// Matrix Construct // // Copyright (C) Matrix Construct Developers, Authors & Contributors // Copyright (C) 2016-2018 Jason Volk // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice is present in all copies. The // full license for this software is available in the LICENSE file. #include #include /// Internal context implementation /// struct ircd::ctx::ctx :instance_list { using error_code = boost::system::error_code; static uint64_t id_ctr; // monotonic uint64_t id; // Unique runtime ID const char *name; // User given name (optional) context::flags flags; // User given flags boost::asio::io_service::strand strand; // mutex/serializer boost::asio::steady_timer alarm; // acting semaphore (64B) boost::asio::yield_context *yc; // boost interface uintptr_t stack_base; // assigned when spawned size_t stack_max; // User given stack size int64_t notes; // norm: 0 = asleep; 1 = awake; inc by others; dec by self continuation *cont; // valid when asleep; invalid when awake ctx *adjoindre; // context waiting for this to join() microseconds awake; // monotonic counter list::node node; // node for ctx::list bool started() const { return stack_base != 0; } bool finished() const { return started() && yc == nullptr; } bool interruption_point(std::nothrow_t); // Check for interrupt (and clear flag) void interruption_point(); // throws interrupted bool wait(); // yield context to ios queue (returns on this resume) void jump(); // jump to context directly (returns on your resume) void wake(); // jump to context by queueing with ios (use note()) bool note(); // properly request wake() void operator()(boost::asio::yield_context, const std::function) noexcept; ctx(const char *const &name = "", const size_t &stack_max = DEFAULT_STACK_SIZE, const context::flags &flags = (context::flags)0, boost::asio::io_service *const &ios = ircd::ios); ctx(ctx &&) noexcept = delete; ctx(const ctx &) = delete; }; /// Instance list linkage for the list of all ctx instances. template<> decltype(ircd::util::instance_list::list) ircd::util::instance_list::list {}; /// Public interface linkage for the list of all ctx instances decltype(ircd::ctx::ctxs) ircd::ctx::ctxs { ctx::ctx::list }; /// Monotonic ctx id counter state. This counter is incremented for each /// newly created context. decltype(ircd::ctx::ctx::id_ctr) ircd::ctx::ctx::id_ctr { 0 }; ircd::ctx::ctx::ctx(const char *const &name, const size_t &stack_max, const context::flags &flags, boost::asio::io_service *const &ios) :id{++id_ctr} ,name{name} ,flags{flags} ,strand{*ios} ,alarm{*ios} ,yc{nullptr} ,stack_base{0} ,stack_max{stack_max} ,notes{1} ,cont{nullptr} ,adjoindre{nullptr} ,awake{0us} { } /// Base frame for a context. /// /// This function is the first thing executed on the new context's stack /// and calls the user's function. void ircd::ctx::ctx::operator()(boost::asio::yield_context yc, const std::function func) noexcept try { this->yc = &yc; notes = 1; stack_base = uintptr_t(__builtin_frame_address(0)); ircd::ctx::current = this; mark(prof::event::CUR_ENTER); const unwind atexit([this] { mark(prof::event::CUR_LEAVE); if(adjoindre) notify(*adjoindre); ircd::ctx::current = nullptr; this->yc = nullptr; if(flags & context::DETACH) delete this; }); // Check for a precocious interrupt if(unlikely(flags & context::INTERRUPTED)) return; if(likely(bool(func))) func(); } catch(const std::exception &e) { log::critical { "ctx(%p '%s' #%u): unhandled: %s", current, name, id, e.what() }; // Preserving the stacktrace from the throw point here is hopeless. // We can terminate for developer nuisance but we will never know // where this exception came from and where it is going. Bottom line // is that #ifdef'ing away this handler or rethrowing isn't as useful as // handling the exception here with a log message and calling it a day. return; } /// Direct context switch to this context. /// /// This currently doesn't work yet because the suspension state of