// Tensor Construct // // Copyright (C) Matrix Construct Developers, Authors & Contributors // Copyright (C) 2016-2021 Jason Volk // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice is present in all copies. The // full license for this software is available in the LICENSE file. namespace ircd::gpt::pipe { static void profile_dumplog(pipe::cycle &); extern const ircd::run::changed handle_quit; } decltype(ircd::gpt::pipe::queue_cycles) ircd::gpt::pipe::queue_cycles { { "name", "ircd.gpt.pipe.queue" }, { "default", 1L, }, }; decltype(ircd::gpt::pipe::handle_quit) ircd::gpt::pipe::handle_quit { run::level::QUIT, pipe::fini }; [[gnu::visibility("hidden")]] void ircd::gpt::pipe::init() { } [[using gnu: cold, visibility("hidden")]] void ircd::gpt::pipe::fini() noexcept { const auto pending { cl::work::list.size() }; if(pending) log::warning { log, "Waiting for %zu pending tasks to leave the pipe...", pending, }; cl::sync(); ctx::yield(); } // // pipe::prof // ircd::string_view ircd::gpt::pipe::debug(const mutable_buffer &buf, const prof &p) { window_buffer window(buf); for(uint i(0); i < p.stages; ++i) window([&p, &i](auto buf) { size_t ret(0); ret += consume(buf, size(debug(buf, p, i))); ret += consume(buf, copy(buf, '\n')); return ret; }); return window.completed(); } ircd::string_view ircd::gpt::pipe::debug(const mutable_buffer &buf, const prof &p, const size_t &i) { using phase = prof::phase; assert(i < p.info.size()); assert(i < p.ts.size()); char tbuf[4][32]; return fmt::sprintf { buf, "%-20s %04x [ %10s %10s %10s %10s ]", std::get<0>(p.info[i]), std::get<1>(p.info[i]), pretty(tbuf[0], p.ts[i][phase::QUEUE], 1), pretty(tbuf[1], p.ts[i][phase::SUBMIT], 1), pretty(tbuf[2], p.ts[i][phase::START], 1), pretty(tbuf[3], p.ts[i][phase::END], 1), }; } // // prof::prof // decltype(ircd::gpt::pipe::prof::info) ircd::gpt::pipe::prof::info; decltype(ircd::gpt::pipe::prof::name) ircd::gpt::pipe::prof::name; [[gnu::visibility("hidden")]] decltype(ircd::gpt::pipe::prof::init) ircd::gpt::pipe::prof::init; ircd::gpt::pipe::prof::prof() noexcept { for(uint i(0); i < stages; ++i) for(uint j(0); j < phases; ++j) ts[i][j] = 0ns; } ircd::gpt::pipe::prof::prof(const cycle &c) { if(!std::exchange(init, true)) init_info(c); if(!cl::profile_queue) return; for(uint i(0); i < stages; ++i) { const cl::work::prof p { c.stage[i] }; ts[i][phase::QUEUE] = p[phase::SUBMIT] - p[phase::QUEUE]; ts[i][phase::SUBMIT] = p[phase::START] - p[phase::SUBMIT]; ts[i][phase::START] = p[phase::END] - p[phase::START]; ts[i][phase::END] = p[phase::END] - p[phase::QUEUE]; } } [[gnu::visibility("hidden")]] void ircd::gpt::pipe::prof::init_info(const cycle &c) { static_assert ( name.size() >= stages ); for(uint i(0); i < stages; ++i) info[i] = info_type { c.stage[i].name(name[i]), c.stage[i].type(), }; } /////////////////////////////////////////////////////////////////////////////// // // pipe::cycle // const ircd::gpt::ctrl & ircd::gpt::pipe::acquire(cycle &cycle) { // Some tail stages may not be active each cycle const auto last_exec { std::find_if(std::rbegin(cycle.stage), std::rend(cycle.stage), [] (const auto &work) { return work.handle; }) }; assert(last_exec != std::rend(cycle.stage)); last_exec->wait(); const auto ctrl { reinterpret_cast(cycle.desc.frame[cycle.frame].ptr()) }; assert(ctrl); assert(ctrl->magic != 0xDEADBEEF); assert(ctrl->magic == 0xC7012C70UL); return *ctrl; } // // pipe::cycle::cycle // ircd::gpt::pipe::cycle::cycle(gpt::samp &samp) :desc { samp.desc } ,tick { samp.cycle } ,count { samp.count } ,tokens { samp.tokens } ,cached { desc.cached } ,frame { tick % samp.opts.frames } ,range { tick, count, tokens, cached, true, false, } ,stage { cl::exec // data { desc.opts, std::memory_order_release }, cl::exec // data { desc.ctrl, std::memory_order_release }, cl::exec // data { desc.frame[frame], std::memory_order_release }, cl::exec // data { desc.model->decode->master[0], std::memory_order_release }, cl::exec // Initial kernel { desc.alloc, range.alloc, }, cl::exec // Initial cycle kernel { desc.enter, range.embed, }, cl::exec // Compute token and positional embeddings. { desc.lm_embed, range.embed, }, // Forward Pass cl::exec { desc.layer[0x00]->attn, range.attn }, cl::exec { desc.layer[0x00]->ffnn, range.ffnn }, cl::exec { desc.layer[0x01]->attn, range.attn }, cl::exec { desc.layer[0x01]->ffnn, range.ffnn }, cl::exec { desc.layer[0x02]->attn, range.attn }, cl::exec { desc.layer[0x02]->ffnn, range.ffnn }, cl::exec { desc.layer[0x03]->attn, range.attn }, cl::exec { desc.layer[0x03]->ffnn, range.ffnn }, cl::exec { desc.layer[0x04]->attn, range.attn }, cl::exec { desc.layer[0x04]->ffnn, range.ffnn }, cl::exec { desc.layer[0x05]->attn, range.attn }, cl::exec { desc.layer[0x05]->ffnn, range.ffnn }, cl::exec { desc.layer[0x06]->attn, range.attn }, cl::exec { desc.layer[0x06]->ffnn, range.ffnn }, cl::exec { desc.layer[0x07]->attn, range.attn }, cl::exec { desc.layer[0x07]->ffnn, range.ffnn }, cl::exec { desc.layer[0x08]->attn, range.attn }, cl::exec { desc.layer[0x08]->ffnn, range.ffnn }, cl::exec { desc.layer[0x09]->attn, range.attn }, cl::exec { desc.layer[0x09]->ffnn, range.ffnn }, cl::exec { desc.layer[0x0a]->attn, range.attn }, cl::exec { desc.layer[0x0a]->ffnn, range.ffnn }, cl::exec { desc.layer[0x0b]->attn, range.attn }, cl::exec { desc.layer[0x0b]->ffnn, range.fffnn }, cl::exec // Final normalization. { desc.lm_norm, range.fnorm }, cl::exec // Compute language logits. { desc.lm_logit, range.logit }, cl::exec // Statistics on the logits. { desc.lm_logsm, range.logsm }, cl::exec // Select next token. { desc.lm_select, range.select }, cl::exec // Backpropagate { desc.lm_prop_embed, range.prop_embed }, cl::exec // Backpropagate { desc.lm_prop_norm, range.prop_norm }, // Backward Pass cl::exec { desc.layer[0x0b]->prop_ffnn, range.prop_ffnn }, cl::exec { desc.layer[0x0b]->prop_attn, range.prop_attn }, cl::exec { desc.layer[0x0a]->prop_ffnn, range.prop_ffnn }, cl::exec { desc.layer[0x0a]->prop_attn, range.prop_attn }, cl::exec { desc.layer[0x09]->prop_ffnn, range.prop_ffnn }, cl::exec { desc.layer[0x09]->prop_attn, range.prop_attn }, cl::exec { desc.layer[0x08]->prop_ffnn, range.prop_ffnn }, cl::exec { desc.layer[0x08]->prop_attn, range.prop_attn }, cl::exec { desc.layer[0x07]->prop_ffnn, range.prop_ffnn }, cl::exec { desc.layer[0x07]->prop_attn, range.prop_attn }, cl::exec { desc.layer[0x06]->prop_ffnn, range.prop_ffnn }, cl::exec { desc.layer[0x06]->prop_attn, range.prop_attn }, cl::exec { desc.layer[0x05]->prop_ffnn, range.prop_ffnn }, cl::exec { desc.layer[0x05]->prop_attn, range.prop_attn }, cl::exec { desc.layer[0x04]->prop_ffnn, range.prop_ffnn }, cl::exec { desc.layer[0x04]->prop_attn, range.prop_attn }, cl::exec { desc.layer[0x03]->prop_ffnn, range.prop_ffnn }, cl::exec { desc.layer[0x03]->prop_attn, range.prop_attn }, cl::exec { desc.layer[0x02]->prop_ffnn, range.prop_ffnn }, cl::exec { desc.layer[0x02]->prop_attn, range.prop_attn }, cl::exec { desc.layer[0x01]->prop_ffnn, range.prop_ffnn }, cl::exec { desc.layer[0x01]->prop_attn, range.prop_attn }, cl::exec { desc.layer[0x00]->prop_ffnn, range.prop_ffnn }, cl::exec { desc.layer[0x00]->prop_attn, range.prop_attn }, cl::exec // Final kernel { desc.leave[frame], range.select }, } { } ircd::gpt::pipe::cycle::~cycle() noexcept { } ////////////////////////////////////////////////////////////////////////////// // // pipe::range // ircd::gpt::pipe::range::range(const uint tick, const uint count, const uint tokens, const uint cached, const bool fwd, const bool rev) noexcept :_full { { (tokens - cached) * 192UL, 0 }, { 192UL, 0 }, { cached * 192UL, 0 }, } ,_last { { 1 * 192UL, 0 }, { 192UL, 0 }, { (count - 1) * 192UL, 0 }, } ,alloc { { (tick == 0) * 192UL, 0 }, { 192UL, 0 }, } ,embed { fwd? _full: cl::kern::range{}, } ,attn { fwd? _full: cl::kern::range{}, } ,ffnn { fwd? _full: cl::kern::range{}, } ,fffnn { fwd && tokens > count? _full: fwd? _last: cl::kern::range{}, } ,fnorm { fwd? _last: cl::kern::range{}, } ,logit // TODO: align_up(50257) / 64|256 { { int(fwd) * 50432UL, 0 }, { 64L, 0 }, } ,logsm { { int(fwd) * 1 * 256UL, 0 }, { 256UL, 0 }, } ,select { { int(fwd) * 1 * 256UL, 0 }, { 256UL, 0 }, } ,prop_embed { { int(rev) * 0 * 192UL, 0 }, { 192UL, 0 }, } ,prop_norm { { int(rev) * 0 * 192UL, 0 }, { 192UL, 0 }, } ,prop_attn { { int(rev) * 0 * 192UL, 0 }, { 192UL, 0 }, } ,prop_ffnn { { int(rev) * 0 * 192UL, 0 }, { 192UL, 0 }, } { } /////////////////////////////////////////////////////////////////////////////// // // pipe::desc // ircd::gpt::pipe::desc::desc(const gpt::opts *const &opt, gpt::ctrl *const &ctrl_, pipe::model &model, pipe::code &code) :model { &model } ,code { &code } ,opts { const_buffer { reinterpret_cast(opt), sizeof(gpt::opts) }, } ,ctrl { const_buffer { reinterpret_cast(ctrl_), sizeof(gpt::ctrl) }, } ,master { 0 + opt->layers * opt->context_tokens * opt->attn_elems * sizeof(float) + opt->context_tokens * opt->embed_elems * sizeof(float) + 65536 * sizeof(float) + opt->layers * opt->attn_self_elems * sizeof(float) } ,state { master, { opt->layers * opt->context_tokens * opt->attn_elems * sizeof(float), off_t(0), } } ,accum { master, { opt->context_tokens * opt->embed_elems * sizeof(float), state.offset() + off_t(state.size()), }, } ,logit { master, { 65536 * sizeof(float), accum.offset() + off_t(accum.size()), }, } ,attns { master, { opt->layers * opt->attn_self_elems * sizeof(float), logit.offset() + off_t(logit.size()) } } ,frame { // size, read, write, }, // idx { sizeof(gpt::ctrl), true, false, }, // 0 { sizeof(gpt::ctrl), true, false, }, // 