// Matrix Construct // // Copyright (C) Matrix Construct Developers, Authors & Contributors // Copyright (C) 2016-2018 Jason Volk // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice is present in all copies. The // full license for this software is available in the LICENSE file. #include namespace ircd::net { ctx::dock dock; void wait_close_sockets(); } void ircd::net::wait_close_sockets() { while(socket::instances) if(!dock.wait_for(seconds(2))) log.warning("Waiting for %zu sockets to destruct", socket::instances); } /////////////////////////////////////////////////////////////////////////////// // // init // /// Network subsystem initialization ircd::net::init::init() { assert(ircd::ios); assert(!net::dns::resolver); net::dns::resolver = new struct dns::resolver(); sslv23_client.set_verify_mode(asio::ssl::verify_peer); sslv23_client.set_default_verify_paths(); } /// Network subsystem shutdown ircd::net::init::~init() { wait_close_sockets(); delete net::dns::resolver; net::dns::resolver = nullptr; } /////////////////////////////////////////////////////////////////////////////// // // net/net.h // /// Network subsystem log facility with dedicated SNOMASK. struct ircd::log::log ircd::net::log { "net", 'N' }; ircd::const_buffer ircd::net::peer_cert_der(const mutable_buffer &buf, const socket &socket) { const SSL &ssl(socket); const X509 &cert{openssl::peer_cert(ssl)}; return openssl::i2d(buf, cert); } ircd::net::ipport ircd::net::remote_ipport(const socket &socket) noexcept try { const auto &ep(socket.remote()); return make_ipport(ep); } catch(...) { return {}; } ircd::net::ipport ircd::net::local_ipport(const socket &socket) noexcept try { const auto &ep(socket.local()); return make_ipport(ep); } catch(...) { return {}; } size_t ircd::net::available(const socket &socket) noexcept { const ip::tcp::socket &sd(socket); boost::system::error_code ec; return sd.available(ec); } size_t ircd::net::readable(const socket &socket) { ip::tcp::socket &sd(const_cast(socket)); ip::tcp::socket::bytes_readable command{true}; sd.io_control(command); return command.get(); } bool ircd::net::opened(const socket &socket) noexcept try { const ip::tcp::socket &sd(socket); return sd.is_open(); } catch(...) { return false; } /////////////////////////////////////////////////////////////////////////////// // // net/write.h // void ircd::net::flush(socket &socket) { if(nodelay(socket)) return; nodelay(socket, true); nodelay(socket, false); } /// Yields ircd::ctx until all buffers are sent. /// /// This is blocking behavior; use this if the following are true: /// /// * You put a timer on the socket so if the remote slows us down the data /// will not occupy the daemon's memory for a long time. Remember, *all* of /// the data will be sitting in memory even after some of it was ack'ed by /// the remote. /// /// * You are willing to dedicate the ircd::ctx to sending all the data to /// the remote. The ircd::ctx will be yielding until everything is sent. /// size_t ircd::net::write_all(socket &socket, const vector_view &buffers) { return socket.write_all(buffers); } /// Yields ircd::ctx until at least some buffers are sent. /// /// This is blocking behavior; use this if the following are true: /// /// * You put a timer on the socket so if the remote slows us down the data /// will not occupy the daemon's memory for a long time. /// /// * You are willing to dedicate the ircd::ctx to sending the data to /// the remote. The ircd::ctx will be yielding until the kernel has at least /// some space to consume at least something from the supplied buffers. /// size_t ircd::net::write_few(socket &socket, const vector_view &buffers) { return socket.write_few(buffers); } /// Writes as much as possible until one of the following is true: /// /// * The kernel buffer for the socket is full. /// * The user buffer is exhausted. /// /// This is non-blocking behavior. No yielding will take place; no timer is /// needed. Multiple syscalls will be composed to fulfill the above points. /// size_t ircd::net::write_any(socket &socket, const vector_view &buffers) { return socket.write_any(buffers); } /// Writes one "unit" of data or less; never more. The size of that unit /// is determined by the system. Less may be written if one of the following /// is true: /// /// * The kernel buffer for the socket is full. /// * The user buffer is exhausted. /// /// If neither are true, more can be written using additional calls; /// alternatively, use other variants of write_ for that. /// /// This is non-blocking behavior. No yielding will take place; no timer is /// needed. Only one syscall will occur. /// size_t ircd::net::write_one(socket &socket, const vector_view &buffers) { return socket.write_one(buffers); } /////////////////////////////////////////////////////////////////////////////// // // net/read.h // /// Yields ircd::ctx until len bytes have been received and discarded from the /// socket. /// size_t ircd::net::discard_all(socket &socket, const size_t &len) { static char buffer[512] alignas(16); size_t remain{len}; while(remain) { const mutable_buffer mb { buffer, std::min(remain, sizeof(buffer)) }; __builtin_prefetch(data(mb), 1, 0); // 1 = write, 0 = no cache remain -= read_all(socket, mb); } return len; } /// Non-blocking discard of up to len bytes. The amount of bytes discarded /// is returned. Zero is only returned if len==0 because the EAGAIN is /// thrown. If any bytes have been discarded any EAGAIN encountered in /// this function's internal loop is not thrown, but used to exit the loop. /// size_t ircd::net::discard_any(socket &socket, const size_t &len) { static char buffer[512] alignas(16); size_t remain{len}; while(remain) try { const mutable_buffer mb { buffer, std::min(remain, sizeof(buffer)) }; __builtin_prefetch(data(mb), 1, 0); // 1 = write, 0 = no cache remain -= read_one(socket, mb); } catch(const boost::system::system_error &e) { if(e.code() == boost::system::errc::resource_unavailable_try_again) if(remain <= len) break; throw; } return len - remain; } /// Yields ircd::ctx until buffers are full. /// /// Use this only if the following are true: /// /// * You know the remote has made a guarantee to send you a specific amount /// of data. /// /// * You put a timer on the socket so that if the remote runs short this /// call doesn't hang the ircd::ctx forever, otherwise it will until cancel. /// /// * You are willing to dedicate the ircd::ctx to just this operation for /// that amount of time. /// size_t ircd::net::read_all(socket &socket, const vector_view &buffers) { return socket.read_all(buffers); } /// Yields ircd::ctx until remote has sent at least one frame. The buffers may /// be filled with any amount of data depending on what has accumulated. /// /// Use this if the following are true: /// /// * You know there is data to be read; you can do this asynchronously with /// other features of the socket. Otherwise this will hang the ircd::ctx. /// /// * You are willing to dedicate the ircd::ctx to just this operation, /// which is non-blocking if data is known to be available, but may be /// blocking if this call is made in the blind. /// size_t ircd::net::read_few(socket &socket, const vector_view &buffers) { return socket.read_few(buffers); } /// Reads as much as possible. Non-blocking behavior. /// /// This is intended for lowest-level/custom control and not preferred by /// default for most users on an ircd::ctx. /// size_t ircd::net::read_any(socket &socket, const vector_view &buffers) { return socket.read_any(buffers); } /// Reads one message or less in a single syscall. Non-blocking behavior. /// /// This is intended for lowest-level/custom control and not preferred by /// default for most users on an ircd::ctx. /// size_t ircd::net::read_one(socket &socket, const vector_view &buffers) { return socket.read_one(buffers); } /////////////////////////////////////////////////////////////////////////////// // // net/wait.h // ircd::net::wait_opts const ircd::net::wait_opts_default { }; /// Wait for socket to become "ready" using a ctx::future. ircd::ctx::future ircd::net::wait(use_future_t, socket &socket, const wait_opts &wait_opts) { ctx::promise p; ctx::future f{p}; wait(socket, wait_opts, [p(std::move(p))] (std::exception_ptr eptr) mutable { if(eptr) p.set_exception(std::move(eptr)); else p.set_value(); }); return f; } /// Wait for socket to become "ready"; yields ircd::ctx returning code. ircd::net::error_code ircd::net::wait(nothrow_t, socket &socket, const wait_opts &wait_opts) try { wait(socket, wait_opts); return {}; } catch(const boost::system::system_error &e) { return e.code(); } /// Wait for socket to become "ready"; yields ircd::ctx; throws errors. void ircd::net::wait(socket &socket, const wait_opts &wait_opts) { socket.wait(wait_opts); } /// Wait for socket to become "ready"; callback with exception_ptr void ircd::net::wait(socket &socket, const wait_opts &wait_opts, wait_callback_eptr callback) { socket.wait(wait_opts, std::move(callback)); } void ircd::net::wait(socket &socket, const wait_opts &wait_opts, wait_callback_ec callback) { socket.wait(wait_opts, std::move(callback)); } ircd::string_view ircd::net::reflect(const ready &type) { switch(type) { case ready::ANY: return "ANY"_sv; case ready::READ: return "READ"_sv; case ready::WRITE: return "WRITE"_sv; case ready::ERROR: return "ERROR"_sv; } return "????"