this /// context has to be ready to be jumped to and that isn't implemented yet. void ircd::ctx::ctx::jump() { assert(this->yc); assert(current != this); // can't jump to self auto &yc(*this->yc); auto &target(*yc.coro_.lock()); // Jump from the currently running context (source) to *this (target) // with continuation of source after target { current->notes = 0; // Unconditionally cleared here const continuation continuation{current}; target(); } assert(current != this); assert(current->notes == 1); // notes = 1; set by continuation dtor on wakeup interruption_point(); } /// Yield (suspend) this context until notified. /// /// This context must be currently running otherwise bad things. Returns false /// if the context was notified before actually suspending; the note is then /// considered handled an another attempt to `wait()` can be made. Returns true /// if the context suspended and was notified. When a context wakes up the /// note counter is reset. bool ircd::ctx::ctx::wait() { namespace errc = boost::system::errc; assert(this->yc); assert(current == this); if(--notes > 0) return false; const auto interruption{[this] (ctx *const &interruptor) noexcept { wake(); }}; boost::system::error_code ec; alarm.async_wait(boost::asio::yield_context{to_asio{interruption}}[ec]); assert(ec == errc::operation_canceled || ec == errc::success); assert(current == this); assert(notes == 1); // notes = 1; set by continuation dtor on wakeup interruption_point(); return true; } /// Notifies this context to resume (wake up from waiting). /// /// Returns true if this note was the first note received by this context /// while it's been suspended or false if it's already been notified. bool ircd::ctx::ctx::note() { if(notes++ > 0) return false; wake(); return true; } /// Wakes a context without a note (internal) void ircd::ctx::ctx::wake() try { alarm.cancel(); } catch(const boost::system::system_error &e) { log::error { "ctx::wake(%p): %s", this, e.what() }; } /// Throws if this context has been flagged for interruption and clears /// the flag. void ircd::ctx::ctx::interruption_point() { if(unlikely(interruption_point(std::nothrow))) throw interrupted("ctx(%p) '%s'", (const void *)this, name); } /// Returns true if this context has been flagged for interruption and /// clears the flag. bool ircd::ctx::ctx::interruption_point(std::nothrow_t) { // Interruption shouldn't be used for normal operation, // so please eat this branch misprediction. if(unlikely(flags & context::INTERRUPTED)) { mark(prof::event::CUR_INTERRUPT); flags &= ~context::INTERRUPTED; return true; } else return false; } /////////////////////////////////////////////////////////////////////////////// // // ctx/ctx.h // /// Yield to context `ctx`. /// /// void ircd::ctx::yield(ctx &ctx) { assert(current); //ctx.jump(); // !!! TODO !!! // XXX: We can't jump directly to a context if it's waiting on its alarm, and // we don't know whether it's waiting on its alarm. We can add another flag to // inform us of that, but most contexts are usually waiting on their alarm anyway. // // Perhaps a better way to do this would be to centralize the alarms into a single // context with the sole job of waiting on a single alarm. Then it can schedule // things allowing for more direct jumps until all work is complete. // !!! TODO !!! notify(ctx); } /// Notifies `ctx` to wake up from another std::thread void ircd::ctx::notify(ctx &ctx, threadsafe_t) { signal(ctx, [&ctx] { notify(ctx); }); } /// Notifies `ctx` to wake up. This will enqueue the resumption, not jump /// directly to `ctx`. bool ircd::ctx::notify(ctx &ctx) { return ctx.note(); } /// Executes `func` sometime between executions of `ctx` with thread-safety /// so `func` and `ctx` are never executed concurrently no matter how many /// threads the io_service has available to execute events on. void ircd::ctx::signal(ctx &ctx, std::function func) { ctx.strand.post(std::move(func)); } /// Marks `ctx` for interruption and enqueues it for resumption to receive the /// interrupt which will be an exception coming out of the point where the /// `ctx` was yielding. void ircd::ctx::interrupt(ctx &ctx) { if(finished(ctx)) return; if(interruption(ctx)) return; ctx.flags |= context::INTERRUPTED; if(likely(&ctx != current && ctx.cont != nullptr)) ctx.cont->interrupted(current); } /// started() && !finished() && !running bool ircd::ctx::waiting(const ctx &ctx) { return started(ctx) && !finished(ctx) && !running(ctx); } /// Indicates if `ctx` is the current ctx bool ircd::ctx::running(const ctx &ctx) { return &ctx == current; } /// Indicates if `ctx` was ever jumped to bool ircd::ctx::started(const ctx &ctx) { return ctx.started(); } /// Indicates if the base frame for `ctx` returned bool ircd::ctx::finished(const ctx &ctx) { return ctx.finished(); } /// Indicates if `ctx` was interrupted; does not clear the flag bool ircd::ctx::interruption(const ctx &c) { return c.flags & context::INTERRUPTED; } /// Returns the notification count for `ctx const int64_t & ircd::ctx::notes(const ctx &ctx) { return ctx.notes; } /// Returns the developer's optional name literal for `ctx` ircd::string_view ircd::ctx::name(const ctx &ctx) { return ctx.name; } /// Returns a reference to unique ID for `ctx` (which will go away with `ctx`) const uint64_t & ircd::ctx::id(const ctx &ctx) { return ctx.id; } /////////////////////////////////////////////////////////////////////////////// // // ctx/this_ctx.h // // set by the continuation object and the base frame. __thread ircd::ctx::ctx * ircd::ctx::current; /// Yield the currently running context until `time_point` ignoring notes void ircd::ctx::this_ctx::sleep_until(const std::chrono::steady_clock::time_point &tp) { while(!wait_until(tp, std::nothrow)); } /// Yield the currently running context until notified or `time_point`. /// /// Returns true if this function returned because `time_point` was hit or /// false because this context was notified. bool ircd::ctx::this_ctx::wait_until(const std::chrono::steady_clock::time_point &tp, const std::nothrow_t &) { auto &c(cur()); c.alarm.expires_at(tp); c.wait(); // now you're yielding with portals return std::chrono::steady_clock::now() >= tp; } /// Yield the currently running context for `duration` or until notified. /// /// Returns the duration remaining if notified, or <= 0 if suspended for /// the full duration, or unchanged if no suspend ever took place. std::chrono::microseconds ircd::ctx::this_ctx::wait(const std::chrono::microseconds &duration, const std::nothrow_t &) { auto &c(cur()); c.alarm.expires_from_now(duration); c.wait(); // now you're yielding with portals const auto ret(c.alarm.expires_from_now()); // return remaining duration. // this is > 0 if notified // this is unchanged if a note prevented any wait at all return std::chrono::duration_cast(ret); } /// Yield the currently running context until notified. void ircd::ctx::this_ctx::wait() { auto &c(cur()); c.alarm.expires_at(std::chrono::steady_clock::time_point::max()); c.wait(); // now you're yielding with portals } /// Post the currently running context to the event queue and then suspend to /// allow other contexts in the queue to run. /// /// Until we have our own queue the ios queue makes no guarantees if the queue /// is FIFO or LIFO etc :-/ It is generally bad practice to use this function, /// as one should make the effort to devise a specific cooperative strategy for /// how context switching occurs rather than this coarse/brute technique. void ircd::ctx::this_ctx::yield() { bool done(false); const auto restore([&done, &me(cur())] { done = true; notify(me); }); // All spurious notifications are ignored until `done` ios->post(restore); do { wait(); } while(!done); } /// Throws interrupted if the currently running context was interrupted /// and clears the interrupt flag. void ircd::ctx::this_ctx::interruption_point() { return