1 { sizeof(gpt::ctrl), true, false, }, // 2 { sizeof(gpt::ctrl), true, false, }, // 3 { sizeof(gpt::ctrl), true, false, }, // 4 { sizeof(gpt::ctrl), true, false, }, // 5 { sizeof(gpt::ctrl), true, false, }, // 6 { sizeof(gpt::ctrl), true, false, }, // 7 } ,alloc { code, "ircd_gpt_alloc", model.decode->master[0], master, opts, ctrl, frame[0], frame[1], frame[2], frame[3], frame[4], frame[5], frame[6], frame[7], } ,enter { code, "ircd_gpt_enter", model.decode->master[0], state, master, opts, ctrl, } ,lm_embed { code, "ircd_gpt_lm_embed", ctrl, opts, accum, model.decode->embed.pos.param, model.decode->embed.token.param, } ,lm_norm { code, "ircd_gpt_lm_norm", ctrl, opts, accum, model.decode->embed.norm.bias.param, model.decode->embed.norm.weight.param, } ,lm_logit { code, "ircd_gpt_lm_logit", ctrl, opts, logit, accum, model.decode->embed.pos.param, model.decode->embed.token.param, } ,lm_logsm { code, "ircd_gpt_lm_logsm", ctrl, opts, logit, } ,lm_select { code, "ircd_gpt_lm_select", ctrl, opts, logit, attns, } ,lm_prop_embed { code, "ircd_gpt_lm_embed_prop", ctrl, opts, model.decode->embed.pos.param, model.decode->embed.pos.moment[0], model.decode->embed.pos.moment[1], model.decode->embed.token.param, model.decode->embed.token.moment[0], model.decode->embed.token.moment[1], } ,lm_prop_norm { code, "ircd_gpt_norm_prop", ctrl, opts, model.decode->embed.norm.bias.param, model.decode->embed.norm.bias.moment[0], model.decode->embed.norm.bias.moment[1], model.decode->embed.norm.weight.param, model.decode->embed.norm.weight.moment[0], model.decode->embed.norm.weight.moment[1], } ,leave { { code, "ircd_gpt_leave", model.decode->master[0], state, master, opts, ctrl, frame[0], }, { code, "ircd_gpt_leave", model.decode->master[0], state, master, opts, ctrl, frame[1], }, { code, "ircd_gpt_leave", model.decode->master[0], state, master, opts, ctrl, frame[2], }, { code, "ircd_gpt_leave", model.decode->master[0], state, master, opts, ctrl, frame[3], }, { code, "ircd_gpt_leave", model.decode->master[0], state, master, opts, ctrl, frame[4], }, { code, "ircd_gpt_leave", model.decode->master[0], state, master, opts, ctrl, frame[5], }, { code, "ircd_gpt_leave", model.decode->master[0], state, master, opts, ctrl, frame[6], }, { code, "ircd_gpt_leave", model.decode->master[0], state, master, opts, ctrl, frame[7], }, } ,layer { std::make_unique(*this, opt, 0x00), std::make_unique(*this, opt, 0x01), std::make_unique(*this, opt, 0x02), std::make_unique(*this, opt, 0x03), std::make_unique(*this, opt, 0x04), std::make_unique(*this, opt, 0x05), std::make_unique(*this, opt, 0x06), std::make_unique(*this, opt, 0x07), std::make_unique(*this, opt, 0x08), std::make_unique(*this, opt, 0x09), std::make_unique(*this, opt, 0x0a), std::make_unique(*this, opt, 0x0b), } { } // // pipe::desc::layer // ircd::gpt::pipe::desc::layer::layer(pipe::desc &desc, const gpt::opts *const &opts, const uint laynum) :state { desc.state, { opts->context_tokens * opts->attn_elems * sizeof(float), laynum * opts->context_tokens * opts->attn_elems * sizeof(float), } } ,attns { desc.attns, { opts->attn_self_elems * sizeof(float), laynum * opts->attn_self_elems * sizeof(float), } } ,attn { *desc.code, "ircd_gpt_attn_fcon", desc.ctrl, desc.opts, laynum, state, desc.accum, desc.model->decode->layer[laynum].attn.norm.bias.param, desc.model->decode->layer[laynum].attn.norm.weight.param, desc.model->decode->layer[laynum].attn.fcon.bias.param, desc.model->decode->layer[laynum].attn.fcon.weight.param, } ,ffnn { *desc.code, "ircd_gpt_coil", desc.ctrl, desc.opts, laynum, desc.accum, attns, state, desc.model->decode->layer[laynum].attn.proj.bias.param, desc.model->decode->layer[laynum].attn.proj.weight.param, desc.model->decode->layer[laynum].ffnn.norm.bias.param, desc.model->decode->layer[laynum].ffnn.norm.weight.param, desc.model->decode->layer[laynum].ffnn.fcon.bias.param, desc.model->decode->layer[laynum].ffnn.fcon.weight.param, desc.model->decode->layer[laynum].ffnn.proj.bias.param, desc.model->decode->layer[laynum].ffnn.proj.weight.param, } ,prop_attn { *desc.code, "ircd_gpt_coil_prop_attn", desc.ctrl, desc.opts, desc.model->decode->layer[laynum].attn.norm.bias.param, desc.model->decode->layer[laynum].attn.norm.bias.moment[0], desc.model->decode->layer[laynum].attn.norm.bias.moment[1], desc.model->decode->layer[laynum].attn.norm.weight.param, desc.model->decode->layer[laynum].attn.norm.weight.moment[0], desc.model->decode->layer[laynum].attn.norm.weight.moment[1], desc.model->decode->layer[laynum].attn.fcon.bias.param, desc.model->decode->layer[laynum].attn.fcon.bias.moment[0], desc.model->decode->layer[laynum].attn.fcon.bias.moment[1], desc.model->decode->layer[laynum].attn.fcon.weight.param, desc.model->decode->layer[laynum].attn.fcon.weight.moment[0], desc.model->decode->layer[laynum].attn.fcon.weight.moment[1], desc.model->decode->layer[laynum].attn.proj.bias.param, desc.model->decode->layer[laynum].attn.proj.bias.moment[0], desc.model->decode->layer[laynum].attn.proj.bias.moment[1], desc.model->decode->layer[laynum].attn.proj.weight.param, desc.model->decode->layer[laynum].attn.proj.weight.moment[0], desc.model->decode->layer[laynum].attn.proj.weight.moment[1], } ,prop_ffnn { *desc.code, "ircd_gpt_coil_prop_ffnn", desc.ctrl, desc.opts, desc.model->decode->layer[laynum].ffnn.norm.bias.param, desc.model->decode->layer[laynum].ffnn.norm.bias.moment[0], desc.model->decode->layer[laynum].ffnn.norm.bias.moment[1], desc.model->decode->layer[laynum].ffnn.norm.weight.param, desc.model->decode->layer[laynum].ffnn.norm.weight.moment[0], desc.model->decode->layer[laynum].ffnn.norm.weight.moment[1], desc.model->decode->layer[laynum].ffnn.fcon.bias.param, desc.model->decode->layer[laynum].ffnn.fcon.bias.moment[0], desc.model->decode->layer[laynum].ffnn.fcon.bias.moment[1], desc.model->decode->layer[laynum].ffnn.fcon.weight.param, desc.model->decode->layer[laynum].ffnn.fcon.weight.moment[0], desc.model->decode->layer[laynum].ffnn.fcon.weight.moment[1], desc.model->decode->layer[laynum].ffnn.proj.bias.param, desc.model->decode->layer[laynum].ffnn.proj.bias.moment[0], desc.model->decode->layer[laynum].ffnn.proj.bias.moment[1], desc.model->decode->layer[laynum].ffnn.proj.weight.param, desc.model->decode->layer[laynum].ffnn.proj.weight.moment[0], desc.model->decode->layer[laynum].ffnn.proj.weight.moment[1], } { } /////////////////////////////////////////////////////////////////////////////// // // model // // // pipe::model::model // ircd::gpt::pipe::model::model(gpt::model::decoder &decoder) :decode_const { std::addressof(decoder) } ,decode_mutable { std::addressof(decoder) } ,decode { std::make_unique(decoder) } { } ircd::gpt::pipe::model::model(const gpt::model::decoder &decoder) :decode_const { std::addressof(decoder) } ,decode { std::make_unique(decoder) } { } ircd::gpt::pipe::model::~model() noexcept { } // // pipe::model::decoder // ircd::gpt::pipe::model::decoder::decoder(gpt::model::decoder &decoder) :master { // params { mutable_buffer { reinterpret_cast(&decoder) + sizeof(gpt::model::decoder) * 0, sizeof(gpt::model::decoder) } }, // first moment { mutable_buffer { reinterpret_cast(&decoder) + sizeof(gpt::model::decoder) * 1, sizeof(gpt::model::decoder) } }, // second moment { mutable_buffer { reinterpret_cast(&decoder) + sizeof(gpt::model::decoder) * 2, sizeof(gpt::model::decoder) } }, } ,layer { { master, sizeof(gpt::model::block) * 0x00, decoder.layer[0x00], 0x00, }, { master, sizeof(gpt::model::block) * 0x01, decoder.layer[0x01], 0x01, }, { master, sizeof(gpt::model::block) * 0x02, decoder.layer[0x02], 0x02, }, { master, sizeof(gpt::model::block) * 0x03, decoder.layer[0x03], 0x03, }, { master, sizeof(gpt::model::block) * 0x04, decoder.layer[0x04], 0x04, }, { master, sizeof(gpt::model::block) * 0x05, decoder.layer[0x05], 0x05, }, { master, sizeof(gpt::model::block) * 0x06, decoder.layer[0x06], 0x06, }, { master, sizeof(gpt::model::block) * 0x07, decoder.layer[0x07], 0x07, }, { master, sizeof(gpt::model::block) * 0x08, decoder.layer[0x08], 0x08, }, { master, sizeof(gpt::model::block) * 0x09, decoder.layer[0x09], 0x09, }, { master, sizeof(gpt::model::block) * 0x0a, decoder.layer[0x0a], 0x0a, }, { master, sizeof(gpt::model::block) * 0x0b, decoder.layer[0x0b], 0x0b, }, } ,embed { master, off_t(offsetof(gpt::model::decoder, embed)), decoder.embed, } { } ircd::gpt::pipe::model::decoder::decoder(const gpt::model::decoder &decoder) :master { // params { const_buffer { reinterpret_cast(&decoder), sizeof(gpt::model::decoder) } }, } ,layer { { master, off_t(offsetof(gpt::model::decoder, layer[0x00])), decoder.layer[0x00], 0x00, }, { master, off_t(offsetof(gpt::model::decoder, layer[0x01])), decoder.layer[0x01], 0x01, }, { master, off_t(offsetof(gpt::model::decoder, layer[0x02])), decoder.layer[0x02], 0x02, }, { master, off_t(offsetof(gpt::model::decoder, layer[0x03])), decoder.layer[0x03], 0x03, }, { master, off_t(offsetof(gpt::model::decoder, layer[0x04])), decoder.layer[0x04], 0x04, }, { master, off_t(offsetof(gpt::model::decoder, layer[0x05])), decoder.layer[0x05], 0x05, }, { master, off_t(offsetof(gpt::model::decoder, layer[0x06])), decoder.layer[0x06], 0x06, }, { master, off_t(offsetof(gpt::model::decoder, layer[0x07])), decoder.layer[0x07], 0x07, }, { master, off_t(offsetof(gpt::model::decoder, layer[0x08])), decoder.layer[0x08], 0x08, }, { master, off_t(offsetof(gpt::model::decoder, layer[0x09])), decoder.layer[0x09], 0x09, }, { master, off_t(offsetof(gpt::model::decoder, layer[0x0a])), decoder.layer[0x0a], 