Use this only if the following are true: /// /// * You know the remote has made a guarantee to send you a specific amount /// of data. /// /// * You put a timer on the socket so that if the remote runs short this /// call doesn't hang the ircd::ctx forever, otherwise it will until cancel. /// /// * You are willing to dedicate the ircd::ctx to just this operation for /// that amount of time. /// size_t ircd::net::read_all(socket &socket, const vector_view &buffers) { return socket.read_all(buffers); } /// Yields ircd::ctx until remote has sent at least one frame. The buffers may /// be filled with any amount of data depending on what has accumulated. /// /// Use this if the following are true: /// /// * You know there is data to be read; you can do this asynchronously with /// other features of the socket. Otherwise this will hang the ircd::ctx. /// /// * You are willing to dedicate the ircd::ctx to just this operation, /// which is non-blocking if data is known to be available, but may be /// blocking if this call is made in the blind. /// size_t ircd::net::read_few(socket &socket, const vector_view &buffers) { return socket.read_few(buffers); } /// Reads as much as possible. Non-blocking behavior. /// /// This is intended for lowest-level/custom control and not preferred by /// default for most users on an ircd::ctx. /// size_t ircd::net::read_any(socket &socket, const vector_view &buffers) { return socket.read_any(buffers); } /// Reads one message or less in a single syscall. Non-blocking behavior. /// /// This is intended for lowest-level/custom control and not preferred by /// default for most users on an ircd::ctx. /// size_t ircd::net::read_one(socket &socket, const vector_view &buffers) { return socket.read_one(buffers); } /////////////////////////////////////////////////////////////////////////////// // // net/wait.h // ircd::net::wait_opts const ircd::net::wait_opts_default { }; /// Wait for socket to become "ready" using a ctx::future. ircd::ctx::future ircd::net::wait(use_future_t, socket &socket, const wait_opts &wait_opts) { ctx::promise p; ctx::future f{p}; wait(socket, wait_opts, [p(std::move(p))] (std::exception_ptr eptr) mutable { if(eptr) p.set_exception(std::move(eptr)); else p.set_value(); }); return f; } /// Wait for socket to become "ready"; yields ircd::ctx returning code. ircd::error_code ircd::net::wait(nothrow_t, socket &socket, const wait_opts &wait_opts) try { wait(socket, wait_opts); return {}; } catch(const boost::system::system_error &e) { return e.code(); } /// Wait for socket to become "ready"; yields ircd::ctx; throws errors. void ircd::net::wait(socket &socket, const wait_opts &wait_opts) { socket.wait(wait_opts); } /// Wait for socket to become "ready"; callback with exception_ptr void ircd::net::wait(socket &socket, const wait_opts &wait_opts, wait_callback_eptr callback) { socket.wait(wait_opts, std::move(callback)); } void ircd::net::wait(socket &socket, const wait_opts &wait_opts, wait_callback_ec callback) { socket.wait(wait_opts, std::move(callback)); } ircd::string_view ircd::net::reflect(const ready &type) { switch(type) { case ready::ANY: return "ANY"_sv; case ready::READ: return "READ"_sv; case ready::WRITE: return "WRITE"_sv; case ready::ERROR: return "ERROR"_sv; } return "????"_sv; } /////////////////////////////////////////////////////////////////////////////// // // net/close.h // /// Static instance of default close options. ircd::net::close_opts const ircd::net::close_opts_default { }; /// Static helper callback which may be passed to the callback-based overload /// of close(). This callback does nothing. ircd::net::close_callback const ircd::net::close_ignore{[] (std::exception_ptr eptr) { return; }}; ircd::ctx::future ircd::net::close(socket &socket, const close_opts &opts) { ctx::promise p; ctx::future f(p); close(socket, opts, [p(std::move(p))] (std::exception_ptr eptr) mutable { if(eptr) p.set_exception(std::move(eptr)); else p.set_value(); }); return f; } void ircd::net::close(socket &socket, const close_opts &opts, close_callback callback) { socket.disconnect(opts, std::move(callback)); } /////////////////////////////////////////////////////////////////////////////// // // net/open.h // /// Open new socket with future-based report. /// ircd::ctx::future> ircd::net::open(const open_opts &opts) { ctx::promise> p; ctx::future> f(p); auto s{std::make_shared()}; open(*s, opts, [s, p(std::move(p))] (std::exception_ptr eptr) mutable { if(eptr) p.set_exception(std::move(eptr)); else p.set_value(s); }); return f; } /// Open existing socket with callback-based report. /// std::shared_ptr ircd::net::open(const open_opts &opts, open_callback handler) { auto s{std::make_shared()}; open(*s, opts, std::move(handler)); return s; } /// Open existing socket with callback-based report. /// void ircd::net::open(socket &socket, const open_opts &opts, open_callback handler) { auto complete{[s(shared_from(socket)), handler(std::move(handler))] (std::exception_ptr eptr) { if(eptr) close(*s, dc::RST); handler(std::move(eptr)); }}; auto connector{[&socket, opts, complete(std::move(complete))] (std::exception_ptr eptr, const ipport &ipport) { if(eptr) return complete(std::move(eptr)); const auto ep{make_endpoint(ipport)}; socket.connect(ep, opts, std::move(complete)); }}; if(!opts.ipport) resolve(opts.hostport, std::move(connector)); else connector({}, opts.ipport); } /////////////////////////////////////////////////////////////////////////////// // // net/sopts.h // /// Construct sock_opts with the current options from socket argument ircd::net::sock_opts::sock_opts(const socket &socket) :blocking{net::blocking(socket)} ,nodelay{net::nodelay(socket)} ,keepalive{net::keepalive(socket)} ,linger{net::linger(socket)} ,read_bufsz{ssize_t(net::read_bufsz(socket))} ,write_bufsz{ssize_t(net::write_bufsz(socket))} ,read_lowat{ssize_t(net::read_lowat(socket))} ,write_lowat{ssize_t(net::write_lowat(socket))} { } /// Updates the socket with provided options. Defaulted / -1'ed options are /// ignored for updating. void ircd::net::set(socket &socket, const sock_opts &opts) { if(opts.blocking != opts.IGN) net::blocking(socket, opts.blocking); if(opts.nodelay != opts.IGN) net::nodelay(socket, opts.nodelay); if(opts.keepalive != opts.IGN) net::keepalive(socket, opts.keepalive); if(opts.linger != opts.IGN) net::linger(socket, opts.linger); if(opts.read_bufsz != opts.IGN) net::read_bufsz(socket, opts.read_bufsz); if(opts.write_bufsz != opts.IGN) net::write_bufsz(socket, opts.write_bufsz); if(opts.read_lowat != opts.IGN) net::read_lowat(socket, opts.read_lowat); if(opts.write_lowat != opts.IGN) net::write_lowat(socket, opts.write_lowat); } void ircd::net::write_lowat(socket &socket, const size_t &bytes) { assert(bytes <= std::numeric_limits::max()); ip::tcp::socket::send_low_watermark option { int(bytes) }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::read_lowat(socket &socket, const size_t &bytes) { assert(bytes <= std::numeric_limits::max()); ip::tcp::socket::receive_low_watermark option { int(bytes) }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::write_bufsz(socket &socket, const size_t &bytes) { assert(bytes <= std::numeric_limits::max()); ip::tcp::socket::send_buffer_size option { int(bytes) }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::read_bufsz(socket &socket, const size_t &bytes) { assert(bytes <= std::numeric_limits::max()); ip::tcp::socket::receive_buffer_size option { int(bytes) }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::linger(socket &socket, const time_t &t) { assert(t >= std::numeric_limits::min()); assert(t <= std::numeric_limits::max()); ip::tcp::socket::linger option { t >= 0, // ON / OFF boolean t >= 0? int(t) : 0 // Uses 0 when OFF }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::keepalive(socket &socket, const bool &b) { ip::tcp::socket::keep_alive option{b}; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::nodelay(socket &socket, const bool &b) { ip::tcp::no_delay option{b}; ip::tcp::socket &sd(socket); sd.set_option(option); } /// Toggles the behavior of non-async asio calls. /// /// This option affects very little in practice and only sets a flag in /// userspace in asio, not an actual ioctl(). Specifically: /// /// * All sockets are already set by asio to FIONBIO=1 no matter what, thus /// nothing really blocks the event loop ever by default unless you try hard. /// /// * All asio::async_ and sd.async_ and ssl.async_ calls will always do what /// the synchronous/blocking alternative would have accomplished but using /// the async methodology. i.e if a buffer is full you will always wait /// asynchronously: async_write() will wait for everything, async_write_some() /// will wait for something, etc -- but there will never be true non-blocking /// _effective behavior_ from these calls. /// /// * All asio non-async calls conduct blocking by (on linux) poll()'ing the /// socket to get a real kernel-blocking operation out of it (this is the /// try-hard part). /// /// This flag only controls the behavior of the last bullet. In practice, /// in this project there is never a reason to ever set this to true, /// however, sockets do get constructed by asio in blocking mode by default /// so we mostly use this function to set it to non-blocking. /// void ircd::net::blocking(socket &socket, const bool &b) { ip::tcp::socket &sd(socket); sd.non_blocking(!b); } size_t ircd::net::write_lowat(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::send_low_watermark option{}; sd.get_option(option); return option.value(); } size_t ircd::net::read_lowat(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::receive_low_watermark option{}; sd.get_option(option); return option.value(); } size_t ircd::net::write_bufsz(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::send_buffer_size option{}; sd.get_option(option); return option.value(); } size_t ircd::net::read_bufsz(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::receive_buffer_size option{}; sd.get_option(option); return option.value(); } time_t ircd::net::linger(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::linger option; sd.get_option(option); return option.enabled()? option.timeout() : -1; } bool ircd::net::keepalive(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::keep_alive option; sd.get_option(option); return option.value(); } bool ircd::net::nodelay(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::no_delay option; sd.get_option(option); return option.value(); } bool ircd::net::blocking(const socket &socket) { const ip::tcp::socket &sd(socket); return !sd.non_blocking(); } /////////////////////////////////////////////////////////////////////////////// // // net/listener.h // ircd::net::listener::listener(const std::string &opts) :listener{json::object{opts}} { } ircd::net::listener::listener(const json::object &opts) :acceptor{std::make_shared(opts)} { // Starts the first asynchronous accept. This has to be done out here after // the acceptor's shared object is constructed. acceptor->next(); } /// Cancels all pending accepts and handshakes and waits (yields ircd::ctx) /// until report. /// ircd::net::listener::~listener() noexcept { if(acceptor) acceptor->join(); } /////////////////////////////////////////////////////////////////////////////// // // net/acceptor.h // ircd::log::log ircd::net::listener::acceptor::log { "listener" }; ircd::net::listener::acceptor::acceptor(const json::object &opts) try :name { unquote(opts.get("name", "IRCd (ssl)"s)) } ,backlog { //boost::asio::ip::tcp::socket::max_connections <-- linkage failed? opts.get("backlog", SOMAXCONN) //TODO: XXX } ,ssl { asio::ssl::context::method::sslv23_server } ,ep { ip::address::from_string(unquote(opts.get("host", "127.0.0.1"s))), opts.at("port") } ,a { *ircd::ios } { static const auto &max_connections { //boost::asio::ip::tcp::socket::max_connections <-- linkage failed? SOMAXCONN //TODO: XXX }; static const ip::tcp::acceptor::reuse_address reuse_address { true }; configure(opts); log.debug("%s configured listener SSL", std::string(*this)); a.open(ep.protocol()); a.set_option(reuse_address); log.debug("%s opened listener socket", std::string(*this)); a.bind(ep); log.debug("%s bound listener socket", std::string(*this)); a.listen(backlog); log.debug("%s listening (backlog: %lu, max connections: %zu)", std::string(*this), backlog, max_connections); } catch(const boost::system::system_error &e) { throw error("listener: %s", e.what()); } ircd::net::listener::acceptor::~acceptor() noexcept { } void ircd::net::listener::acceptor::join() noexcept try { interrupt(); joining.wait([this] { return !accepting && !handshaking; }); } catch(const std::exception &e) { log.error("acceptor(%p) join: %s", this, e.what()); } bool ircd::net::listener::acceptor::interrupt() noexcept try { a.cancel(); interrupting = true; return true; } catch(const boost::system::system_error &e) { log.error("acceptor(%p) interrupt: %s", this, string(e)); return false; } /// Sets the next asynchronous handler to start the next accept sequence. /// Each call to next() sets one handler which handles the connect for one /// socket. After the connect, an asynchronous SSL handshake handler is set /// for the socket, and next() is called again to setup for the next socket /// too. void ircd::net::listener::acceptor::next() try { auto sock(std::make_shared(ssl)); /* log.debug("%s: socket(%p) is the next socket to accept", std::string(*this), sock.get()); */ ++accepting; ip::tcp::socket &sd(*sock); a.async_accept(sd, std::bind(&acceptor::accept, this, ph::_1, sock, weak_from(*this))); } catch(const std::exception &e) { log.critical("%s: %s", std::string(*this), e.what()); if(ircd::debugmode) throw; } /// Callback for a socket connected. This handler then invokes the /// asynchronous SSL handshake sequence. /// void ircd::net::listener::acceptor::accept(const error_code &ec, const std::shared_ptr sock, const std::weak_ptr a) noexcept try { if(unlikely(a.expired())) return; --accepting; assert(bool(sock)); log.debug("%s: socket(%p) accepted(%zu) %s %s", std::string(*this), sock.get(), accepting, string(remote_ipport(*sock)), string(ec)); if(!check_accept_error(ec, *sock)) return; // Toggles the behavior of non-async functions; see func comment blocking(*sock, false); static const socket::handshake_type handshake_type { socket::handshake_type::server }; auto handshake { std::bind(&acceptor::handshake, this, ph::_1, sock, a) }; ++handshaking; sock->set_timeout(5000ms); //TODO: config sock->ssl.async_handshake(handshake_type, std::move(handshake)); } catch(const ctx::interrupted &e) { log.debug("%s: acceptor interrupted socket(%p) %s", std::string(*this), sock.get(), string(ec)); joining.notify_all(); } catch(const std::exception &e) { log.error("%s: socket(%p) in accept(): %s", std::string(*this), sock.get(), e.what()); throw; } /// Error handler for the accept socket callback. This handler determines /// whether or not the handler should return or continue processing the /// result. /// bool ircd::net::listener::acceptor::check_accept_error(const error_code &ec, socket &sock) { using namespace boost::system::errc; using boost::system::system_category; if(unlikely(interrupting)) throw ctx::interrupted(); if(likely(ec == success)) { this->next(); return true; } if(ec.category() == system_category()) switch(ec.value()) { case operation_canceled: return false; default: break; } throw boost::system::system_error(ec); } void ircd::net::listener::acceptor::handshake(const error_code &ec, const std::shared_ptr sock, const std::weak_ptr a) noexcept try { if(unlikely(a.expired())) return; --handshaking; const unwind::exceptional drop{[&sock] { if(bool(sock)) close(*sock, dc::RST, close_ignore); }}; assert(bool(sock)); log.debug("socket(%p) local[%s] remote[%s] handshook(%zu) %s", sock.get(), string(local_ipport(*sock)), string(remote_ipport(*sock)), handshaking, string(ec)); check_handshake_error(ec, *sock); sock->cancel_timeout(); add_client(sock); } catch(const ctx::interrupted &e) { log.debug("%s: SSL handshake interrupted socket(%p) %s", std::string(*this), sock.get(), string(ec)); joining.notify_all(); } catch(const std::exception &e) { log.error("%s: socket(%p) in handshake(): %s", std::string(*this), sock.get(), e.what()); } /// Error handler for the SSL handshake callback. This handler determines /// whether or not the handler should return or continue processing the /// result. /// void ircd::net::listener::acceptor::check_handshake_error(const error_code &ec, socket &sock) { using boost::system::system_category; using namespace boost::system::errc; if(unlikely(interrupting)) throw ctx::interrupted(); if(likely(ec == success)) return; if(ec.category() == system_category()) switch(ec.value()) { case operation_canceled: break; default: break; } throw boost::system::system_error(ec); } void ircd::net::listener::acceptor::configure(const json::object &opts) { log.debug("%s preparing listener socket configuration...", std::string(*this)); ssl.set_options ( 0 //| ssl.default_workarounds //| ssl.no_tlsv1 //| ssl.no_tlsv1_1 //| ssl.no_tlsv1_2 //| ssl.no_sslv2 //| ssl.no_sslv3 //| ssl.single_dh_use ); //TODO: XXX ssl.set_password_callback([this] (const auto &size, const auto &purpose) { log.debug("%s asking for password with purpose '%s' (size: %zu)", std::string(*this), purpose, size); //XXX: TODO return "foobar"; }); if(opts.has("ssl_certificate_chain_file")) { const std::string filename { unquote(opts["ssl_certificate_chain_file"]) }; if(!fs::exists(filename)) throw error("%s: SSL certificate chain file @ `%s' not found", std::string(*this), filename); ssl.use_certificate_chain_file(filename); log.info("%s using certificate chain file '%s'", std::string(*this), filename); } if(opts.has("ssl_certificate_file_pem")) { const std::string filename { unquote(opts["ssl_certificate_file_pem"]) }; if(!fs::exists(filename)) throw error("%s: SSL certificate pem file @ `%s' not found", std::string(*this), filename); ssl.use_certificate_file(filename, asio::ssl::context::pem); log.info("%s using certificate file '%s'", std::string(*this), filename); } if(opts.has("ssl_private_key_file_pem")) { const std::string filename { unquote(opts["ssl_private_key_file_pem"]) }; if(!fs::exists(filename)) throw error("%s: SSL private key file @ `%s' not found", std::string(*this), filename); ssl.use_private_key_file(filename, asio::ssl::context::pem); log.info("%s using private key file '%s'", std::string(*this), filename); } if(opts.has("ssl_tmp_dh_file")) { const