// Matrix Construct // // Copyright (C) Matrix Construct Developers, Authors & Contributors // Copyright (C) 2016-2018 Jason Volk // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice is present in all copies. The // full license for this software is available in the LICENSE file. #include // // client::settings conf::item's // ircd::conf::item ircd::client::settings::max_client { { "name", "ircd.client.max_client" }, { "default", 16384L }, }; ircd::conf::item ircd::client::settings::max_client_per_peer { { "name", "ircd.client.max_client_per_peer" }, { "default", 24L }, }; ircd::conf::item ircd::client::settings::stack_size { { "name", "ircd.client.stack_size" }, { "default", ssize_t(1_MiB) }, }; ircd::conf::item ircd::client::settings::pool_size { { { "name", "ircd.client.pool_size " }, { "default", 64L }, }, [] { using client = ircd::client; client::pool.set(client::settings::pool_size); } }; /// Linkage for the default settings decltype(ircd::client::settings) ircd::client::settings {}; // // client::conf conf::item's // ircd::conf::item ircd::client::conf::async_timeout_default { { "name", "ircd.client.conf.async_timeout" }, { "default", 60L }, }; ircd::conf::item ircd::client::conf::request_timeout_default { { "name", "ircd.client.conf.request_timeout" }, { "default", 30L }, }; ircd::conf::item ircd::client::conf::header_max_size_default { { "name", "ircd.client.conf.header_max_size" }, { "default", ssize_t(8_KiB) }, }; /// Linkage for the default conf decltype(ircd::client::default_conf) ircd::client::default_conf {}; // // linkages // /// A general semaphore for the client system; used for coarse operations /// like waiting for all clients to disconnect / system shutdown et al. decltype(ircd::client::dock) ircd::client::dock; /// The pool of request contexts. When a client makes a request it does so by acquiring /// a stack from this pool. The request handling and response logic can then be written /// in a synchronous manner as if each connection had its own thread. ircd::ctx::pool ircd::client::pool { "client", size_t(settings.stack_size) }; decltype(ircd::client::ctr) ircd::client::ctr {}; // Linkage for the container of all active clients for iteration purposes. template<> decltype(ircd::util::instance_multimap::map) ircd::util::instance_multimap::map {}; // // init // ircd::client::init::init() { spawn(); } ircd::client::init::~init() noexcept { const ctx::uninterruptible::nothrow ui; terminate_all(); close_all(); wait_all(); log::debug { "All client contexts, connections, and requests are clear.", }; assert(client::map.empty()); } // // util // void ircd::client::spawn() { pool.add(size_t(settings.pool_size)); } void ircd::client::wait_all() { if(pool.active()) log::dwarning { "Waiting on %zu active of %zu client request contexts; %zu pending; %zu queued.", pool.active(), pool.size(), pool.pending(), pool.queued() }; while(!client::map.empty()) if(!dock.wait_for(seconds(2)) && !client::map.empty()) log::warning { "Waiting for %zu clients to close...", client::map.size() }; log::debug { "Joining %zu active of %zu client request contexts; %zu pending; %zu queued", pool.active(), pool.size(), pool.pending(), pool.queued() }; pool.join(); } void ircd::client::close_all() { if(!client::map.empty()) log::debug { "Closing %zu clients", client::map.size() }; auto it(begin(client::map)); while(it != end(client::map)) { auto c(shared_from(*it->second)); ++it; try { c->close(net::dc::RST, [c](const auto &e) { dock.notify_one(); }); } catch(const std::exception &e) { log::derror { "Error disconnecting client @%p: %s", c.get(), e.what() }; } } } void ircd::client::interrupt_all() { if(pool.active()) log::warning { "Interrupting %zu active of %zu client request contexts; %zu pending; %zu queued", pool.active(), pool.size(), pool.pending(), pool.queued() }; pool.interrupt(); } void ircd::client::terminate_all() { if(pool.active()) log::warning { "Terminating %zu active of %zu client request contexts; %zu pending; %zu queued", pool.active(), pool.size(), pool.pending(), pool.queued() }; pool.terminate(); } void ircd::client::create(const std::shared_ptr &sock) { const auto client { std::make_shared(sock) }; client->async(); } size_t ircd::client::count(net::ipport remote) { std::get(remote) = 0; return client::map.count(remote); } ircd::parse::read_closure ircd::read_closure(client &client) { // Returns a function the parser can call when it wants more data return [&client](char *&start, char *const &stop) { char *const got(start); read(client, start, stop); //std::cout << ">>>> " << std::distance(got, start) << std::endl; //std::cout << string_view{got, start} << std::endl; //std::cout << "----" << std::endl; }; } char * ircd::read(client &client, char *&start, char *const &stop) { assert(client.sock); auto &sock(*client.sock); const mutable_buffer buf { start, stop }; char *const base(start); start += net::read(sock, buf); return base; } ircd::ipport ircd::local(const client &client) { if(!client.sock) return {}; return