_sv; } /////////////////////////////////////////////////////////////////////////////// // // net/close.h // /// Static instance of default close options. ircd::net::close_opts const ircd::net::close_opts_default { }; /// Static helper callback which may be passed to the callback-based overload /// of close(). This callback does nothing. ircd::net::close_callback const ircd::net::close_ignore{[] (std::exception_ptr eptr) { return; }}; ircd::ctx::future ircd::net::close(socket &socket, const close_opts &opts) { ctx::promise p; ctx::future f(p); close(socket, opts, [p(std::move(p))] (std::exception_ptr eptr) mutable { if(eptr) p.set_exception(std::move(eptr)); else p.set_value(); }); return f; } void ircd::net::close(socket &socket, const close_opts &opts, close_callback callback) { socket.disconnect(opts, std::move(callback)); } /////////////////////////////////////////////////////////////////////////////// // // net/open.h // /// Open new socket with future-based report. /// ircd::ctx::future> ircd::net::open(const open_opts &opts) { ctx::promise> p; ctx::future> f(p); auto s{std::make_shared()}; open(*s, opts, [s, p(std::move(p))] (std::exception_ptr eptr) mutable { if(eptr) p.set_exception(std::move(eptr)); else p.set_value(s); }); return f; } /// Open existing socket with callback-based report. /// std::shared_ptr ircd::net::open(const open_opts &opts, open_callback handler) { auto s{std::make_shared()}; open(*s, opts, std::move(handler)); return s; } /// Open existing socket with callback-based report. /// void ircd::net::open(socket &socket, const open_opts &opts, open_callback handler) { auto complete{[s(shared_from(socket)), handler(std::move(handler))] (std::exception_ptr eptr) { if(eptr && !s->fini) close(*s, dc::RST); handler(std::move(eptr)); }}; auto connector{[&socket, opts, complete(std::move(complete))] (std::exception_ptr eptr, const ipport &ipport) { if(eptr) return complete(std::move(eptr)); const auto ep{make_endpoint(ipport)}; socket.connect(ep, opts, std::move(complete)); }}; if(!opts.ipport) dns(opts.hostport, std::move(connector)); else connector({}, opts.ipport); } /////////////////////////////////////////////////////////////////////////////// // // net/sopts.h // /// Construct sock_opts with the current options from socket argument ircd::net::sock_opts::sock_opts(const socket &socket) :blocking{net::blocking(socket)} ,nodelay{net::nodelay(socket)} ,keepalive{net::keepalive(socket)} ,linger{net::linger(socket)} ,read_bufsz{ssize_t(net::read_bufsz(socket))} ,write_bufsz{ssize_t(net::write_bufsz(socket))} ,read_lowat{ssize_t(net::read_lowat(socket))} ,write_lowat{ssize_t(net::write_lowat(socket))} { } /// Updates the socket with provided options. Defaulted / -1'ed options are /// ignored for updating. void ircd::net::set(socket &socket, const sock_opts &opts) { if(opts.blocking != opts.IGN) net::blocking(socket, opts.blocking); if(opts.nodelay != opts.IGN) net::nodelay(socket, opts.nodelay); if(opts.keepalive != opts.IGN) net::keepalive(socket, opts.keepalive); if(opts.linger != opts.IGN) net::linger(socket, opts.linger); if(opts.read_bufsz != opts.IGN) net::read_bufsz(socket, opts.read_bufsz); if(opts.write_bufsz != opts.IGN) net::write_bufsz(socket, opts.write_bufsz); if(opts.read_lowat != opts.IGN) net::read_lowat(socket, opts.read_lowat); if(opts.write_lowat != opts.IGN) net::write_lowat(socket, opts.write_lowat); } void ircd::net::write_lowat(socket &socket, const size_t &bytes) { assert(bytes <= std::numeric_limits::max()); ip::tcp::socket::send_low_watermark option { int(bytes) }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::read_lowat(socket &socket, const size_t &bytes) { assert(bytes <= std::numeric_limits::max()); ip::tcp::socket::receive_low_watermark option { int(bytes) }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::write_bufsz(socket &socket, const size_t &bytes) { assert(bytes <= std::numeric_limits::max()); ip::tcp::socket::send_buffer_size option { int(bytes) }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::read_bufsz(socket &socket, const size_t &bytes) { assert(bytes <= std::numeric_limits::max()); ip::tcp::socket::receive_buffer_size option { int(bytes) }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::linger(socket &socket, const time_t &t) { assert(t >= std::numeric_limits::min()); assert(t <= std::numeric_limits::max()); ip::tcp::socket::linger option { t >= 0, // ON / OFF boolean t >= 0? int(t) : 0 // Uses 0 when OFF }; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::keepalive(socket &socket, const bool &b) { ip::tcp::socket::keep_alive option{b}; ip::tcp::socket &sd(socket); sd.set_option(option); } void ircd::net::nodelay(socket &socket, const bool &b) { ip::tcp::no_delay option{b}; ip::tcp::socket &sd(socket); sd.set_option(option); } /// Toggles the behavior of non-async asio calls. /// /// This option affects very little in practice and only sets a flag in /// userspace in asio, not an actual ioctl(). Specifically: /// /// * All sockets are already set by asio to FIONBIO=1 no matter what, thus /// nothing really blocks the event loop ever by default unless you try hard. /// /// * All asio::async_ and sd.async_ and ssl.async_ calls will always do what /// the synchronous/blocking alternative would have accomplished but using /// the async methodology. i.e if a buffer is full you will always wait /// asynchronously: async_write() will wait for everything, async_write_some() /// will wait for something, etc -- but there will never be true non-blocking /// _effective behavior_ from these calls. /// /// * All asio non-async calls conduct blocking by (on linux) poll()'ing the /// socket to get a real kernel-blocking operation out of it (this is the /// try-hard part). /// /// This flag only controls the behavior of the last bullet. In practice, /// in this project there is never a reason to ever set this to true, /// however, sockets do get constructed by asio in blocking mode by default /// so we mostly use this function to set it to non-blocking. /// void ircd::net::blocking(socket &socket, const bool &b) { ip::tcp::socket &sd(socket); sd.non_blocking(!b); } size_t ircd::net::write_lowat(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::send_low_watermark option{}; sd.get_option(option); return option.value(); } size_t ircd::net::read_lowat(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::receive_low_watermark option{}; sd.get_option(option); return option.value(); } size_t ircd::net::write_bufsz(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::send_buffer_size option{}; sd.get_option(option); return option.value(); } size_t ircd::net::read_bufsz(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::receive_buffer_size option{}; sd.get_option(option); return option.value(); } time_t ircd::net::linger(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::linger option; sd.get_option(option); return option.enabled()? option.timeout() : -1; } bool ircd::net::keepalive(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::socket::keep_alive option; sd.get_option(option); return option.value(); } bool ircd::net::nodelay(const socket &socket) { const ip::tcp::socket &sd(socket); ip::tcp::no_delay