cur().interruption_point(); } /// Returns true if the currently running context was interrupted and clears /// the interrupt flag. bool ircd::ctx::this_ctx::interruption_requested() { return interruption(cur()); } /// Returns unique ID of currently running context const uint64_t & ircd::ctx::this_ctx::id() { static const uint64_t zero{0}; return current? id(cur()) : zero; } /// Returns optional developer-given name for currently running context ircd::string_view ircd::ctx::this_ctx::name() { static const string_view nada{"*"}; return current? name(cur()) : nada; } // // exception_handler // ircd::ctx::this_ctx::exception_handler::exception_handler() noexcept :std::exception_ptr{std::current_exception()} { assert(bool(*this)); //assert(!std::uncaught_exceptions()); __cxa_end_catch(); // We don't yet support more levels of exceptions; after ending this // catch we can't still be in another one. This doesn't apply if we're // not on any ctx currently. assert(!current || !std::current_exception()); } // // critical_assertion // namespace ircd::ctx { bool critical_asserted; } ircd::ctx::this_ctx::critical_assertion::critical_assertion() :theirs{critical_asserted} { critical_asserted = true; } ircd::ctx::this_ctx::critical_assertion::~critical_assertion() noexcept { assert(critical_asserted); critical_asserted = theirs; } /////////////////////////////////////////////////////////////////////////////// // // ctx/continuation.h // // // continuation // ircd::ctx::continuation::continuation(ctx *const &self) :self{self} { mark(prof::event::CUR_YIELD); assert(!critical_asserted); assert(self != nullptr); assert(self->notes <= 1); // Note: Construct an instance of ctx::exception_handler to enable yielding // in your catch block. // // GNU cxxabi uses a singly-linked forward list (aka the 'exception // stack') for pending exception activities. Due to this limitation we // cannot interleave _cxa_begin_catch() and __cxa_end_catch() by yielding // the ircd::ctx in an exception handler. assert(!std::current_exception()); //assert(!std::uncaught_exceptions()); self->cont = this; ircd::ctx::current = nullptr; } ircd::ctx::continuation::~continuation() noexcept { ircd::ctx::current = self; self->notes = 1; mark(prof::event::CUR_CONTINUE); // self->continuation is not null'ed here; it remains an invalid // pointer while the context is awake. } void ircd::ctx::continuation::interrupted(ctx *const &interruptor) noexcept { } ircd::ctx::continuation::operator boost::asio::yield_context &() { return *self->yc; } ircd::ctx::continuation::operator const boost::asio::yield_context &() const { return *self->yc; } // // to_asio // void ircd::ctx::to_asio::interrupted(ctx *const &interruptor) noexcept { if(handler) handler(interruptor); } /////////////////////////////////////////////////////////////////////////////// // // ctx/context.h // namespace ircd::ctx { static void spawn(ctx *const c, context::function func); } void ircd::ctx::spawn(ctx *const c, context::function func) { const boost::coroutines::attributes attrs { c->stack_max, boost::coroutines::stack_unwind }; auto bound { std::bind(&ctx::operator(), c, ph::_1, std::move(func)) }; boost::asio::spawn(c->strand, std::move(bound), attrs); } ircd::ctx::context::context(const char *const &name, const size_t &stack_sz, const flags &flags, function func) :c{std::make_unique(name, stack_sz, flags, ircd::ios)} { auto spawn { std::bind(&ircd::ctx::spawn, c.get(), std::move(func)) }; // The profiler is told about the spawn request here, not inside the closure // which is probably the same event-slice as event::CUR_ENTER and not as useful. mark(prof::event::SPAWN); // When the user passes the DETACH flag we want to release the unique_ptr // of the ctx if and only if that ctx is committed to freeing itself. Our // commitment ends at the 180 of this function. If no exception was thrown // we expect the context to be committed to entry. If the POST flag is // supplied and it gets lost in the asio queue it will not be entered, and // will not be able to free itself; that will leak. const unwind::nominal release { [this, &flags] { if(flags & context::DETACH) this->detach(); } }; if(flags & POST) { ios->post(std::move(spawn)); return; } // The current context must be reasserted if spawn returns here auto *const theirs(ircd::ctx::current); const unwind recurrent([&theirs] { ircd::ctx::current = theirs; }); if(flags & DISPATCH) ios->dispatch(std::move(spawn)); else spawn(); } ircd::ctx::context::context(const char *const &name, const size_t &stack_size, function func, const flags &flags) :context { name, stack_size, flags, std::move(func) } { } ircd::ctx::context::context(const char *const &name, const flags &flags, function func) :context { name, DEFAULT_STACK_SIZE, flags, std::move(func) } { } ircd::ctx::context::context(const char *const &name, function func, const flags &flags) :context { name, DEFAULT_STACK_SIZE, flags, std::move(func) } { } ircd::ctx::context::context(function func, const flags &flags) :context { "", DEFAULT_STACK_SIZE, flags, std::move(func) } { } ircd::ctx::context::~context() noexcept { if(!c) return; // Can't join to bare metal, only from within another context. if(current) { interrupt(); join(); } // because *this uses unique_ptr's, if we dtor the ircd::ctx from // right here and ircd::ctx hasn't been entered yet because the user // passed the POST flag, the ctx::spawn() is still sitting in the ios // queue. if(c && !started(*c)) { c->flags |= context::DETACH; c.release(); } } void ircd::ctx::context::join() { if(joined()) return; mark(prof::event::JOIN); assert(bool(c)); assert(!c->adjoindre); c->adjoindre = &cur(); // Set the target context to notify this context when it finishes wait(); mark(prof::event::JOINED); } ircd::ctx::ctx * ircd::ctx::context::detach() { assert(bool(c)); c->flags |= DETACH; return c.release(); } /////////////////////////////////////////////////////////////////////////////// // // ctx_pool.h // ircd::ctx::pool::pool(const char *const &name, const size_t &stack_size, const size_t &size) :name{name} ,stack_size{stack_size} ,running{0} ,working{0} { add(size); } ircd::ctx::pool::~pool() noexcept { del(size()); } void ircd::ctx::pool::operator()(closure closure) { queue.push_back(std::move(closure)); dock.notify(); } void ircd::ctx::pool::del(const size_t &num) { const ssize_t requested(size() - num); const size_t target(std::max(requested, ssize_t(0))); while(ctxs.size() > target) ctxs.pop_back(); } void ircd::ctx::pool::add(const size_t &num) { for(size_t i(0); i < num; ++i) ctxs.emplace_back(name, stack_size, context::POST, std::bind(&pool::main, this)); } void ircd::ctx::pool::join() { del(size()); } void ircd::ctx::pool::interrupt() { for(auto &context : ctxs) context.interrupt(); } void ircd::ctx::pool::main() noexcept try { ++running; const unwind avail([this] { --running; }); while(1) next(); } catch(const interrupted &e) { /* log::debug { "pool(%p) ctx(%p): %s", this, &cur(), e.what() }; */ } void ircd::ctx::pool::next() try { dock.wait([this] { return !queue.empty(); }); ++working; const unwind avail([this] { --working; }); const auto func(std::move(queue.front())); queue.pop_front(); func(); } catch(const interrupted &e) { throw; } catch(const std::exception &e) { log::critical { "pool(%p) ctx(%p '%s' #%u): unhandled: %s", this, current, ircd::ctx::name(cur()), ircd::ctx::id(cur()), e.what() }; } void ircd::ctx::debug_stats(const pool &pool) { log::debug { "pool '%s' (stack size: %zu) total: %zu avail: %zu queued: %zu active: %zu pending: %zu", pool.name, pool.stack_size, pool.size(), pool.avail(), pool.queued(), pool.active(), pool.pending() }; } /////////////////////////////////////////////////////////////////////////////// // // ctx_prof.h // namespace ircd::ctx::prof { time_point cur_slice_start; // Time slice state uint64_t cur_slice_rdtsc; // Time slice state void check_stack(); void check_slice(); void slice_start(); void handle_cur_continue(); void handle_cur_yield(); void handle_cur_leave(); void handle_cur_enter(); } struct ircd::ctx::prof::settings ircd::ctx::prof::settings { 0.33, // stack_usage_warning at 1/3 engineering tolerance 0.50, // stack_usage_assertion at 1/2 engineering tolerance 50ms, // slice_warning at 1/20 slices per second 0us, // slice_interrupt unused until project more mature... 