net::local_ipport(*client.sock); } ircd::ipport ircd::remote(const client &client) { if(!client.sock) return {}; return net::remote_ipport(*client.sock); } // // async loop // namespace ircd { using error_code = boost::system::error_code; static bool handle_ec_default(client &, const error_code &); static bool handle_ec_timeout(client &); static bool handle_ec_short_read(client &); static bool handle_ec_eof(client &); static bool handle_ec(client &, const error_code &); static void handle_client_request(std::shared_ptr); static void handle_client_ready(std::shared_ptr, const error_code &ec); } /// This function is the basis for the client's request loop. We still use /// an asynchronous pattern until there is activity on the socket (a request) /// in which case the switch to synchronous mode is made by jumping into an /// ircd::context drawn from the request pool. When the request is finished, /// the client exits back into asynchronous mode until the next request is /// received and rinse and repeat. // /// This sequence exists to avoid any possible c10k-style limitation imposed by /// dedicating a context and its stack space to the lifetime of a connection. /// This is similar to the thread-per-request pattern before async was in vogue. /// /// This call returns immediately so we no longer block the current context and /// its stack while waiting for activity on idle connections between requests. bool ircd::client::async() { assert(bool(this->sock)); assert(bool(this->conf)); auto &sock(*this->sock); const auto &timeout { conf->async_timeout }; const net::wait_opts opts { net::ready::READ, timeout }; auto handler { std::bind(ircd::handle_client_ready, shared_from(*this), ph::_1) }; sock(opts, std::move(handler)); return true; } /// The client's socket is ready for reading. This intermediate handler /// intercepts any errors otherwise dispatches the client to the request /// pool to be married with a stack. Right here this handler is executing on /// the main stack (not in any ircd::context). /// /// The context the closure ends up getting is the next available from the /// request pool, which may not be available immediately so this handler might /// be queued for some time after this call returns. void ircd::handle_client_ready(std::shared_ptr client, const error_code &ec) { if(!handle_ec(*client, ec)) return; auto handler { std::bind(ircd::handle_client_request, std::move(client)) }; if(client::pool.avail() == 0) log::dwarning { "Client context pool exhausted. %zu requests queued.", client::pool.queued() }; client::pool(std::move(handler)); } /// A request context has been dispatched and is now handling this client. /// This function is executing on that ircd::ctx stack. client::main() will /// now be called and synchronous programming is possible. Afterward, the /// client will release this ctx and its stack and fall back to async mode /// or die. void ircd::handle_client_request(std::shared_ptr client) try { // The ircd::ctx now handling this request is referenced and accessible // in client for the duration of this handling. assert(ctx::current); assert(!client->reqctx); client->reqctx = ctx::current; const unwind reset{[&client] { assert(bool(client)); assert(client->reqctx); assert(client->reqctx == ctx::current); client->reqctx = nullptr; }}; if(!client->main()) { client->close(net::dc::SSL_NOTIFY).wait(); return; } client->async(); } catch(const std::exception &e) { log::derror { "socket(%p) client(%p) (below main) :%s", client->sock.get(), client.get(), e.what() }; } /// This error handling switch is one of two places client errors /// are handled. This handles the errors when the client is in async /// mode rather than during a request. This executes on the main/callback /// stack, not in any ircd::ctx, and must be asynchronous. /// bool ircd::handle_ec(client &client, const error_code &ec) { using namespace boost::system::errc; using boost::system::system_category; using boost::asio::error::get_ssl_category; using boost::asio::error::get_misc_category; if(unlikely(runlevel != runlevel::RUN && ec == success)) { log::dwarning { "%s refusing client request in runlevel %s", client.loghead(), reflect(runlevel) }; client.close(net::dc::RST, net::close_ignore); return false; } if(ec.category() == system_category()) switch(ec.value()) { case success: return true; case operation_canceled: return false; case timed_out: return handle_ec_timeout(client); default: return handle_ec_default(client, ec); } else if(ec.category() == get_misc_category()) switch(ec.value()) { case asio::error::eof: return handle_ec_eof(client); default: return handle_ec_default(client, ec); } else if(ec.category() == get_ssl_category()) switch(uint8_t(ec.value())) { case SSL_R_SHORT_READ: return handle_ec_short_read(client); default: return handle_ec_default(client, ec); } else return handle_ec_default(client, ec); } /// The client indicated they will not be sending the data we have been /// waiting for. The proper behavior now is to initiate a clean shutdown. bool ircd::handle_ec_eof(client &client) try { log::debug { "%s end of file", client.loghead() }; client.close(net::dc::SSL_NOTIFY, net::close_ignore); return false; } catch(const std::exception &e) { log::error { "%s end of file :%s", client.loghead(), e.what() }; return false; } /// The client terminated the connection, likely improperly, and SSL /// is informing us with an opportunity to prevent truncation attacks. /// Best behavior here is to just close the sd. bool ircd::handle_ec_short_read(client &client) try { log::dwarning { "%s short_read", client.loghead() }; client.close(net::dc::RST, net::close_ignore); return false; } catch(const std::exception &e) { log::error { "%s short_read :%s", client.loghead(), e.what() }; return false; } /// The net:: system determined the client timed out because we set a timer /// on the socket waiting for data which never arrived. The client may very /// well still be there, so the best thing to do is to attempt a clean /// disconnect. bool ircd::handle_ec_timeout(client &client) try { assert(bool(client.sock)); log::debug { "%s disconnecting after inactivity timeout", client.loghead() }; client.close(net::dc::SSL_NOTIFY, net::close_ignore); return false; } catch(const std::exception &e) { log::derror { "%s timeout :%s", client.loghead(), e.what() }; return false; } /// Unknown/untreated error. Probably not worth attempting a clean shutdown /// so a hard / immediate disconnect given instead. bool ircd::handle_ec_default(client &client, const error_code &ec) { thread_local char buf[256]; log::dwarning { "%s :%s", client.loghead(), string(buf, ec) }; client.close(net::dc::RST, net::close_ignore); return false; } // // client // ircd::client::client(std::shared_ptr sock) :instance_multimap{[&sock] () -> net::ipport { assert(bool(sock)); const auto &ep(sock->remote()); return { ep.address(), 0 }; }()} ,head_buffer { conf->header_max_size } ,sock { std::move(sock) } { assert(size(head_buffer) >= 8_KiB); } ircd::client::~client() noexcept try { //assert(!sock || !connected(*sock)); } catch(const std::exception &e) { log::critical { "socket(%p) ~client(%p): %s", sock.get(), this, e.what() }; return; } /// Client main loop. /// /// Before main(), the client had been sitting in async mode waiting for /// socket activity. Once activity with data was detected indicating a request, /// the client was dispatched to the request pool where it is paired to an /// ircd::ctx with a stack. main() is then invoked on that ircd::ctx stack. /// Nothing from the socket has been read into userspace before main(). /// /// This function parses requests off the socket in a loop until there are no /// more requests or there is a fatal error. The ctx will "block" to wait for /// more data off the socket during the middle of a request until the request /// timeout is reached. main() will not "block" to wait for more data after a /// request; it will simply `return true` which puts this client back into /// async mode and relinquishes this stack. returning false will disconnect /// the client rather than putting it back into async mode. /// /// Normal exceptions do not pass below main() therefor anything unhandled is an /// internal server error and the client is disconnected. The exception handler /// here though is executing on a request ctx stack, and we can choose to take /// advantage of that; in contrast to the handle_ec() switch which handles /// errors on the main/callback stack and must be asynchronous. /// bool ircd::client::main() try { parse::buffer pb{head_buffer}; parse::capstan pc{pb, read_closure(*this)}; do { if(!handle_request(pc)) return false; // After the request, the head and content has been read off the socket // and the capstan has advanced to the end of the content. The catch is // that reading off the socket could have read too much, bleeding into // the next request. This is rare, but pb.remove() will memmove() the // bleed back to the beginning of the head buffer for the next loop. pb.remove(); } while(pc.unparsed()); return true; } catch(const boost::system::system_error &e) { using namespace boost::system::errc; using boost::system::system_category; using boost::asio::error::get_ssl_category; using boost::asio::error::get_misc_category; log::derror { "%s error during request :%s", loghead(), e.code().message() }; const error_code &ec{e.code()}; const int &value{ec.value()}; if(ec.category() == system_category()) switch(value) { case success: assert(0); return true; case broken_pipe: case connection_reset: case not_connected: close(net::dc::RST, net::close_ignore); return false; case operation_canceled: case timed_out: return false; case bad_file_descriptor: return false; default: break; } else if(ec.category() == get_ssl_category()) switch(uint8_t(value)) { case SSL_R_SHORT_READ: close(net::dc::RST, net::close_ignore); return false; case SSL_R_PROTOCOL_IS_SHUTDOWN: close(net::dc::RST, net::close_ignore); return false; default: break; } else if(ec.category() == get_misc_category()) switch(value) { case boost::asio::error::eof: return