option; sd.get_option(option); return option.value(); } bool ircd::net::blocking(const socket &socket) { const ip::tcp::socket &sd(socket); return !sd.non_blocking(); } /////////////////////////////////////////////////////////////////////////////// // // net/listener.h // ircd::net::listener::listener(const string_view &name, const std::string &opts) :listener { name, json::object{opts} } { } ircd::net::listener::listener(const string_view &name, const json::object &opts) :acceptor { std::make_shared(name, opts) } { // Starts the first asynchronous accept. This has to be done out here after // the acceptor's shared object is constructed. acceptor->next(); } /// Cancels all pending accepts and handshakes and waits (yields ircd::ctx) /// until report. /// ircd::net::listener::~listener() noexcept { if(acceptor) acceptor->join(); } /////////////////////////////////////////////////////////////////////////////// // // net/acceptor.h // ircd::log::log ircd::net::listener::acceptor::log { "listener" }; decltype(ircd::net::listener::acceptor::timeout) ircd::net::listener::acceptor::timeout { { "name", "ircd.net.acceptor.timeout" }, { "default", 5000L }, }; ircd::net::listener::acceptor::acceptor(const string_view &name, const json::object &opts) try :name { name } ,backlog { //TODO: XXX //boost::asio::ip::tcp::socket::max_connections <-- linkage failed? std::min(opts.get("backlog", SOMAXCONN), uint(SOMAXCONN)) } ,ssl { asio::ssl::context::method::sslv23_server } ,ep { ip::address::from_string(unquote(opts.get("host", "127.0.0.1"s))), opts.get("port", 8448L) } ,a { *ircd::ios } { static const auto &max_connections { //TODO: XXX //boost::asio::ip::tcp::socket::max_connections <-- linkage failed? std::min(opts.get("max_connections", SOMAXCONN), uint(SOMAXCONN)) }; static const ip::tcp::acceptor::reuse_address reuse_address { true }; configure(opts); log.debug("%s configured listener SSL", std::string(*this)); a.open(ep.protocol()); a.set_option(reuse_address); log.debug("%s opened listener socket", std::string(*this)); a.bind(ep); log.debug("%s bound listener socket", std::string(*this)); a.listen(backlog); log.debug("%s listening (backlog: %lu, max connections: %zu)", std::string(*this), backlog, max_connections); } catch(const boost::system::system_error &e) { throw error { "listener: %s", e.what() }; } ircd::net::listener::acceptor::~acceptor() noexcept { } void ircd::net::listener::acceptor::join() noexcept try { interrupt(); joining.wait([this] { return !accepting && !handshaking; }); } catch(const std::exception &e) { log.error("acceptor(%p) join: %s", this, e.what()); } bool ircd::net::listener::acceptor::interrupt() noexcept try { a.cancel(); interrupting = true; return true; } catch(const boost::system::system_error &e) { log.error("acceptor(%p) interrupt: %s", this, string(e)); return false; } /// Sets the next asynchronous handler to start the next accept sequence. /// Each call to next() sets one handler which handles the connect for one /// socket. After the connect, an asynchronous SSL handshake handler is set /// for the socket, and next() is called again to setup for the next socket /// too. void ircd::net::listener::acceptor::next() try { auto sock(std::make_shared(ssl)); /* log.debug("%s: socket(%p) is the next socket to accept", std::string(*this), sock.get()); */ ++accepting; ip::tcp::socket &sd(*sock); a.async_accept(sd, std::bind(&acceptor::accept, this, ph::_1, sock, weak_from(*this))); } catch(const std::exception &e) { throw assertive { "%s: %s", std::string(*this), e.what() }; } /// Callback for a socket connected. This handler then invokes the /// asynchronous SSL handshake sequence. /// void ircd::net::listener::acceptor::accept(const error_code &ec, const std::shared_ptr sock, const std::weak_ptr a) noexcept try { if(unlikely(a.expired())) return; --accepting; const unwind::exceptional drop{[&sock] { if(!bool(sock)) return; error_code ec; sock->sd.close(ec); }}; assert(bool(sock)); log.debug("%s: socket(%p) accepted(%zu) %s %s", std::string(*this), sock.get(), accepting, string(remote_ipport(*sock)), string(ec)); if(!check_accept_error(ec, *sock)) return; // Toggles the behavior of non-async functions; see func comment blocking(*sock, false); static const socket::handshake_type handshake_type { socket::handshake_type::server }; auto handshake { std::bind(&acceptor::handshake, this, ph::_1, sock, a) }; ++handshaking; sock->set_timeout(milliseconds(timeout)); sock->ssl.async_handshake(handshake_type, std::move(handshake)); } catch(const ctx::interrupted &e) { log.debug("%s: acceptor interrupted socket(%p) %s", std::string(*this), sock.get(), string(ec)); joining.notify_all(); } catch(const std::exception &e) { log.error("%s: socket(%p) in accept(): %s", std::string(*this), sock.get(), e.what()); throw; } /// Error handler for the accept socket callback. This handler determines /// whether or not the handler should return or continue processing the /// result. /// bool ircd::net::listener::acceptor::check_accept_error(const error_code &ec, socket &sock) { using namespace boost::system::errc; using boost::system::system_category; if(unlikely(interrupting)) throw ctx::interrupted(); if(likely(ec == success)) { this->next(); return true; } if(ec.category() == system_category()) switch(ec.value()) { case operation_canceled: return false; default: break; } throw boost::system::system_error(ec); } void ircd::net::listener::acceptor::handshake(const error_code &ec, const std::shared_ptr sock, const std::weak_ptr a) noexcept try { if(unlikely(a.expired())) return; --handshaking; const unwind::exceptional drop{[&sock] { if(bool(sock)) close(*sock, dc::RST, close_ignore); }}; assert(bool(sock)); log.debug("socket(%p) local[%s] remote[%s] handshook(%zu) %s", sock.get(), string(local_ipport(*sock)), string(remote_ipport(*sock)), handshaking, string(ec)); check_handshake_error(ec, *sock); sock->cancel_timeout(); add_client(sock); } catch(const ctx::interrupted &e) { log.debug("%s: SSL handshake interrupted socket(%p) %s", std::string(*this), sock.get(), string(ec)); joining.notify_all(); } catch(const boost::system::system_error &e) { using namespace boost::system::errc; const auto &fac{e.code() == timed_out? log::DEBUG : log::ERROR}; log(fac, "%s: socket(%p) in handshake(): %s", std::string(*this), sock.get(), string(e)); } catch(const std::exception &e) { log.error("%s: socket(%p) in handshake(): %s", std::string(*this), sock.get(), e.what()); } /// Error handler for the SSL handshake callback. This handler determines /// whether or not the handler should return or continue processing the /// result. /// void ircd::net::listener::acceptor::check_handshake_error(const error_code &ec, socket &sock) { using boost::system::system_error; using boost::system::system_category; using namespace boost::system::errc; if(unlikely(interrupting)) throw ctx::interrupted(); if(likely(ec.category() == system_category())) switch(ec.value()) { case success: return; case operation_canceled: if(sock.timedout) throw system_error(timed_out, system_category()); else break; default: break; } throw system_error(ec); } void ircd::net::listener::acceptor::configure(const json::object &opts) { log.debug("%s preparing listener socket configuration...", std::string(*this)); ssl.set_options ( 0 //| ssl.default_workarounds //| ssl.no_tlsv1 //| ssl.no_tlsv1_1 //| ssl.no_tlsv1_2 //| ssl.no_sslv2 //| ssl.no_sslv3 //| ssl.single_dh_use ); //TODO: XXX ssl.set_password_callback([this] (const auto &size, const auto &purpose) { log.debug("%s asking for password with purpose '%s' (size: %zu)", std::string(*this), purpose, size); //XXX: TODO return "foobar"; }); if(opts.has("certificate_chain_path")) { const std::string filename { unquote(opts["certificate_chain_path"]) }; if(!fs::exists(filename)) throw error { "%s: SSL certificate chain file @ `%s' not found", std::string(*this), filename }; ssl.use_certificate_chain_file(filename); log.info("%s using certificate chain file '%s'", std::string(*this), filename); } if(opts.has("certificate_pem_path")) { const std::string filename { unquote(opts["certificate_pem_path"]) }; if(!fs::exists(filename)) throw error { "%s: SSL certificate pem file @ `%s' not found", std::string(*this), filename }; ssl.use_certificate_file(filename, asio::ssl::context::pem); log.info("%s