std::string filename { unquote(opts["ssl_tmp_dh_file"]) }; if(!fs::exists(filename)) throw error("%s: SSL tmp dh file @ `%s' not found", std::string(*this), filename); ssl.use_tmp_dh_file(filename); log.info("%s using tmp dh file '%s'", std::string(*this), filename); } } ircd::net::listener::acceptor::operator std::string() const { return fmt::snstringf { 256, "'%s' @ [%s]:%u", name, string(ep.address()), ep.port() }; } /////////////////////////////////////////////////////////////////////////////// // // net/socket.h // boost::asio::ssl::context ircd::net::sslv23_client { boost::asio::ssl::context::method::sslv23_client }; // // socket // ircd::net::socket::socket(asio::ssl::context &ssl, boost::asio::io_service *const &ios) :sd { *ios } ,ssl { this->sd, ssl } ,timer { *ios } { } /// The dtor asserts that the socket is not open/connected requiring a /// an SSL close_notify. There's no more room for async callbacks via /// shared_ptr after this dtor. ircd::net::socket::~socket() noexcept try { if(unlikely(RB_DEBUG_LEVEL && connected(*this))) log.critical("Failed to ensure socket(%p) is disconnected from %s before dtor.", this, string(remote())); assert(!connected(*this)); } catch(const std::exception &e) { log.critical("socket(%p) close: %s", this, e.what()); return; } void ircd::net::socket::connect(const endpoint &ep, const open_opts &opts, eptr_handler callback) { log.debug("socket(%p) attempting connect remote[%s] to:%ld$ms", this, string(ep), opts.connect_timeout.count()); auto connect_handler { std::bind(&socket::handle_connect, this, weak_from(*this), opts, std::move(callback), ph::_1) }; set_timeout(opts.connect_timeout); sd.async_connect(ep, std::move(connect_handler)); } void ircd::net::socket::handshake(const open_opts &opts, eptr_handler callback) { log.debug("socket(%p) local[%s] remote[%s] handshaking for '%s' to:%ld$ms", this, string(local_ipport(*this)), string(remote_ipport(*this)), common_name(opts), opts.handshake_timeout.count()); auto handshake_handler { std::bind(&socket::handle_handshake, this, weak_from(*this), std::move(callback), ph::_1) }; auto verify_handler { std::bind(&socket::handle_verify, this, ph::_1, ph::_2, opts) }; set_timeout(opts.handshake_timeout); ssl.set_verify_callback(std::move(verify_handler)); ssl.async_handshake(handshake_type::client, std::move(handshake_handler)); } void ircd::net::socket::disconnect(const close_opts &opts, eptr_handler callback) try { if(!sd.is_open()) { call_user(callback, {}); return; } log.debug("socket(%p) local[%s] remote[%s] disconnect type:%d user: in:%zu out:%zu", (const void *)this, string(local_ipport(*this)), string(remote_ipport(*this)), uint(opts.type), in.bytes, out.bytes); if(opts.sopts) set(*this, *opts.sopts); switch(opts.type) { case dc::RST: sd.close(); break; case dc::FIN: sd.shutdown(ip::tcp::socket::shutdown_both); break; case dc::FIN_SEND: sd.shutdown(ip::tcp::socket::shutdown_send); break; case dc::FIN_RECV: sd.shutdown(ip::tcp::socket::shutdown_receive); break; case dc::SSL_NOTIFY: { auto disconnect_handler { std::bind(&socket::handle_disconnect, this, shared_from(*this), std::move(callback), ph::_1) }; cancel(); set_timeout(opts.timeout); ssl.async_shutdown(std::move(disconnect_handler)); return; } } call_user(callback, {}); } catch(const boost::system::system_error &e) { call_user(callback, e.code()); } catch(const std::exception &e) { log.critical("socket(%p) disconnect: type: %d: %s", (const void *)this, uint(opts.type), e.what()); throw; } void ircd::net::socket::cancel() noexcept { boost::system::error_code ec; sd.cancel(ec); assert(!ec); timer.cancel(ec); assert(!ec); } void ircd::net::socket::wait(const wait_opts &opts, wait_callback_eptr callback) { wait(opts, [callback(std::move(callback))] (const error_code &ec) { callback(make_eptr(ec)); }); } /// Asynchronous callback when the socket is ready /// /// Overload for operator() without a timeout. see: operator() /// void ircd::net::socket::wait(const wait_opts &opts) { const scope_timeout timeout { *this, opts.timeout }; switch(opts.type) { case ready::ERROR: sd.async_wait(wait_type::wait_error, yield_context{to_asio{}}); break; case ready::WRITE: sd.async_wait(wait_type::wait_write, yield_context{to_asio{}}); break; case ready::READ: sd.async_wait(wait_type::wait_read, yield_context{to_asio{}}); break; default: throw ircd::not_implemented{}; } } /// Asynchronous callback when the socket is ready /// /// This function calls back the handler when the socket is ready /// for the operation of the specified type. /// void ircd::net::socket::wait(const wait_opts &opts, wait_callback_ec callback) { auto handle { std::bind(&socket::handle_ready, this, weak_from(*this), opts.type, std::move(callback), ph::_1) }; set_timeout(opts.timeout); const unwind::exceptional unset{[this] { cancel_timeout(); }}; switch(opts.type) { case ready::ERROR: sd.async_wait(wait_type::wait_error, std::move(handle)); break; case ready::WRITE: sd.async_wait(wait_type::wait_write, std::move(handle)); break; case ready::READ: { static char buf[1] alignas(16); static const ilist bufs{buf}; __builtin_prefetch(buf, 1, 0); // 1 = write, 0 = no cache // The problem here is that waiting on the sd doesn't account for bytes // read into SSL that we didn't consume yet. If something is stuck in // those userspace buffers, the socket won't know about it and perform // the wait. ASIO should fix this by adding a ssl::stream.wait() method // which will bail out immediately in this case before passing up to the // real socket wait. if(SSL_peek(ssl.native_handle(), buf, sizeof(buf)) > 0) { handle(error_code{}); break; } // The problem here is that the wait operation gives ec=success on both a // socket error and when data is actually available. We then have to check // using a non-blocking peek in the handler. By doing it this way here we // just get the error in the handler's ec. sd.async_receive(bufs, sd.message_peek, std::move(handle)); //sd.async_wait(wait_type::wait_read, std::move(handle)); break; } default: throw ircd::not_implemented{}; } } void ircd::net::socket::handle_ready(const std::weak_ptr wp, const net::ready type, const ec_handler callback, error_code ec) noexcept