0x0a, }, { master, off_t(offsetof(gpt::model::decoder, layer[0x0b])), decoder.layer[0x0b], 0x0b, }, } ,embed { master, off_t(offsetof(gpt::model::decoder, embed)), decoder.embed, } { } ircd::gpt::pipe::model::decoder::~decoder() noexcept { } // // pipe::model::embed // ircd::gpt::pipe::model::embed::embed(cl::data *const master, const off_t offset, gpt::model::embed &embed) :norm { master, offset + off_t(offsetof(gpt::model::embed, norm)) + off_t(offsetof(gpt::model::norm, bias)), mutable_buffer{embed.norm.bias.elem}, offset + off_t(offsetof(gpt::model::embed, norm)) + off_t(offsetof(gpt::model::norm, weight)), mutable_buffer{embed.norm.weight.elem}, } ,pos { master, offset + off_t(offsetof(gpt::model::embed, pos)), mutable_buffer{embed.pos} } ,token { master, offset + off_t(offsetof(gpt::model::embed, token)), mutable_buffer{embed.token} } { } ircd::gpt::pipe::model::embed::embed(cl::data *const master, const off_t offset, const gpt::model::embed &embed) :norm { master, offset + off_t(offsetof(gpt::model::embed, norm)) + off_t(offsetof(gpt::model::norm, bias)), const_buffer{embed.norm.bias.elem}, offset + off_t(offsetof(gpt::model::embed, norm)) + off_t(offsetof(gpt::model::norm, weight)), const_buffer{embed.norm.weight.elem}, } ,pos { master, offset + off_t(offsetof(gpt::model::embed, pos)), const_buffer{embed.pos} } ,token { master, offset + off_t(offsetof(gpt::model::embed, token)), const_buffer{embed.token} } { } // // pipe::model::block // ircd::gpt::pipe::model::block::block(cl::data *const master, const off_t offset, gpt::model::block &block, const size_t layer) :attn { master, offset + off_t(offsetof(gpt::model::block, attn)), block.attn, } ,ffnn { master, offset + off_t(offsetof(gpt::model::block, ffnn)), block.ffnn, } { } ircd::gpt::pipe::model::block::block(cl::data *const master, const off_t offset, const gpt::model::block &block, const size_t layer) :attn { master, offset + off_t(offsetof(gpt::model::block, attn)), block.attn, } ,ffnn { master, offset + off_t(offsetof(gpt::model::block, ffnn)), block.ffnn, } { } // // pipe::model::ffnn // ircd::gpt::pipe::model::ffnn::ffnn(cl::data *const master, const off_t offset, gpt::model::ffnn &ffnn) :norm { master, offset + off_t(offsetof(gpt::model::ffnn, norm)) + off_t(offsetof(gpt::model::norm, bias)), mutable_buffer{ffnn.norm.bias.elem}, offset + off_t(offsetof(gpt::model::ffnn, norm)) + off_t(offsetof(gpt::model::norm, weight)), mutable_buffer{ffnn.norm.weight.elem}, } ,fcon { master, offset + off_t(offsetof(gpt::model::ffnn, fcon_bias)), mutable_buffer{ffnn.fcon_bias.fcon}, offset + off_t(offsetof(gpt::model::ffnn, fcon_weight)), mutable_buffer{ffnn.fcon_weight}, } ,proj { master, offset + off_t(offsetof(gpt::model::ffnn, proj_bias)), mutable_buffer{ffnn.proj_bias.elem}, offset + off_t(offsetof(gpt::model::ffnn, proj_weight)), mutable_buffer{ffnn.proj_weight}, } { } ircd::gpt::pipe::model::ffnn::ffnn(cl::data *const master, const off_t offset, const gpt::model::ffnn &ffnn) :norm { master, offset + off_t(offsetof(gpt::model::ffnn, norm)) + off_t(offsetof(gpt::model::norm, bias)), const_buffer{ffnn.norm.bias.elem}, offset + off_t(offsetof(gpt::model::ffnn, norm)) + off_t(offsetof(gpt::model::norm, weight)), const_buffer{ffnn.norm.weight.elem}, } ,fcon { master, offset + off_t(offsetof(gpt::model::ffnn, fcon_bias)), const_buffer{ffnn.fcon_bias.fcon}, offset + off_t(offsetof(gpt::model::ffnn, fcon_weight)), const_buffer{ffnn.fcon_weight}, } ,proj { master, offset + off_t(offsetof(gpt::model::ffnn, proj_bias)), const_buffer{ffnn.proj_bias.elem}, offset + off_t(offsetof(gpt::model::ffnn, proj_weight)), const_buffer{ffnn.proj_weight}, } { } // // pipe::model::attn // ircd::gpt::pipe::model::attn::attn(cl::data *const master, const off_t offset, gpt::model::attn &attn) :norm { master, offset + off_t(offsetof(gpt::model::attn, norm)) + off_t(offsetof(gpt::model::norm, bias)), mutable_buffer{attn.norm.bias.elem}, offset + off_t(offsetof(gpt::model::attn, norm)) + off_t(offsetof(gpt::model::norm, weight)), mutable_buffer{attn.norm.weight.elem}, } ,fcon { master, offset + off_t(offsetof(gpt::model::attn, fcon_bias)), mutable_buffer{attn.fcon_bias.fcon}, offset + off_t(offsetof(gpt::model::attn, fcon_weight)), mutable_buffer{attn.fcon_weight}, } ,proj { master, offset + off_t(offsetof(gpt::model::attn, proj_bias)), mutable_buffer{attn.proj_bias.elem}, offset + off_t(offsetof(gpt::model::attn, proj_weight)), mutable_buffer{attn.proj_weight}, } { } ircd::gpt::pipe::model::attn::attn(cl::data *const master, const off_t offset, const gpt::model::attn &attn) :norm { master, offset + off_t(offsetof(gpt::model::attn, norm)) + off_t(offsetof(gpt::model::norm, bias)), const_buffer{attn.norm.bias.elem}, offset + off_t(offsetof(gpt::model::attn, norm)) + off_t(offsetof(gpt::model::norm, weight)), const_buffer{attn.norm.weight.elem}, } ,fcon { master, offset + off_t(offsetof(gpt::model::attn, fcon_bias)), const_buffer{attn.fcon_bias.fcon}, offset + off_t(offsetof(gpt::model::attn, fcon_weight)), const_buffer{attn.fcon_weight}, } ,proj { master, offset + off_t(offsetof(gpt::model::attn, proj_bias)), const_buffer{attn.proj_bias.elem}, offset + off_t(offsetof(gpt::model::attn, proj_weight)), const_buffer{attn.proj_weight}, } { } // // pipe::model::tensor // ircd::gpt::pipe::model::tensor::tensor(cl::data *const master, const off_t bias_offset, const mutable_buffer &bias, const off_t weight_offset, const mutable_buffer &weight) :bias { master, bias_offset, bias, } ,weight { master, weight_offset, weight, } { } ircd::gpt::pipe::model::tensor::tensor(cl::data *const master, const off_t bias_offset, const const_buffer &bias, const off_t weight_offset, const const_buffer &weight) :bias { master, bias_offset, bias, } ,weight { master, weight_offset, weight, } { } // // pipe::model::matrix // ircd::gpt::pipe::model::matrix::matrix(cl::data *const master, const off_t offset, const mutable_buffer ¶m) :param { master[0], { pad_to(ircd::size(param), 4096), offset, }, } ,moment { // first moment { master[1], { pad_to(ircd::size(param), 4096), offset, }, }, // second moment { master[2], { pad_to(ircd::size(param), 4096), offset, }, }, } { assert(aligned(offset, 4096)); } ircd::gpt::pipe::model::matrix::matrix(cl::data *const master, const off_t offset, const const_buffer ¶m) :param { master[0], { pad_to(ircd::size(param), 4096), offset, }, } { assert(aligned(offset, 4096)); }