using certificate file '%s'", std::string(*this), filename); } if(opts.has("private_key_pem_path")) { const std::string filename { unquote(opts["private_key_pem_path"]) }; if(!fs::exists(filename)) throw error { "%s: SSL private key file @ `%s' not found", std::string(*this), filename }; ssl.use_private_key_file(filename, asio::ssl::context::pem); log.info("%s using private key file '%s'", std::string(*this), filename); } if(opts.has("tmp_dh_path")) { const std::string filename { unquote(opts["tmp_dh_path"]) }; if(!fs::exists(filename)) throw error { "%s: SSL tmp dh file @ `%s' not found", std::string(*this), filename }; ssl.use_tmp_dh_file(filename); log.info("%s using tmp dh file '%s'", std::string(*this), filename); } } ircd::net::listener::acceptor::operator std::string() const { return fmt::snstringf { 256, "'%s' @ [%s]:%u", name, string(ep.address()), ep.port() }; } /////////////////////////////////////////////////////////////////////////////// // // net/socket.h // boost::asio::ssl::context ircd::net::sslv23_client { boost::asio::ssl::context::method::sslv23_client }; decltype(ircd::net::socket::count) ircd::net::socket::count {}; decltype(ircd::net::socket::instances) ircd::net::socket::instances {}; // // socket // ircd::net::socket::socket(asio::ssl::context &ssl, boost::asio::io_service *const &ios) :sd { *ios } ,ssl { this->sd, ssl } ,timer { *ios } { ++count; ++instances; } /// The dtor asserts that the socket is not open/connected requiring a /// an SSL close_notify. There's no more room for async callbacks via /// shared_ptr after this dtor. ircd::net::socket::~socket() noexcept try { if(unlikely(--instances == 0)) net::dock.notify_all(); if(unlikely(RB_DEBUG_LEVEL && opened(*this))) throw assertive { "Failed to ensure socket(%p) is disconnected from %s before dtor.", this, string(remote()) }; } catch(const std::exception &e) { log.critical("socket(%p) close: %s", this, e.what()); return; } void ircd::net::socket::connect(const endpoint &ep, const open_opts &opts, eptr_handler callback) { log.debug("socket(%p) attempting connect remote[%s] to:%ld$ms", this, string(ep), opts.connect_timeout.count()); auto connect_handler { std::bind(&socket::handle_connect, this, weak_from(*this), opts, std::move(callback), ph::_1) }; set_timeout(opts.connect_timeout); sd.async_connect(ep, std::move(connect_handler)); } void ircd::net::socket::handshake(const open_opts &opts, eptr_handler callback) { log.debug("socket(%p) local[%s] remote[%s] handshaking for '%s' to:%ld$ms", this, string(local_ipport(*this)), string(remote_ipport(*this)), common_name(opts), opts.handshake_timeout.count()); auto handshake_handler { std::bind(&socket::handle_handshake, this, weak_from(*this), std::move(callback), ph::_1) }; auto verify_handler { std::bind(&socket::handle_verify, this, ph::_1, ph::_2, opts) }; set_timeout(opts.handshake_timeout); ssl.set_verify_callback(std::move(verify_handler)); ssl.async_handshake(handshake_type::client, std::move(handshake_handler)); } void ircd::net::socket::disconnect(const close_opts &opts, eptr_handler callback) try { if(!sd.is_open()) { call_user(callback, {}); return; } log.debug("socket(%p) local[%s] remote[%s] disconnect type:%d user: in:%zu out:%zu", (const void *)this, string(local_ipport(*this)), string(remote_ipport(*this)), uint(opts.type), in.bytes, out.bytes); assert(!fini); fini = true; cancel(); if(opts.sopts) set(*this, *opts.sopts); switch(opts.type) { case dc::RST: sd.close(); break; case dc::FIN: sd.shutdown(ip::tcp::socket::shutdown_both); break; case dc::FIN_SEND: sd.shutdown(ip::tcp::socket::shutdown_send); break; case dc::FIN_RECV: sd.shutdown(ip::tcp::socket::shutdown_receive); break; case dc::SSL_NOTIFY: { auto disconnect_handler { std::bind(&socket::handle_disconnect, this, shared_from(*this), std::move(callback), ph::_1) }; set_timeout(opts.timeout); ssl.async_shutdown(std::move(disconnect_handler)); return; } } call_user(callback, {}); } catch(const boost::system::system_error &e) { call_user(callback, e.code()); } catch(const std::exception &e) { throw assertive { "socket(%p) disconnect: type: %d: %s", (const void *)this, uint(opts.type), e.what() }; } void ircd::net::socket::cancel() noexcept { cancel_timeout(); boost::system::error_code ec; sd.cancel(ec); assert(!ec); } void ircd::net::socket::wait(const wait_opts &opts, wait_callback_eptr callback) { wait(opts, [callback(std::move(callback))] (const error_code &ec) { if(likely(!ec)) return callback(std::exception_ptr{}); using boost::system::system_error; callback(std::make_exception_ptr(system_error{ec})); }); } /// Asynchronous callback when the socket is ready /// /// Overload for operator() without a timeout. see: operator() /// void ircd::net::socket::wait(const wait_opts &opts) try { const scope_timeout timeout { *this, opts.timeout }; switch(opts.type) { case ready::ERROR: sd.async_wait(wait_type::wait_error, yield_context{to_asio{}}); break; case ready::WRITE: sd.async_wait(wait_type::wait_write, yield_context{to_asio{}}); break; case ready::READ: sd.async_wait(wait_type::wait_read, yield_context{to_asio{}}); break; default: throw ircd::not_implemented{}; } } catch(const boost::system::system_error &e) { using namespace boost::system::errc; using boost::system::system_category; if(e.code() == operation_canceled && timedout) throw boost::system::system_error { timed_out, system_category() }; throw; } /// Asynchronous callback when the socket is ready /// /// This function calls back the handler when the socket is ready /// for the operation of the specified type. /// void ircd::net::socket::wait(const wait_opts &opts, wait_callback_ec callback) { set_timeout(opts.timeout); const unwind::exceptional unset{[this] { cancel_timeout(); }}; switch(opts.type) { case ready::ERROR: { auto handle { std::bind(&socket::handle_ready, this, weak_from(*this), opts.type, std::move(callback), ph::_1, 0UL) }; sd.async_wait(wait_type::wait_error, std::move(handle)); break; } case ready::WRITE: { auto handle { std::bind(&socket::handle_ready, this, weak_from(*this), opts.type, std::move(callback), ph::_1, 0UL) }; sd.async_wait(wait_type::wait_write, std::move(handle)); break; } case ready::READ: { static char buf[1] alignas(16); static const ilist bufs{buf}; __builtin_prefetch(buf, 1, 0); // 1 = write, 0 = no cache auto handle { std::bind(&socket::handle_ready, this, weak_from(*this), opts.type, std::move(callback), ph::_1, ph::_2) }; // The problem here is that waiting on the sd doesn't account for bytes // read into SSL that we didn't consume yet. If something is stuck in // those userspace buffers, the socket won't know about it and perform // the wait. ASIO should fix this by adding a ssl::stream.wait() method // which will bail out immediately in this case before passing up to the // real socket wait. if(SSL_peek(ssl.native_handle(), buf, sizeof(buf)) >= ssize_t(sizeof(buf))) { ircd::post([handle(std::move(handle))] { handle(error_code{}, 1UL); }); break; } // The problem here is that the wait operation gives ec=success on both a // socket error and when data is actually available. We then have to check // using a non-blocking peek in the handler. By doing it this way here we // just get the error in the handler's ec. sd.async_receive(bufs, sd.message_peek, std::move(handle)); //sd.async_wait(wait_type::wait_read, std::move(handle)); break; } default: throw ircd::not_implemented{}; } } void ircd::net::socket::handle_ready(const std::weak_ptr wp, const net::ready type, const ec_handler callback, error_code ec, const size_t bytes) noexcept try { using namespace boost::system::errc; using boost::system::system_category; // After life_guard is constructed it is safe to use *this in this frame. const life_guard s{wp}; if(!timedout && ec != operation_canceled && !fini) cancel_timeout(); if(timedout && ec == operation_canceled && ec.category() == system_category()) ec = { timed_out, system_category() }; if(unlikely(!ec && !sd.is_open())) ec = { bad_file_descriptor, system_category() }; if(type == ready::READ && !ec && bytes == 0) ec = { asio::error::eof, asio::error::get_misc_category() }; log.debug("socket(%p) local[%s] remote[%s] ready %s %s avail:%zu:%zu:%d", this, string(local_ipport(*this)), string(remote_ipport(*this)), reflect(type), string(ec), type == ready::READ? bytes : 0UL, type == ready::READ? available(*this) : 0UL, SSL_pending(ssl.native_handle())); call_user(callback, ec); } catch(const boost::system::system_error &e) { log.error("socket(%p) handle: %s", this, e.what()); assert(0); call_user(callback, e.code()); } catch(const std::bad_weak_ptr &e) { // This handler may still be registered with asio after the socket destructs, so // the weak_ptr will indicate that fact. However, this is never intended and is // a debug assertion which should be corrected. log.warning("socket(%p) belated callback to handler... (%s)", this, e.what()); assert(0); } catch(const std::exception &e) { log.critical("socket(%p) handle: %s", this, e.what()); assert(0); call_user(callback, ec); } void ircd::net::socket::handle_timeout(const std::weak_ptr wp, ec_handler callback, error_code ec) noexcept try { using namespace boost::system::errc; using boost::system::system_category; if(unlikely(wp.expired())) return; switch(ec.value()) { // A 'success' for this handler means there was a timeout on the socket case success: { assert(timedout == false); timedout = true; sd.cancel(); break; } // A cancelation means there was no timeout. case operation_canceled: { assert(ec.category() == system_category()); assert(timedout == false); break; } // All other errors are unexpected, logged and ignored here. default: throw assertive { "unexpected: %s\n", (const void *)this, string(ec) }; } if(callback) call_user(callback, ec); } catch(const boost::system::system_error &e) { using namespace boost::system::errc; using boost::system::system_category; const error_code &_ec{e.code()}; switch(_ec.value()) { case bad_file_descriptor: assert(ec.category() == system_category()); if(fini) break; default: assert(0); log.critical("socket(%p) handle timeout: %s", (const void *)this, string(e)); break; } if(callback) call_user(callback, _ec); } catch(const std::exception &e) { log.critical("socket(%p) handle timeout: %s", (const void *)this, e.what()); assert(0); if(callback) call_user(callback, ec); } void ircd::net::socket::handle_connect(std::weak_ptr wp, const open_opts opts, eptr_handler callback, error_code ec) noexcept try { using namespace boost::system::errc; using boost::system::system_category; const life_guard s{wp}; log.debug("socket(%p) local[%s] remote[%s] connect %s", this, string(local_ipport(*this)), string(remote_ipport(*this)), string(ec)); // The timer was set by socket::connect() and may need to be canceled. if(!timedout && ec != operation_canceled && !fini) cancel_timeout(); if(timedout && ec == operation_canceled && ec.category() == system_category()) ec = { timed_out, system_category() }; // A connect error; abort here by calling the user back with error. if(ec) return call_user(callback, ec); // Toggles the behavior of non-async functions; see func comment blocking(*this, false); // Try to set the user's socket options now; if something fails we can // invoke their callback with the error from the exception handler. if(opts.sopts) set(*this, *opts.sopts); // The user can opt out of performing the handshake here. if(!opts.handshake) return call_user(callback, ec); handshake(opts, std::move(callback)); } catch(const boost::system::system_error &e) { log.error("socket(%p) after connect: %s", this, e.what()); assert(0); call_user(callback, e.code()); } catch(const std::bad_weak_ptr &e) { log.warning("socket(%p) belated callback to handle_connect... (%s)", this, e.what()); assert(0); } catch(const std::exception &e) { log.critical("socket(%p) handle_connect: %s", this, e.what()); assert(0); call_user(callback, ec); } void ircd::net::socket::handle_disconnect(std::shared_ptr s, eptr_handler callback, error_code ec) noexcept try { using namespace boost::system::errc; using boost::system::system_category; assert(fini); if(!timedout && ec != operation_canceled) cancel_timeout(); if(timedout && ec == operation_canceled && ec.category() == system_category()) ec = { timed_out, system_category() }; log.debug("socket(%p) local[%s] remote[%s] disconnect %s", this, string(local_ipport(*this)), string(remote_ipport(*this)), string(ec)); // This ignores EOF and turns it into a success to alleviate user concern. if(ec.category() == asio::error::get_misc_category()) if(ec.value() == asio::error::eof) ec = error_code{}; sd.close(); call_user(callback, ec); } catch(const boost::system::system_error &e) { log.error("socket(%p) disconnect: %s", this, e.what()); assert(0); call_user(callback, e.code()); } catch(const std::exception &e) { log.critical("socket(%p) disconnect: %s", this, e.what()); assert(0); call_user(callback, ec); } void ircd::net::socket::handle_handshake(std::weak_ptr wp, eptr_handler callback, error_code ec) noexcept try { using namespace boost::system::errc; using boost::system::system_category; const life_guard s{wp}; if(!timedout && ec != operation_canceled && !fini) cancel_timeout(); if(timedout && ec == operation_canceled && ec.category() == system_category()) ec = { timed_out, system_category() }; log.debug("socket(%p) local[%s] remote[%s] handshake %s", this, string(local_ipport(*this)), string(remote_ipport(*this)), string(ec)); // This is the end of the asynchronous call chain; the user is called // back with or without error here. call_user(callback, ec); } catch(const boost::system::system_error &e) { log.error("socket(%p) after handshake: %s", this, e.what()); assert(0); call_user(callback, e.code()); } catch(const std::bad_weak_ptr &e) { log.warning("socket(%p) belated callback to handle_handshake... (%s)", this, e.what()); assert(0); } catch(const std::exception &e) { log.critical("socket(%p) handle_handshake: %s", this, e.what()); assert(0); call_user(callback, ec); } bool ircd::net::socket::handle_verify(const bool valid, asio::ssl::verify_context &vc, const open_opts &opts) noexcept try { // `valid` indicates whether or not there's an anomaly with the // certificate; if so, it is usually enumerated by the `switch()` // statement below. If `valid` is false, this function can return // true to continue but it appears this function will be called a // second time with `valid=true`. // // TODO: XXX: This behavior must be confirmed since we return true // TODO: XXX: early on recoverable errors and skip other checks // TODO: XXX: expecting a second call.. // // The user can set this option to bypass verification. if(!opts.verify_certificate) return true; // X509_STORE_CTX & assert(vc.native_handle()); const auto &stctx{*vc.native_handle()}; const auto &cert{openssl::current_cert(stctx)}; const auto reject{[&stctx, &opts] { throw inauthentic { "%s #%ld: %s", common_name(opts), openssl::get_error(stctx), openssl::get_error_string(stctx) }; }}; if(!valid) { thread_local char buf[4_KiB]; const critical_assertion ca; log.warning("verify[%s]: %s :%s", common_name(opts), openssl::get_error_string(stctx), openssl::print_subject(buf, cert)); } const auto err { openssl::get_error(stctx) }; if(!valid) switch(err) { case X509_V_OK: assert(0); default: reject(); break; case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: assert(openssl::get_error_depth(stctx) == 0); if(opts.allow_self_signed) return true; reject(); break; case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: if(opts.allow_self_chain) return true; reject(); break; case X509_V_ERR_CERT_HAS_EXPIRED: if(opts.allow_expired) return true; reject(); break; } const bool verify_common_name { opts.verify_common_name && (opts.verify_self_signed_common_name && err == X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT) }; if(verify_common_name) { if(unlikely(empty(common_name(opts)))) throw inauthentic { "No common name specified in connection options" }; //TODO: this object makes an std::string boost::asio::ssl::rfc2818_verification verifier { std::string(common_name(opts)) }; if(!verifier(true, vc)) { thread_local char buf[256]; const critical_assertion ca; throw inauthentic { "/CN=%s does not match target host %s :%s", openssl::subject_common_name(buf, cert), common_name(opts), openssl::get_error_string(stctx) }; } } { thread_local char buf[4_KiB]; const critical_assertion ca; log.debug("verify[%s]: %s", common_name(opts), openssl::print_subject(buf, cert)); } return true; } catch(const inauthentic &e) { log.error("Certificate rejected: %s", e.what()); return false; } catch(const std::exception &e) { log.critical("Certificate error: %s", e.what()); return false; } void ircd::net::socket::call_user(const ec_handler &callback, const error_code &ec) noexcept try { callback(ec); } catch(const std::exception &e) { log.critical("socket(%p) async handler: unhandled exception: %s", this, e.what()); close(*this, dc::RST, close_ignore); } void ircd::net::socket::call_user(const eptr_handler &callback, const error_code &ec) noexcept try { if(likely(!ec)) return callback(std::exception_ptr{}); using boost::system::system_error; callback(std::make_exception_ptr(system_error{ec})); } catch(const std::exception &e) { log.critical("socket(%p) async handler: unhandled exception: %s", this, e.what()); } ircd::milliseconds ircd::net::socket::cancel_timeout() noexcept { const auto exp { timer.expires_from_now() }; const auto ret { duration_cast(exp) }; timedout = false; boost::system::error_code ec; timer.cancel(ec); assert(!ec); assert(timedout == false); return ret; } void ircd::net::socket::set_timeout(const milliseconds &t) { set_timeout(t, nullptr); } void ircd::net::socket::set_timeout(const milliseconds &t, ec_handler callback) { cancel_timeout(); if(t < milliseconds(0)) return; auto handler { std::bind(&socket::handle_timeout, this, weak_from(*this), std::move(callback), ph::_1) }; timer.expires_from_now(t); timer.async_wait(std::move(handler)); } boost::asio::ip::tcp::endpoint ircd::net::socket::local() const { return sd.local_endpoint(); } boost::asio::ip::tcp::endpoint ircd::net::socket::remote() const { return sd.remote_endpoint(); } ircd::net::socket::operator SSL &() { assert(ssl.native_handle()); return *ssl.native_handle(); } ircd::net::socket::operator const SSL &() const { using type = typename std::remove_const::type; auto &ssl(const_cast(this->ssl)); assert(ssl.native_handle()); return *ssl.native_handle(); } // // socket::scope_timeout // ircd::net::socket::scope_timeout::scope_timeout(socket &socket, const milliseconds &timeout) :s{&socket} { socket.set_timeout(timeout); } ircd::net::socket::scope_timeout::scope_timeout(socket &socket, const milliseconds &timeout, socket::ec_handler handler) :s{&socket} { socket.set_timeout(timeout, std::move(handler)); } ircd::net::socket::scope_timeout::scope_timeout(scope_timeout &&other) noexcept :s{std::move(other.s)} { other.s = nullptr; } ircd::net::socket::scope_timeout & ircd::net::socket::scope_timeout::operator=(scope_timeout &&other) noexcept { this->~scope_timeout(); s = std::move(other.s); return *this; } ircd::net::socket::scope_timeout::~scope_timeout() noexcept { cancel(); } bool ircd::net::socket::scope_timeout::cancel() noexcept try { if(!this->s) return false; auto *const s{this->s}; this->s = nullptr; s->cancel_timeout(); return true; } catch(const std::exception &e) { log.error("socket(%p) scope_timeout::cancel: %s", (const void *)s, e.what()); return false; } bool ircd::net::socket::scope_timeout::release() { const auto s{this->s}; this->s = nullptr; return s != nullptr; } /////////////////////////////////////////////////////////////////////////////// // // net/dns.h // /// Singleton instance of the public interface ircd::net::resolve decltype(ircd::net::dns) ircd::net::dns {}; /// Singleton instance of the DNS cache decltype(ircd::net::dns::cache) ircd::net::dns::cache {}; /// Singleton instance of the internal boost resolver wrapper. decltype(ircd::net::dns::resolver) ircd::net::dns::resolver {}; /// Linkage for default opts decltype(ircd::net::dns::opts_default) ircd::net::dns::opts_default {}; decltype(ircd::net::dns::cache::clear_nxdomain) ircd::net::dns::cache::clear_nxdomain { { "name", "ircd.net.dns.cache.clear_nxdomain" }, { "default", 43200L }, }; /// Convenience composition with a single ipport callback. This is the result of /// an automatic chain of queries such as SRV and A/AAAA based on the input and /// intermediate results. void ircd::net::dns::operator()(const hostport &hostport, const opts &opts, callback_ipport_one callback) { //TODO: ip6 auto calluser{[callback(std::move(callback))] (std::exception_ptr eptr, const uint32_t &ip, const uint16_t &port) { if(eptr) return callback(std::move(eptr), {}); if(!ip) return callback(std::make_exception_ptr(net::not_found{"Host has no A record"}), {}); const ipport ipport{ip, port}; callback(std::move(eptr), ipport); }}; if(!hostport.service) return operator()(hostport, opts, [hostport, calluser(std::move(calluser))] (std::exception_ptr eptr, const rfc1035::record::A &record) { calluser(std::move(eptr), record.ip4, port(hostport)); }); operator()(hostport, opts, [this, hostport(hostport), opts(opts), calluser(std::move(calluser))] (std::exception_ptr eptr, const rfc1035::record::SRV &record) mutable { //TODO: we get NXDOMAIN and it kills the chain.. //if(eptr) // return callback(std::move(eptr), {}); if(!record.tgt.empty()) host(hostport) = record.tgt; if(record.port != 0) port(hostport) = record.port; // Have to kill the service name to not run another SRV query now. hostport.service = {}; opts.srv = {}; this->operator()(hostport, opts, [hostport, calluser(std::move(calluser))] (std::exception_ptr eptr, const rfc1035::record::A &record) { calluser(std::move(eptr), record.ip4, port(hostport)); }); }); } /// Convenience callback with a single SRV record which was selected from /// the vector with stochastic respect for weighting and priority. void ircd::net::dns::operator()(const hostport &hostport, const opts &opts, callback_SRV_one callback) { assert(bool(ircd::net::dns::resolver)); operator()(hostport, opts, [callback(std::move(callback))] (std::exception_ptr eptr, const vector_view rrs) { if(eptr) return callback(std::move(eptr), {}); //TODO: prng on weight / prio plz for(size_t i(0); i < rrs.size(); ++i) { const auto &rr{*rrs.at(i)}; if(rr.type != 33) continue; const auto &record(rr.as()); return callback(std::move(eptr), record); } return callback(std::move(eptr), {}); }); } /// Convenience callback with a single A record which was selected from /// the vector randomly. void ircd::net::dns::operator()(const hostport &hostport, const opts &opts, callback_A_one callback) { assert(bool(ircd::net::dns::resolver)); operator()(hostport, opts, [callback(std::move(callback))] (std::exception_ptr eptr, const vector_view rrs) { if(eptr) return callback(std::move(eptr), {}); //TODO: prng plz for(size_t i(0); i < rrs.size(); ++i) { const auto &rr{*rrs.at(i)}; if(rr.type != 1) continue; const auto &record(rr.as()); return callback(std::move(eptr), record); } return callback(std::move(eptr), {}); }); } /// Fundamental callback with a vector of abstract resource records. void ircd::net::dns::operator()(const hostport &hostport, const opts &opts, callback cb) { if(opts.cache_check) if(query_cache(hostport, opts, cb)) return; assert(bool(ircd::net::dns::resolver)); (*resolver)(hostport, opts, std::move(cb)); } /// This function has an opportunity to respond from the DNS cache. If it /// returns true, that indicates it responded by calling back the user and /// nothing further should be done for them. If it returns false, that /// indicates it did not respond and to proceed normally. The response can /// be of a cached successful result, or a cached error. Both will return /// true. /// bool ircd::net::dns::query_cache(const hostport &hp, const opts &opts, const callback &cb) { thread_local const rfc1035::record *record[resolver::MAX_COUNT]; std::exception_ptr eptr; size_t count{0}; //TODO: Better deduction if(hp.service || opts.srv) // deduced SRV query { thread_local char srvbuf[512]; const string_view srvhost { make_SRV_key(srvbuf, hp, opts) }; auto &map{cache.SRV}; const auto pit{map.equal_range(srvhost)}; if(pit.first == pit.second) return false; const auto &now{ircd::time()}; for(auto it(pit.first); it != pit.second; ) { const auto &rr{it->second}; // Cached entry is too old, ignore and erase if(rr.ttl < now) { it = map.erase(it); continue; } // Cached entry is a cached error, we set the eptr, but also // include the record and increment the count like normal. assert(!eptr); if(!rr.tgt) { const auto rcode{3}; //NXDomain eptr = std::make_exception_ptr(rfc1035::error { "protocol error #%u (cached) :%s", rcode, rfc1035::rcode.at(rcode) }); } record[count++] = &rr; ++it; } } else // Deduced A query (for now) { auto &map{cache.A}; const auto pit{map.equal_range(std::string{host(hp)})}; //TODO: XXX if(pit.first == pit.second) return false; const auto &now{ircd::time()}; for(auto it(pit.first); it != pit.second; ) { const auto &rr{it->second}; // Cached entry is too old, ignore and erase if(rr.ttl < now) { it = map.erase(it); continue; } // Cached entry is a cached error, we set the eptr, but also // include the record and increment the count like normal. assert(!eptr); if(!rr.ip4) { const auto rcode{3}; //NXDomain eptr = std::make_exception_ptr(rfc1035::error { "protocol error #%u (cached) :%s", rcode, rfc1035::rcode.at(rcode) }); } record[count++] = &rr; ++it; } } assert(count || !eptr); // no error if no cache response assert(!eptr || count == 1); // if error, should only be one entry. if(count) cb(std::move(eptr), vector_view(record, count)); return count; } ircd::string_view ircd::net::dns::make_SRV_key(const mutable_buffer &out, const hostport &hp, const opts &opts) { if(!opts.srv) return fmt::sprintf { out, "_%s._%s.