try { using namespace boost::system::errc; using boost::system::system_category; // After life_guard is constructed it is safe to use *this in this frame. const life_guard s{wp}; log.debug("socket(%p) local[%s] remote[%s] ready %s %s available:%zu", this, string(local_ipport(*this)), string(remote_ipport(*this)), reflect(type), string(ec), available(*this)); if(!timedout) cancel_timeout(); if(ec.category() == system_category()) switch(ec.value()) { // We expose a timeout condition to the user, but hide // other cancellations from invoking the callback. case operation_canceled: if(timedout) break; return; // This is a condition which we hide from the user. case bad_file_descriptor: return; // Everything else is passed up to the user. default: break; } call_user(callback, ec); } catch(const boost::system::system_error &e) { log.error("socket(%p) handle: %s", this, e.what()); assert(0); call_user(callback, e.code()); } catch(const std::bad_weak_ptr &e) { // This handler may still be registered with asio after the socket destructs, so // the weak_ptr will indicate that fact. However, this is never intended and is // a debug assertion which should be corrected. log.warning("socket(%p) belated callback to handler... (%s)", this, e.what()); assert(0); call_user(callback, ec); } catch(const std::exception &e) { log.critical("socket(%p) handle: %s", this, e.what()); assert(0); call_user(callback, ec); } void ircd::net::socket::handle_timeout(const std::weak_ptr wp, ec_handler callback, const error_code &ec) noexcept try { using namespace boost::system::errc; switch(ec.value()) { // A 'success' for this handler means there was a timeout on the socket case success: if(likely(!wp.expired())) { assert(timedout == false); timedout = true; sd.cancel(); break; } else break; // A cancelation means there was no timeout. case operation_canceled: if(likely(!wp.expired())) { assert(ec.category() == boost::system::system_category()); assert(timedout == false); timedout = false; break; } else break; // All other errors are unexpected, logged and ignored here. default: { log.critical("socket(%p) handle_timeout: unexpected: %s\n", (const void *)this, string(ec)); assert(0); break; } } if(callback) call_user(callback, ec); } catch(const std::exception &e) { log.critical("socket(%p) handle timeout: %s", (const void *)this, e.what()); assert(0); if(callback) call_user(callback, ec); } void ircd::net::socket::handle_connect(std::weak_ptr wp, const open_opts opts, eptr_handler callback, const error_code &ec) noexcept try { const life_guard s{wp}; assert(!timedout || ec == boost::system::errc::operation_canceled); log.debug("socket(%p) local[%s] remote[%s] connect %s", this, string(local_ipport(*this)), string(remote_ipport(*this)), string(ec)); // The timer was set by socket::connect() and may need to be canceled. if(!timedout) cancel_timeout(); // A connect error; abort here by calling the user back with error. if(ec) return call_user(callback, ec); // Toggles the behavior of non-async functions; see func comment blocking(*this, false); // Try to set the user's socket options now; if something fails we can // invoke their callback with the error from the exception handler. if(opts.sopts) set(*this, *opts.sopts); // The user can opt out of performing the handshake here. if(!opts.handshake) return call_user(callback, ec); handshake(opts, std::move(callback)); } catch(const std::bad_weak_ptr &e) { log.warning("socket(%p) belated callback to handle_connect... (%s)", this, e.what()); assert(0); call_user(callback, ec); } catch(const boost::system::system_error &e) { log.error("socket(%p) after connect: %s", this, e.what()); assert(0); call_user(callback, e.code()); } catch(const std::exception &e) { log.critical("socket(%p) handle_connect: %s", this, e.what()); assert(0); call_user(callback, ec); } void ircd::net::socket::handle_disconnect(std::shared_ptr s, eptr_handler callback, error_code ec) noexcept try { assert(!timedout || ec == boost::system::errc::operation_canceled); log.debug("socket(%p) local[%s] remote[%s] disconnect %s", this, string(local_ipport(*this)), string(remote_ipport(*this)), string(ec)); // The timer was set by socket::disconnect() and may need to be canceled. if(!timedout) cancel_timeout(); // This ignores EOF and turns it into a success to alleviate user concern. if(ec.category() == asio::error::get_misc_category()) if(ec.value() == asio::error::eof) ec = error_code{}; sd.close(); call_user(callback, ec); } catch(const boost::system::system_error &e) { log.error("socket(%p) disconnect: %s", this, e.what()); assert(0); call_user(callback, e.code()); } catch(const std::exception &e) { log.critical("socket(%p) disconnect: %s", this, e.what()); assert(0); call_user(callback, ec); } void ircd::net::socket::handle_handshake(std::weak_ptr wp, eptr_handler callback, const error_code &ec) noexcept try { const life_guard s{wp}; assert(!timedout || ec == boost::system::errc::operation_canceled); log.debug("socket(%p) local[%s] remote[%s] handshake %s", this, string(local_ipport(*this)), string(remote_ipport(*this)), string(ec)); // The timer was set by socket::handshake() and may need to be canceled. if(!timedout) cancel_timeout(); // This is the end of the asynchronous call chain; the user is called // back with or without error here. call_user(callback, ec); } catch(const boost::system::system_error &e) { log.error("socket(%p) after handshake: %s", this, e.what()); assert(0); call_user(callback, e.code()); } catch(const std::bad_weak_ptr &e) { log.warning("socket(%p) belated callback to handle_handshake... (%s)", this, e.what()); assert(0); call_user(callback, ec); } catch(const std::exception &e) { log.critical("socket(%p) handle_handshake: %s", this, e.what()); assert(0); call_user(callback, ec); } bool ircd::net::socket::handle_verify(const bool valid, asio::ssl::verify_context &vc, const open_opts &opts) noexcept try { // `valid` indicates whether or not there's an anomaly with the // certificate; if so, it is usually enumerated by the `switch()` // statement below. If `valid` is false, this function can return // true to continue but it appears this function will be called a // second time with `valid=true`. // // TODO: XXX: This behavior must be confirmed since we return true // TODO: XXX: early on recoverable errors and skip other checks // TODO: XXX: expecting a second call.. // // The user can set this option to bypass verification. if(!opts.verify_certificate) return true; // X509_STORE_CTX & assert(vc.native_handle()); const auto &stctx{*vc.native_handle()}; const auto &cert{openssl::current_cert(stctx)}; const auto reject{[&stctx, &opts] { throw inauthentic { "%s #%ld: %s", common_name(opts), openssl::get_error(stctx), openssl::get_error_string(stctx) }; }}; if(!valid) { thread_local char buf[4_KiB]; const critical_assertion ca; log.warning("verify[%s]: %s :%s", common_name(opts), openssl::get_error_string(stctx), openssl::print_subject(buf, cert)); } if(!valid) switch(openssl::get_error(stctx)) { case X509_V_OK: assert(0); default: reject(); break; case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: assert(openssl::get_error_depth(stctx) == 0); if(opts.allow_self_signed) return true; reject(); break; case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: if(opts.allow_self_chain) return true; reject(); break; } if(opts.verify_common_name) { if(unlikely(empty(common_name(opts)))) throw inauthentic { "No common name specified in connection options" }; //TODO: this object makes an std::string boost::asio::ssl::rfc2818_verification verifier { std::string(common_name(opts)) }; if(!verifier(true, vc)) { thread_local char buf[256]; const critical_assertion ca; throw inauthentic { "/CN=%s does not match target host %s :%s", openssl::subject_common_name(buf, cert), common_name(opts), openssl::get_error_string(stctx) }; } } { thread_local char buf[4_KiB]; const critical_assertion ca; log.debug("verify[%s]: %s", common_name(opts), openssl::print_subject(buf, cert)); } return true; } catch(const inauthentic &e) { log.error("Certificate rejected: %s", e.what()); return false; } catch(const std::exception &e) { log.critical("Certificate error: %s", e.what()); return false; } void ircd::net::socket::call_user(const ec_handler &callback, const error_code &ec) noexcept try { callback(ec); } catch(const std::exception &e) { log.critical("socket(%p) async handler: unhandled exception: %s", this, e.what()); } void ircd::net::socket::call_user(const eptr_handler &callback, const error_code &ec) noexcept try { callback(make_eptr(ec)); } catch(const std::exception &e) { log.critical("socket(%p) async handler: unhandled exception: %s", this, e.what()); } boost::asio::ip::tcp::endpoint ircd::net::socket::local() const { return sd.local_endpoint(); } boost::asio::ip::tcp::endpoint ircd::net::socket::remote() const { return sd.remote_endpoint(); } ircd::milliseconds ircd::net::socket::cancel_timeout() noexcept { const auto ret { timer.expires_from_now() }; boost::system::error_code ec; timer.cancel(ec); assert(!ec); return duration_cast(ret); } void ircd::net::socket::set_timeout(const milliseconds &t) { set_timeout(t, nullptr); } void ircd::net::socket::set_timeout(const milliseconds &t, ec_handler callback) { cancel_timeout(); timedout = false; if(t < milliseconds(0)) return; auto handler { std::bind(&socket::handle_timeout, this, weak_from(*this), std::move(callback), ph::_1) }; timer.expires_from_now(t); timer.async_wait(std::move(handler)); } bool ircd::net::socket::has_timeout() const noexcept { return !timedout && timer.expires_from_now() != milliseconds{0}; } ircd::net::socket::operator SSL &() { assert(ssl.native_handle()); return *ssl.native_handle(); } ircd::net::socket::operator const SSL &() const { using type = typename std::remove_const::type; auto &ssl(const_cast(this->ssl)); assert(ssl.native_handle()); return *ssl.native_handle(); } // // socket::scope_timeout // ircd::net::socket::scope_timeout::scope_timeout(socket &socket, const milliseconds &timeout) :s{&socket} { socket.set_timeout(timeout); } ircd::net::socket::scope_timeout::scope_timeout(socket &socket, const milliseconds &timeout, socket::ec_handler handler) :s{&socket} { socket.set_timeout(timeout, std::move(handler)); } ircd::net::socket::scope_timeout::scope_timeout(scope_timeout &&other) noexcept :s{std::move(other.s)} { other.s = nullptr; } ircd::net::socket::scope_timeout & ircd::net::socket::scope_timeout::operator=(scope_timeout &&other) noexcept { this->~scope_timeout(); s = std::move(other.s); return *this; } ircd::net::socket::scope_timeout::~scope_timeout() noexcept { cancel(); } bool ircd::net::socket::scope_timeout::cancel() noexcept try { if(!this->s) return false; auto *const s{this->s}; this->s = nullptr; s->cancel_timeout(); return true; } catch(const std::exception &e) { log.error("socket(%p) scope_timeout::cancel: %s", (const void *)s, e.what()); return false; } bool ircd::net::socket::scope_timeout::release() { const auto s{this->s}; this->s = nullptr; return s != nullptr; } /////////////////////////////////////////////////////////////////////////////// // // net/resolve.h // namespace ircd::net { struct resolver extern *resolver; // Internal resolve base (requires boost syms) using resolve_callback = std::function; void _resolve(const hostport &, ip::tcp::resolver::flags, resolve_callback); void _resolve(const ipport &, resolve_callback); } /// Internal resolver service struct ircd::net::resolver { ip::tcp::resolver gai; // Old getaddrinfo() being removed ip::udp::socket ns; // A pollable activity object std::vector server; // The list of active servers size_t server_next{0}; // Round-robin state to hit servers bool reply_set {false}; ip::udp::endpoint reply_from; uint8_t reply[64_KiB]; void handle(const error_code &ec, const size_t &) noexcept; void set_handle(); void send_query(const ip::udp::endpoint &, const const_buffer &); void send_query(const const_buffer &); resolver(); ~resolver() noexcept; }; /// Singleton instance of the public interface ircd::net::resolve decltype(ircd::net::resolve) ircd::net::resolve {}; /// Singleton instance of the internal boost resolver wrapper. decltype(ircd::net::resolver) ircd::net::resolver {}; ircd::net::resolver::resolver() :gai{*ircd::ios} ,ns{*ircd::ios} { ns.open(ip::udp::v4()); ns.non_blocking(true); set_handle(); } ircd::net::resolver::~resolver() noexcept { gai.cancel(); ns.close(); } void ircd::net::resolver::send_query(const const_buffer &buf) { assert(!server.empty()); ++server_next %= server.size(); const auto &ep{server.at(server_next)}; send_query(ep, buf); } void ircd::net::resolver::send_query(const ip::udp::endpoint &ep, const const_buffer &buf) { assert(ns.non_blocking()); ns.send_to(asio::const_buffers_1(buf), ep); } void ircd::net::resolver::set_handle() { auto handler { std::bind(&resolver::handle, this, ph::_1, ph::_2) }; assert(!reply_set); reply_set = true; const asio::mutable_buffers_1 bufs{reply, sizeof(reply)}; ns.async_receive_from(bufs, reply_from, std::move(handler)); } void ircd::net::resolver::handle(const error_code &ec, const size_t &bytes) noexcept try { using namespace boost::system::errc; switch(ec.value()) { case operation_canceled: return; case success: reply_set = false; set_handle(); break; default: throw boost::system::system_error(ec); } if(bytes < sizeof(rfc1035::header)) throw rfc1035::error { "Got back %zu bytes < rfc1035 %zu byte header", bytes, sizeof(rfc1035::header) }; const rfc1035::header &header { *reinterpret_cast(reply) }; if(header.qr != 1) throw rfc1035::error { "Response header is marked as 'Query' and not 'Response'" }; const const_raw_buffer body { reply + sizeof(header), bytes - sizeof(header) }; std::cout << "answer: " << header.ancount << std::endl; if(!header.ancount) return; const rfc1035::answer answer { const_buffer{body} }; std::cout << "answer [" << answer.name << "] " << answer.rdlength << " " << answer.qtype << " " << answer.qclass << " " << answer.ttl << std::endl; net::ipport ipp(ip::address_v4(*(const uint32_t *)data(answer.rdata)).to_uint(), 0); std::cout << ipp << std::endl; } catch(const std::exception &e) { log.critical("resolver::handle_reply(): %s", e.what()); throw; } /// Resolve a numerical address to a hostname string. This is a PTR record /// query or 'reverse DNS' lookup. ircd::ctx::future ircd::net::resolve::operator()(const ipport &ipport) { ctx::promise p; ctx::future ret{p}; operator()(ipport, [p(std::move(p))] (std::exception_ptr eptr, std::string ptr) mutable { if(eptr) p.set_exception(std::move(eptr)); else p.set_value(ptr); }); return ret; } /// Resolve a hostname (with service name/portnum) to a numerical address. This /// is an A or AAAA query (with automatic SRV query) returning a single result. ircd::ctx::future ircd::net::resolve::operator()(const hostport &hostport) { ctx::promise p; ctx::future ret{p}; operator()(hostport, [p(std::move(p))] (std::exception_ptr eptr, const ipport &ip) mutable { if(eptr) p.set_exception(std::move(eptr)); else p.set_value(ip); }); return ret; } /// Lower-level PTR query (i.e "reverse DNS") with asynchronous callback /// interface. void ircd::net::resolve::operator()(const ipport &ipport, callback_reverse callback) { _resolve(ipport, [callback(std::move(callback))] (std::exception_ptr eptr, ip::tcp::resolver::results_type results) { if(eptr) return callback(std::move(eptr), {}); if(results.empty()) return callback({}, {}); assert(results.size() <= 1); const auto &result(*begin(results)); callback({}, result.host_name()); }); } /// Lower-level A or AAAA query (with automatic SRV query) with asynchronous /// callback interface. This returns only one result. void ircd::net::resolve::operator()(const hostport &hostport, callback_one callback) { static const ip::tcp::resolver::flags flags{}; _resolve(hostport, flags, [callback(std::move(callback))] (std::exception_ptr eptr, ip::tcp::resolver::results_type results) { if(eptr) return callback(std::move(eptr), {}); if(results.empty()) return callback(std::make_exception_ptr(nxdomain{}), {}); const auto &result(*begin(results)); callback(std::move(eptr), make_ipport(result)); }); } /// Lower-level A+AAAA query (with automatic SRV query). This returns a vector /// of all results in the callback. void ircd::net::resolve::operator()(const hostport &hostport, callback_many callback) { static const ip::tcp::resolver::flags flags{}; _resolve(hostport, flags, [callback(std::move(callback))] (std::exception_ptr eptr, ip::tcp::resolver::results_type results) { if(eptr) return callback(std::move(eptr), {}); std::vector vector(results.size()); std::transform(begin(results), end(results), begin(vector), [] (const auto &entry) { return make_ipport(entry.endpoint()); }); callback(std::move(eptr), std::move(vector)); }); } /// Internal A/AAAA record resolver function void ircd::net::_resolve(const hostport &hostport, ip::tcp::resolver::flags flags, resolve_callback callback) { // Trivial host string const string_view &host { hostport.host }; // Determine if the port is a string or requires a lex_cast to one. char portbuf[8]; const string_view &port { hostport.portnum? lex_cast(hostport.portnum, portbuf) : hostport.port }; // Determine if the port is numeric and hint to avoid name lookup if so. if(hostport.portnum || ctype(hostport.port) == -1) flags |= ip::tcp::resolver::numeric_service; // This base handler will provide exception guarantees for the entire stack. // It may invoke callback twice in the case when callback throws unhandled, // but the latter invocation will always have an the eptr set. assert(bool(ircd::net::resolver)); resolver->gai.async_resolve(host, port, flags, [callback(std::move(callback))] (const error_code &ec, ip::tcp::resolver::results_type results) noexcept { if(ec) { callback(std::make_exception_ptr(boost::system::system_error{ec}), std::move(results)); } else try { callback({}, std::move(results)); } catch(...) { callback(std::make_exception_ptr(std::current_exception()), {}); } }); } /// Internal PTR record resolver function void ircd::net::_resolve(const ipport &ipport, resolve_callback callback) { assert(bool(ircd::net::resolver)); resolver->gai.async_resolve(make_endpoint(ipport), [callback(std::move(callback))] (const error_code &ec, ip::tcp::resolver::results_type results) noexcept { if(ec) { callback(std::make_exception_ptr(boost::system::system_error{ec}), std::move(results)); } else try { callback({}, std::move(results)); } catch(...) { callback(std::make_exception_ptr(std::current_exception()), {}); } }); } /////////////////////////////////////////////////////////////////////////////// // // net/remote.h // std::ostream & ircd::net::operator<<(std::ostream &s, const remote &t) { thread_local char buf[256]; const critical_assertion ca; s << string(buf, t); return s; } ircd::string_view ircd::net::string(const mutable_buffer &buf, const remote &remote) { const auto &ipp { static_cast(remote) }; if(!ipp && !remote.hostname) { const auto len{strlcpy(data(buf), "0.0.0.0", size(buf))}; return { data(buf), size_t(len) }; } else if(!ipp) { const auto len{strlcpy(data(buf), remote.hostname, size(buf))}; return { data(buf), size_t(len) }; } else { const auto len{fmt::sprintf(buf, "%s => %s", remote.hostname, string(ipp))}; return { data(buf), size_t(len) }; } } /////////////////////////////////////////////////////////////////////////////// // // net/ipport.h // std::ostream & ircd::net::operator<<(std::ostream &s, const ipport &t) { thread_local char buf[256]; const critical_assertion ca; s << string(buf, t); return s; } ircd::string_view ircd::net::string(const mutable_buffer &buf, const uint32_t &ip) { const auto len { ip::address_v4{ip}.to_string().copy(data(buf), size(buf)) }; return { data(buf), size_t(len) }; } ircd::string_view ircd::net::string(const mutable_buffer &buf, const uint128_t &ip) { const auto &pun { reinterpret_cast(ip) }; const auto &punpun { reinterpret_cast &>(pun) }; const auto len { ip::address_v6{punpun}.to_string().copy(data(buf), size(buf)) }; return { data(buf), size_t(len) }; } ircd::string_view ircd::net::string(const mutable_buffer &buf, const ipport &ipp) { const auto len { is_v4(ipp)? fmt::sprintf(buf, "%s:%u", ip::address_v4{host4(ipp)}.to_string(), port(ipp)): is_v6(ipp)? fmt::sprintf(buf, "%s:%u", ip::address_v6{std::get(ipp)}.to_string(), port(ipp)): 0 }; return { data(buf), size_t(len) }; } ircd::net::ipport ircd::net::make_ipport(const boost::asio::ip::tcp::endpoint &ep) { return ipport { ep.address(), ep.port() }; } boost::asio::ip::tcp::endpoint ircd::net::make_endpoint(const ipport &ipport) { return { is_v6(ipport)? ip::tcp::endpoint { asio::ip::address_v6 { std::get(ipport) }, port(ipport) } : ip::tcp::endpoint { asio::ip::address_v4 { host4(ipport) }, port(ipport) }, }; } // // ipport // ircd::net::ipport::ipport(const string_view &ip, const string_view &port) :ipport { ip, lex_cast(port) } { } ircd::net::ipport::ipport(const string_view &ip, const uint16_t &port) :ipport { asio::ip::make_address(ip), port } { } ircd::net::ipport::ipport(const boost::asio::ip::address &address, const uint16_t &port) { std::get(*this) = address.is_v6(); std::get(*this) = port; if(is_v6(*this)) { std::get(*this) = address.to_v6().to_bytes(); std::reverse(std::get(*this).begin(), std::get(*this).end()); } else host4(*this) = address.to_v4().to_ulong(); } /////////////////////////////////////////////////////////////////////////////// // // net/hostport.h // std::ostream & ircd::net::operator<<(std::ostream &s, const hostport &t) { thread_local char buf[256]; const critical_assertion ca; s << string(buf, t); return s; } ircd::string_view ircd::net::string(const mutable_buffer &buf, const hostport &hp) { const auto len { fmt::sprintf { buf, "%s:%u", host(hp), port(hp) } }; return { data(buf), size_t(len) }; } /////////////////////////////////////////////////////////////////////////////// // // net/asio.h // std::string ircd::net::string(const ip::address &addr) { return addr.to_string(); } std::string ircd::net::string(const ip::tcp::endpoint &ep) { std::string ret(128, char{}); const auto addr{string(net::addr(ep))}; const auto data{const_cast(ret.data())}; ret.resize(snprintf(data, ret.size(), "%s:%u", addr.c_str(), port(ep))); return ret; } std::string ircd::net::host(const ip::tcp::endpoint &ep) { return string(addr(ep)); } boost::asio::ip::address ircd::net::addr(const ip::tcp::endpoint &ep) { return ep.address(); } uint16_t ircd::net::port(const ip::tcp::endpoint &ep) { return ep.port(); } /////////////////////////////////////////////////////////////////////////////// // // asio.h // std::exception_ptr ircd::make_eptr(const boost::system::error_code &ec) { return bool(ec)? std::make_exception_ptr(boost::system::system_error(ec)): std::exception_ptr{}; } std::string ircd::string(const boost::system::system_error &e) { return string(e.code()); } std::string ircd::string(const boost::system::error_code &ec) { std::string ret(128, char{}); ret.resize(string(mutable_buffer{ret}, ec).size()); return ret; } ircd::string_view ircd::string(const mutable_buffer &buf, const boost::system::system_error &e) { return string(buf, e.code()); } ircd::string_view ircd::string(const mutable_buffer &buf, const boost::system::error_code &ec) { const auto len { fmt::sprintf { buf, "%s: %s", ec.category().name(), ec.message() } }; return { data(buf), size_t(len) }; } /////////////////////////////////////////////////////////////////////////////// // // buffer.h - provide definition for the null buffers and asio conversion // const ircd::buffer::mutable_buffer ircd::buffer::null_buffer { nullptr, nullptr }; const ircd::ilist ircd::buffer::null_buffers {{ null_buffer }}; ircd::buffer::mutable_buffer::operator boost::asio::mutable_buffer() const { return boost::asio::mutable_buffer { data(*this), size(*this) }; } ircd::buffer::const_buffer::operator boost::asio::const_buffer() const { return boost::asio::const_buffer { data(*this), size(*this) }; } ircd::buffer::mutable_raw_buffer::operator boost::asio::mutable_buffer() const { return boost::asio::mutable_buffer { data(*this), size(*this) }; } ircd::buffer::const_raw_buffer::operator boost::asio::const_buffer() const { return boost::asio::const_buffer { data(*this), size(*this) }; } /////////////////////////////////////////////////////////////////////////////// // // init // /// Network subsystem initialization ircd::net::init::init() { assert(ircd::ios); assert(!net::resolver); net::resolver = new struct resolver(); sslv23_client.set_verify_mode(asio::ssl::verify_peer); sslv23_client.set_default_verify_paths(); } /// Network subsystem shutdown ircd::net::init::~init() { delete net::resolver; net::resolver = nullptr; }