0us, // slice_assertion unused; warning sufficient for now... }; #ifdef RB_DEBUG void ircd::ctx::prof::mark(const event &e) { switch(e) { case event::CUR_ENTER: handle_cur_enter(); break; case event::CUR_LEAVE: handle_cur_leave(); break; case event::CUR_YIELD: handle_cur_yield(); break; case event::CUR_CONTINUE: handle_cur_continue(); break; default: break; } } #else void ircd::ctx::prof::mark(const event &e) { } #endif void ircd::ctx::prof::handle_cur_enter() { slice_start(); } void ircd::ctx::prof::handle_cur_leave() { check_slice(); } void ircd::ctx::prof::handle_cur_yield() { check_stack(); check_slice(); } void ircd::ctx::prof::handle_cur_continue() { slice_start(); } void ircd::ctx::prof::slice_start() { cur_slice_rdtsc = __rdtsc(); cur_slice_start = steady_clock::now(); } void ircd::ctx::prof::check_slice() { const uint64_t now_rdtsc(__rdtsc()); const uint64_t rdtsc_usage(now_rdtsc - cur_slice_rdtsc); const auto now_sc(steady_clock::now()); const auto time_usage(now_sc - cur_slice_start); auto &c(cur()); c.awake += duration_cast(time_usage); if(unlikely(settings.slice_warning > 0us && time_usage >= settings.slice_warning)) { log::dwarning { "context timeslice exceeded '%s' #%lu total: %06ld$us last: %lu$ns %lu$tsc", name(c), id(c), c.awake.count(), duration_cast(time_usage).count(), rdtsc_usage }; assert(settings.slice_assertion == 0us || time_usage < settings.slice_assertion); } if(unlikely(settings.slice_interrupt > 0us && time_usage >= settings.slice_interrupt)) throw interrupted { "Time slice exceeded '%s' #%lu (last: %06ld microseconds)", name(c), id(c), duration_cast(time_usage).count() }; } void ircd::ctx::prof::check_stack() { auto &c(cur()); const double &stack_max(c.stack_max); const auto stack_usage(stack_usage_here(c)); if(unlikely(stack_usage > stack_max * settings.stack_usage_warning)) { log::dwarning { "context stack usage ctx '%s' #%lu used %zu of %zu bytes", name(c), id(c), stack_usage, c.stack_max }; assert(stack_usage < c.stack_max * settings.stack_usage_assertion); } } size_t ircd::ctx::stack_usage_here() { assert(current); return stack_usage_here(*current); } size_t ircd::ctx::stack_usage_here(const ctx &ctx) { return ctx.stack_base - uintptr_t(__builtin_frame_address(0)); } /////////////////////////////////////////////////////////////////////////////// // // ctx_ole.h // namespace ircd::ctx::ole { using closure = std::function; std::mutex mutex; std::condition_variable cond; std::deque queue; bool interruption; std::thread *thread; closure pop(); void worker() noexcept; void push(closure &&); } ircd::ctx::ole::init::init() { assert(!thread); interruption = false; } ircd::ctx::ole::init::~init() noexcept { if(!thread) return; mutex.lock(); interruption = true; cond.notify_one(); mutex.unlock(); thread->join(); delete thread; thread = nullptr; } void ircd::ctx::ole::offload(const std::function &func) { bool done(false); auto *const context(current); const auto kick([&context, &done] { done = true; notify(*context); }); std::exception_ptr eptr; auto closure([&func, &eptr, &context, &kick] () noexcept { try { func(); } catch(...) { eptr = std::current_exception(); } // To wake the context on the IRCd thread we give it the kick signal(*context, kick); }); push(std::move(closure)); do { wait(); } while(!done); if(eptr) std::rethrow_exception(eptr); } void ircd::ctx::ole::push(closure &&func) { if(unlikely(!thread)) thread = new std::thread(&worker); const std::lock_guard lock(mutex); queue.emplace_back(std::move(func)); cond.notify_one(); } void