%s", service(hp), opts.proto, host(hp) }; else return fmt::sprintf { out, "%s%s", opts.srv, host(hp) }; } /////////////////////////////////////////////////////////////////////////////// // // net/resolver.h // decltype(ircd::net::dns::resolver::timeout) ircd::net::dns::resolver::timeout { { "name", "ircd.net.dns.resolver.timeout" }, { "default", 10000L }, }; decltype(ircd::net::dns::resolver::send_rate) ircd::net::dns::resolver::send_rate { { "name", "ircd.net.dns.resolver.send_rate" }, { "default", 20L }, }; ircd::net::dns::resolver::resolver() :ns{*ircd::ios} ,timeout_context { "dnsres T", 64_KiB, std::bind(&resolver::timeout_worker, this), context::POST } ,sendq_context { "dnsres S", 64_KiB, std::bind(&resolver::sendq_worker, this), context::POST } { ns.open(ip::udp::v4()); ns.non_blocking(true); set_handle(); init_servers(); } ircd::net::dns::resolver::~resolver() noexcept { ns.close(); sendq_context.interrupt(); timeout_context.interrupt(); assert(tags.empty()); } void ircd::net::dns::resolver::sendq_worker() try { while(1) { assert(sendq.empty() || !tags.empty()); dock.wait([this] { return !sendq.empty(); }); assert(sendq.size() < 65535); assert(sendq.size() <= tags.size()); ctx::sleep(milliseconds(send_rate)); assert(!sendq.empty()); const auto &next(sendq.front()); const unwind pop{[this] { sendq.pop_front(); }}; flush(next); } } catch(const ctx::interrupted &) { return; } void ircd::net::dns::resolver::flush(const queued &next) try { auto &tag{tags.at(next.first)}; const const_buffer buf { data(next.second), size(next.second) }; send_query(buf, tag); } catch(const std::out_of_range &e) { log::error { "Queued tag id[%u] is no longer mapped", next.first }; } void ircd::net::dns::resolver::timeout_worker() try { while(1) { dock.wait([this] { return !tags.empty(); }); ctx::sleep(milliseconds(timeout)); check_timeouts(milliseconds(timeout)); } } catch(const ctx::interrupted &) { return; } void ircd::net::dns::resolver::check_timeouts(const milliseconds &timeout) { const auto cutoff { now() - timeout }; auto it(begin(tags)); while(it != end(tags)) { const auto &id(it->first); auto &tag(it->second); if(!check_timeout(id, tag, cutoff)) it = tags.erase(it); else ++it; } } bool ircd::net::dns::resolver::check_timeout(const uint16_t &id, tag &tag, const steady_point &cutoff) { if(tag.last == steady_point{}) return true; if(tag.last < cutoff) return true; //TODO: retry log.error("DNS timeout id:%u", id); const error_code ec { boost::system::errc::timed_out, boost::system::system_category() }; if(tag.cb) { using boost::system::system_error; tag.cb(std::make_exception_ptr(system_error{ec}), {}); } return false; } /// Internal resolver entry interface. void ircd::net::dns::resolver::operator()(const hostport &hostport, const opts &opts, callback callback) { auto &tag { set_tag(resolver::tag { hostport, opts, std::move(callback) }) }; // Escape trunk const unwind::exceptional untag{[this, &tag] { tags.erase(tag.id); }}; thread_local char buf[64_KiB]; submit(make_query(buf, tag), tag); } ircd::const_buffer ircd::net::dns::resolver::make_query(const mutable_buffer &buf, const tag &tag) const { //TODO: Better deduction if(tag.hp.service || tag.opts.srv) { thread_local char srvbuf[512]; const string_view srvhost { make_SRV_key(srvbuf, tag.hp, tag.opts) }; const rfc1035::question question{srvhost, "SRV"}; return rfc1035::make_query(buf, tag.id, question); } const rfc1035::question question{host(tag.hp), "A"}; return rfc1035::make_query(buf, tag.id, question); } ircd::net::dns::resolver::tag & ircd::net::dns::resolver::set_tag(tag &&tag) { while(tags.size() < 65535) { tag.id = ircd::rand::integer(1, 65535); auto it{tags.lower_bound(tag.id)}; if(it != end(tags) && it->first == tag.id) continue; it = tags.emplace_hint(it, tag.id, std::move(tag)); dock.notify_one(); return it->second; } throw assertive { "Too many DNS queries" }; } void ircd::net::dns::resolver::submit(const const_buffer &buf, tag &tag) { const auto rate(milliseconds(send_rate) / server.size()); const auto elapsed(now() - send_last); if(elapsed >= rate) send_query(buf, tag); else queue_query(buf, tag); } void ircd::net::dns::resolver::queue_query(const const_buffer &buf, tag &tag) { sendq.emplace_back(tag.id, std::string(data(buf), size(buf))); dock.notify_one(); } void ircd::net::dns::resolver::send_query(const const_buffer &buf, tag &tag) try { assert(!server.empty()); ++server_next %= server.size(); const auto &ep{server.at(server_next)}; send_query(ep, buf, tag); } catch(const std::out_of_range &) { throw error { "No DNS servers available for query" }; } void ircd::net::dns::resolver::send_query(const ip::udp::endpoint &ep, const const_buffer &buf, tag &tag) { assert(ns.non_blocking()); ns.send_to(asio::const_buffers_1(buf), ep); send_last = now(); tag.last = send_last; } void ircd::net::dns::resolver::set_handle() { auto handler { std::bind(&resolver::handle, this, ph::_1, ph::_2) }; const asio::mutable_buffers_1 bufs{reply, sizeof(reply)}; ns.async_receive_from(bufs, reply_from, std::move(handler)); } void ircd::net::dns::resolver::handle(const error_code &ec, const size_t &bytes) noexcept try { if(!handle_error(ec)) return; const unwind reset{[this] { set_handle(); }}; if(unlikely(bytes < sizeof(rfc1035::header))) throw rfc1035::error { "Got back %zu bytes < rfc1035 %zu byte header", bytes, sizeof(rfc1035::header) }; char *const reply { this->reply }; rfc1035::header &header { *reinterpret_cast(reply) }; bswap(&header.qdcount); bswap(&header.ancount); bswap(&header.nscount); bswap(&header.arcount); const const_buffer body { reply + sizeof(header), bytes - sizeof(header) }; handle_reply(header, body); } catch(const std::exception &e) { throw assertive { "resolver::handle_reply(): %s", e.what() }; } void ircd::net::dns::resolver::handle_reply(const header &header, const const_buffer &body) try { const auto &id{header.id}; const auto it{tags.find(id)}; if(it == end(tags)) throw error { "DNS reply from %s for unrecognized tag id:%u", string(reply_from), id }; auto &tag{it->second}; const unwind untag{[this, &it] { tags.erase(it); }}; handle_reply(header, body, tag); } catch(const std::exception &e) { log.error("%s", e.what()); return; } void ircd::net::dns::resolver::handle_reply(const header &header, const const_buffer &body, tag &tag) try { if(unlikely(header.qr != 1)) throw rfc1035::error { "Response header is marked as 'Query' and not 'Response'" }; if(header.qdcount > MAX_COUNT || header.ancount > MAX_COUNT) throw error { "Response contains too many sections..." }; const_buffer buffer { body }; // Questions are regurgitated back to us so they must be parsed first thread_local std::array qd; for(size_t i(0); i < header.qdcount; ++i) consume(buffer, size(qd.at(i).parse(buffer))); if(!handle_error(header, qd.at(0), tag.opts)) throw rfc1035::error { "protocol error #%u :%s", header.rcode, rfc1035::rcode.at(header.rcode) }; // Answers are parsed into this buffer thread_local std::array an; for(size_t i(0); i < header.ancount; ++i) consume(buffer, size(an[i].parse(buffer))); if(tag.opts.cache_result) { // We convert all TTL values in the answers to absolute epoch time // indicating when they expire. This makes more sense for our caches. const auto &now{ircd::time()}; for(size_t i(0); i < header.ancount; ++i) an[i].ttl = now + an[i].ttl; } // The callback to the user will be passed a vector_view of pointers // to this array. The actual record instances will either be located // in the cache map or placement-newed to the buffer below. thread_local const rfc1035::record *record[MAX_COUNT]; // This will be where we place the record instances which are dynamically // laid out and sized types. 