false; default: break; } log::error { "%s (unexpected) %s: (%d) %s", loghead(), ec.category().name(), value, ec.message() }; close(net::dc::RST, net::close_ignore); return false; } catch(const ctx::interrupted &e) { log::warning { "%s Request interrupted :%s", loghead(), e.what() }; close(net::dc::SSL_NOTIFY, net::close_ignore); return false; } catch(const std::exception &e) { log::critical { "%s :%s", loghead(), e.what() }; return false; } catch(const ctx::terminated &) { close(net::dc::RST, net::close_ignore); throw; } /// Handle a single request within the client main() loop. /// /// This function returns false if the main() loop should exit /// and thus disconnect the client. It should return true in most /// cases even for lightly erroneous requests that won't affect /// the next requests on the tape. /// /// This function is timed. The timeout will prevent a client from /// sending a partial request and leave us waiting for the rest. /// As of right now this timeout extends to our handling of the /// request too. bool ircd::client::handle_request(parse::capstan &pc) try { net::scope_timeout timeout { *sock, conf->request_timeout }; // This is the first read off the wire. The headers are entirely read and // the tape is advanced. timer = ircd::timer{}; const http::request::head head{pc}; head_length = pc.parsed - data(head_buffer); content_consumed = std::min(pc.unparsed(), head.content_length); pc.parsed += content_consumed; assert(pc.parsed <= pc.read); // The resource being sought will have its own specific timeout, or none // at all. This timeout is now canceled to not conflict. Note that the // time spent so far is still being accumulated by client.timer. timeout.cancel(); log::debug { "%s HTTP %s `%s' content-length:%zu have:%zu", loghead(), head.method, head.path, head.content_length, content_consumed }; bool ret { resource_request(head) }; if(ret && iequals(head.connection, "close"_sv)) ret = false; return ret; } catch(const boost::system::system_error &e) { if(e.code().value() != boost::system::errc::operation_canceled) throw; if(!sock || sock->fini) return false; const ctx::exception_handler eh; resource::response { *this, http::REQUEST_TIMEOUT, {}, 0L, {} }; return false; } catch(const std::exception &e) { if(!sock || sock->fini) return false; log::error { "%s HTTP 500 Internal Error: %s", loghead(), e.what() }; const ctx::exception_handler eh; resource::response { *this, e.what(), "text/html; charset=utf8", http::INTERNAL_SERVER_ERROR }; return false; } bool ircd::client::resource_request(const http::request::head &head) try { const string_view content_partial { data(head_buffer) + head_length, content_consumed }; auto &resource { ircd::resource::find(head.path) }; resource(*this, head, content_partial); discard_unconsumed(head); return true; } catch(const http::error &e) { const ctx::exception_handler eh; log::derror { "%s HTTP %u %s `%s' :%s", loghead(), uint(e.code), http::status(e.code), head.uri, e.content }; resource::response { *this, e.content, "text/html; charset=utf8", e.code, e.headers }; switch(e.code) { // These codes are "unrecoverable" errors and no more HTTP can be // conducted with this tape. The client must be disconnected. case http::BAD_REQUEST: case http::REQUEST_TIMEOUT: case http::PAYLOAD_TOO_LARGE: case http::INTERNAL_SERVER_ERROR: return false; // These codes are "recoverable" and allow the next HTTP request in // a pipeline to take place. default: discard_unconsumed(head); return true; } } void ircd::client::discard_unconsumed(const http::request::head &head) { if(unlikely(!sock)) return; const size_t unconsumed { head.content_length - content_consumed }; if(!unconsumed) return; log::debug { "%s discarding %zu unconsumed of %zu bytes content...", loghead(), unconsumed, head.content_length }; content_consumed += net::discard_all(*sock, unconsumed); assert(content_consumed == head.content_length); } ircd::ctx::future ircd::client::close(const net::close_opts &opts) { return likely(sock) && !sock->fini? net::close(*sock, opts): ctx::future::already; } void ircd::client::close(const net::close_opts &opts, net::close_callback callback) { if(!sock) return; if(sock->fini) return callback({}); net::close(*sock, opts, std::move(callback)); } size_t ircd::client::write_all(const const_buffer &buf) { if(unlikely(!sock)) throw error { "No socket to client." }; return net::write_all(*sock, buf); } /// Returns a string_view to a static (tls) buffer containing common /// information used to prefix log calls for this client: i.e id, remote /// address, etc. This is meant to be used as the first argument to all log /// calls apropos this client and should not be held over a context switch /// as there is only one static buffer. ircd::string_view ircd::client::loghead() const { thread_local char buf[512]; thread_local char rembuf[128]; thread_local char locbuf[128]; return fmt::sprintf { buf, "client[%lu] local[%s] remote[%s] socket(%p)", id, string(locbuf, local(*this)), string(rembuf, remote(*this)), sock.get() }; }