ircd::ctx::ole::worker() noexcept try { while(1) { const auto func(pop()); func(); } } catch(const interrupted &) { return; } ircd::ctx::ole::closure ircd::ctx::ole::pop() { std::unique_lock lock(mutex); cond.wait(lock, [] { if(!queue.empty()) return true; if(unlikely(interruption)) throw interrupted(); return false; }); auto c(std::move(queue.front())); queue.pop_front(); return std::move(c); } /////////////////////////////////////////////////////////////////////////////// // // ctx_list.h // void ircd::ctx::list::remove(ctx *const &c) { assert(c); if(c == head) { pop_front(); return; } if(c == tail) { pop_back(); return; } assert(next(c) && prev(c)); prev(next(c)) = prev(c); next(prev(c)) = next(c); next(c) = nullptr; prev(c) = nullptr; } ircd::ctx::ctx * ircd::ctx::list::pop_back() { const auto tail { this->tail }; if(!tail) return tail; assert(!next(tail)); if(!prev(tail)) { this->head = nullptr; this->tail = nullptr; } else { assert(next(prev(tail)) == tail); next(prev(tail)) = nullptr; this->tail = prev(tail); } prev(tail) = nullptr; next(tail) = nullptr; return tail; } ircd::ctx::ctx * ircd::ctx::list::pop_front() { const auto head { this->head }; if(!head) return head; assert(!prev(head)); if(!next(head)) { this->head = nullptr; this->tail = nullptr; } else { assert(prev(next(head)) == head); prev(next(head)) = nullptr; this->head = next(head); } prev(head) = nullptr; next(head) = nullptr; return head; } void ircd::ctx::list::push_front(ctx *const &c) { assert(next(c) == nullptr); assert(prev(c) == nullptr); if(!head) { head = c; tail = c; return; } assert(prev(head) == nullptr); prev(head) = c; next(c) = head; head = c; } void ircd::ctx::list::push_back(ctx *const &c) { assert(next(c) == nullptr); assert(prev(c) == nullptr); if(!tail) { assert(!head); head = c; tail = c; return; } assert(next(tail) == nullptr); next(tail) = c; prev(c) = tail; tail = c; } void ircd::ctx::list::rfor_each(const std::function &closure) { for(ctx *tail{this->tail}; tail; tail = prev(tail)) closure(*tail); } void ircd::ctx::list::rfor_each(const std::function &closure) const { for(const ctx *tail{this->tail}; tail; tail = prev(tail)) closure(*tail); } bool ircd::ctx::list::rfor_each(const std::function &closure) { for(ctx *tail{this->tail}; tail; tail = prev(tail)) if(!closure(*tail)) return false; return true; } bool ircd::ctx::list::rfor_each(const std::function &closure) const { for(const ctx *tail{this->tail}; tail; tail = prev(tail)) if(!closure(*tail)) return false; return true; } void ircd::ctx::list::for_each(const std::function &closure) { for(ctx *head{this->head}; head; head = next(head)) closure(*head); } void ircd::ctx::list::for_each(const std::function &closure) const { for(const ctx *head{this->head}; head; head = next(head)) closure(*head); } bool ircd::ctx::list::for_each(const std::function &closure) { for(ctx *head{this->head}; head; head = next(head)) if(!closure(*head)) return false; return true; } bool ircd::ctx::list::for_each(const std::function &closure) const { for(const ctx *head{this->head}; head; head = next(head)) if(!closure(*head)) return false; return true; } ircd::ctx::ctx *& ircd::ctx::list::prev(ctx *const &c) { assert(c); return c->node.prev; } ircd::ctx::ctx *& ircd::ctx::list::next(ctx *const &c) { assert(c); return c->node.next; } const ircd::ctx::ctx *const & ircd::ctx::list::prev(const ctx *const &c) { assert(c); const auto &node(c->node); const ctx *const &ptr(node.prev); return ptr; } const ircd::ctx::ctx *const & ircd::ctx::list::next(const ctx *const &c) { assert(c); const auto &node(c->node); const ctx *const &ptr(node.next); return ptr; } /////////////////////////////////////////////////////////////////////////////// // // ircd/ios.h // void ircd::post(std::function function) { ircd::ios->post(std::move(function)); } void ircd::dispatch(std::function function) { ircd::ios->dispatch(std::move(function)); }