512 bytes is assumed as a soft maximum for // each RR instance. thread_local uint8_t recbuf[MAX_COUNT * 512]; size_t i(0); uint8_t *pos{recbuf}; for(; i < header.ancount; ++i) switch(an[i].qtype) { case 1: // A records are inserted into cache { if(!tag.opts.cache_result) { record[i] = new (pos) rfc1035::record::A(an[i]); pos += sizeof(rfc1035::record::A); continue; } const auto &name{qd.at(0).name}; const auto &host{rstrip(name, '.')}; const auto &it{cache.A.emplace(host, an[i])}; record[i] = &it->second; continue; } case 5: { record[i] = new (pos) rfc1035::record::CNAME(an[i]); pos += sizeof(rfc1035::record::CNAME); continue; } case 33: { if(!tag.opts.cache_result) { record[i] = new (pos) rfc1035::record::SRV(an[i]); pos += sizeof(rfc1035::record::SRV); continue; } const auto &name{qd.at(0).name}; const auto &host{rstrip(name, '.')}; const auto it{cache.SRV.emplace(host, an[i])}; record[i] = &it->second; continue; } default: { record[i] = new (pos) rfc1035::record(an[i]); pos += sizeof(rfc1035::record); continue; } } if(tag.cb) tag.cb({}, vector_view(record, i)); } catch(const std::exception &e) { // There's no need to flash red to the log for NXDOMAIN which is // common in this system when probing SRV. if(unlikely(header.rcode != 3)) log.error("resolver tag:%u [%s]: %s", tag.id, string(tag.hp), e.what()); if(tag.cb) tag.cb(std::current_exception(), {}); } bool ircd::net::dns::resolver::handle_error(const header &header, const rfc1035::question &q, const dns::opts &opts) { switch(header.rcode) { case 0: // NoError; continue return true; case 3: // NXDomain; exception { if(opts.cache_result) switch(q.qtype) { case 1: // A { const auto &host{rstrip(q.name, '.')}; rfc1035::record::A record; record.ttl = ircd::time() + seconds(cache::clear_nxdomain).count(); cache.A.emplace(host, record); break; } case 33: { const auto &host{rstrip(q.name, '.')}; rfc1035::record::SRV record; record.ttl = ircd::time() + seconds(cache::clear_nxdomain).count(); cache.SRV.emplace(host, record); break; } } return false; } default: // Unhandled error; exception return false; } } bool ircd::net::dns::resolver::handle_error(const error_code &ec) const { using namespace boost::system::errc; switch(ec.value()) { case operation_canceled: return false; case success: return true; default: throw boost::system::system_error(ec); } } //TODO: x-platform void ircd::net::dns::resolver::init_servers() { const auto resolve_conf { fs::read("/etc/resolv.conf") }; tokens(resolve_conf, '\n', [this](const auto &line) { const auto kv(split(line, ' ')); if(kv.first == "nameserver") { const ipport server{kv.second, 53}; this->server.emplace_back(make_endpoint_udp(server)); log.debug("Found nameserver %s from resolv.conf", string(server)); } }); } /////////////////////////////////////////////////////////////////////////////// // // net/ipport.h // std::ostream & ircd::net::operator<<(std::ostream &s, const ipport &t) { thread_local char buf[256]; const critical_assertion ca; s << string(buf, t); return s; } ircd::string_view ircd::net::string(const mutable_buffer &buf, const uint32_t &ip) { const auto len { ip::address_v4{ip}.to_string().copy(data(buf), size(buf)) }; return { data(buf), size_t(len) }; } ircd::string_view ircd::net::string(const mutable_buffer &buf, const uint128_t &ip) { const auto &pun { reinterpret_cast(ip) }; const auto &punpun { reinterpret_cast &>(pun) }; const auto len { ip::address_v6{punpun}.to_string().copy(data(buf), size(buf)) }; return { data(buf), size_t(len) }; } ircd::string_view ircd::net::string(const mutable_buffer &buf, const ipport &ipp) { const auto len { is_v4(ipp)? fmt::sprintf(buf, "%s:%u", ip::address_v4{host4(ipp)}.to_string(), port(ipp)): is_v6(ipp)? fmt::sprintf(buf, "%s:%u", ip::address_v6{std::get(ipp)}.to_string(), port(ipp)): 0 }; return { data(buf), size_t(len) }; } ircd::net::ipport ircd::net::make_ipport(const boost::asio::ip::udp::endpoint &ep) { return ipport { ep.address(), ep.port() }; } ircd::net::ipport ircd::net::make_ipport(const boost::asio::ip::tcp::endpoint &ep) { return ipport { ep.address(), ep.port() }; } boost::asio::ip::udp::endpoint ircd::net::make_endpoint_udp(const ipport &ipport) { return { is_v6(ipport)? ip::udp::endpoint { asio::ip::address_v6 { std::get(ipport) }, port(ipport) } : ip::udp::endpoint { asio::ip::address_v4 { host4(ipport) }, port(ipport) }, }; } boost::asio::ip::tcp::endpoint ircd::net::make_endpoint(const ipport &ipport) { return { is_v6(ipport)? ip::tcp::endpoint { asio::ip::address_v6 { std::get(ipport) }, port(ipport) } : ip::tcp::endpoint { asio::ip::address_v4 { host4(ipport) }, port(ipport) }, }; } // // ipport // ircd::net::ipport::ipport(const string_view &ip, const string_view &port) :ipport { ip, lex_cast(port) } { } ircd::net::ipport::ipport(const string_view &ip, const uint16_t &port) :ipport { asio::ip::make_address(ip), port } { } ircd::net::ipport::ipport(const rfc1035::record::A &rr, const uint16_t &port) :ipport { rr.ip4, port } { } ircd::net::ipport::ipport(const rfc1035::record::AAAA &rr, const uint16_t &port) :ipport { rr.ip6, port } { } ircd::net::ipport::ipport(const boost::asio::ip::address &address, const uint16_t &port) { std::get(*this) = address.is_v6(); std::get(*this) = port; if(is_v6(*this)) { std::get(*this) = address.to_v6().to_bytes(); std::reverse(std::get(*this).begin(), std::get(*this).end()); } else host4(*this) = address.to_v4().to_ulong(); } /////////////////////////////////////////////////////////////////////////////// // // net/hostport.h // std::ostream & ircd::net::operator<<(std::ostream &s, const hostport &t) { thread_local char buf[256]; const critical_assertion ca; s << string(buf, t); return s; } std::string ircd::net::canonize(const hostport &hp, const uint16_t &port) { const size_t len { size(host(hp)) + 6 // optimistic ':' + portnum }; return ircd::string(len, [&hp, &port] (const mutable_buffer &buf) { return canonize(buf, hp, port); }); } ircd::string_view ircd::net::canonize(const mutable_buffer &buf, const hostport &hp, const uint16_t &port) { if(net::port(hp) == 0 || net::port(hp) == port) return fmt::sprintf { buf, "%s", host(hp) }; return fmt::sprintf { buf, "%s:%u", host(hp), net::port(hp) }; } ircd::string_view ircd::net::string(const mutable_buffer &buf, const hostport &hp) { if(empty(service(hp))) return fmt::sprintf { buf, "%s:%u", host(hp), port(hp) }; if(port(hp) == 0) return fmt::sprintf { buf, "%s (%s)", host(hp), service(hp) }; return fmt::sprintf { buf, "%s:%u (%s)", host(hp), port(hp), service(hp) }; } /////////////////////////////////////////////////////////////////////////////// // // net/asio.h // std::string ircd::net::string(const ip::address &addr) { return addr.to_string(); } std::string ircd::net::string(const ip::tcp::endpoint &ep) { std::string ret(128, char{}); const auto addr{string(net::addr(ep))}; const auto data{const_cast(ret.data())}; ret.resize(snprintf(data, ret.size(), "%s:%u", addr.c_str(), port(ep))); return ret; } std::string ircd::net::host(const ip::tcp::endpoint &ep) { return string(addr(ep)); } boost::asio::ip::address ircd::net::addr(const ip::tcp::endpoint &ep) { return ep.address(); } uint16_t ircd::net::port(const ip::tcp::endpoint &ep) { return ep.port(); } /////////////////////////////////////////////////////////////////////////////// // // buffer.h - provide definition for the null buffers and asio conversion // const ircd::buffer::mutable_buffer ircd::buffer::null_buffer { nullptr, nullptr }; const ircd::ilist ircd::buffer::null_buffers {{ null_buffer }}; ircd::buffer::mutable_buffer::operator boost::asio::mutable_buffer() const { return boost::asio::mutable_buffer { data(*this), size(*this) }; } ircd::buffer::const_buffer::operator boost::asio::const_buffer() const { return boost::asio::const_buffer { data(*this), size(*this) }; }