// Matrix Construct // // Copyright (C) Matrix Construct Developers, Authors & Contributors // Copyright (C) 2016-2018 Jason Volk // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice is present in all copies. The // full license for this software is available in the LICENSE file. #include #include #include #include "fs_aio.h" namespace ircd::fs::aio { static int reqprio(int); } /////////////////////////////////////////////////////////////////////////////// // // ircd/fs/aio.h // // The contents of this section override weak symbols in ircd/fs.cc when this // unit is conditionally compiled and linked on AIO-supporting platforms. On // non-supporting platforms, or for items not listed here, the definitions in // ircd/fs.cc are the default. decltype(ircd::fs::aio::support) ircd::fs::aio::support { true }; /// True if IOCB_CMD_FSYNC is supported by AIO. If this is false then /// fs::fsync_opts::async=true flag is ignored. decltype(ircd::fs::aio::support_fsync) ircd::fs::aio::support_fsync { false //TODO: get this info }; /// True if IOCB_CMD_FDSYNC is supported by AIO. If this is false then /// fs::fsync_opts::async=true flag is ignored. decltype(ircd::fs::aio::support_fdsync) ircd::fs::aio::support_fdsync { false //TODO: get this info }; decltype(ircd::fs::aio::MAX_EVENTS) ircd::fs::aio::MAX_EVENTS { 128L //TODO: get this info }; decltype(ircd::fs::aio::MAX_REQPRIO) ircd::fs::aio::MAX_REQPRIO { info::aio_reqprio_max }; // // init // ircd::fs::aio::init::init() { assert(!system); if(!bool(aio::enable)) return; system = new struct aio::system ( size_t(max_events), size_t(max_submit) ); } ircd::fs::aio::init::~init() noexcept { delete system; system = nullptr; } /////////////////////////////////////////////////////////////////////////////// // // fs_aio.h // // // request::fsync // ircd::fs::aio::request::fsync::fsync(const int &fd, const sync_opts &opts) :request{fd, &opts} { aio_reqprio = reqprio(opts.priority); aio_lio_opcode = IOCB_CMD_FSYNC; aio_buf = 0; aio_nbytes = 0; aio_offset = 0; } void ircd::fs::aio::fsync(const fd &fd, const sync_opts &opts) { aio::request::fsync request { fd, opts }; request(); } // // request::fdsync // ircd::fs::aio::request::fdsync::fdsync(const int &fd, const sync_opts &opts) :request{fd, &opts} { aio_reqprio = reqprio(opts.priority); aio_lio_opcode = IOCB_CMD_FDSYNC; aio_buf = 0; aio_nbytes = 0; aio_offset = 0; } void ircd::fs::aio::fdsync(const fd &fd, const sync_opts &opts) { aio::request::fdsync request { fd, opts }; request(); } // // request::read // ircd::fs::aio::request::read::read(const int &fd, const const_iovec_view &iov, const read_opts &opts) :request{fd, &opts} { aio_reqprio = reqprio(opts.priority); aio_lio_opcode = IOCB_CMD_PREADV; aio_buf = uintptr_t(iov.data()); aio_nbytes = iov.size(); aio_offset = opts.offset; } size_t ircd::fs::aio::read(const fd &fd, const const_iovec_view &bufs, const read_opts &opts) { aio::request::read request { fd, bufs, opts }; const scope_count cur_reads{stats.cur_reads}; stats.max_reads = std::max(stats.max_reads, stats.cur_reads); // Make request; blocks ircd::ctx until completed or throw. const size_t bytes { request() }; stats.bytes_read += bytes; stats.reads++; return bytes; } // // request::write // ircd::fs::aio::request::write::write(const int &fd, const const_iovec_view &iov, const write_opts &opts) :request{fd, &opts} { aio_reqprio = reqprio(opts.priority); aio_lio_opcode = IOCB_CMD_PWRITEV; aio_buf = uintptr_t(iov.data()); aio_nbytes = iov.size(); aio_offset = opts.offset; } size_t ircd::fs::aio::write(const fd &fd, const const_iovec_view &bufs, const write_opts &opts) { aio::request::write request { fd, bufs, opts }; #ifndef _NDEBUG const size_t req_bytes { fs::bytes(request.iovec()) }; #endif // track current write count const scope_count cur_writes{stats.cur_writes}; stats.max_writes = std::max(stats.max_writes, stats.cur_writes); // track current write bytes count stats.cur_bytes_write += req_bytes; const unwind dec{[&req_bytes] { stats.cur_bytes_write -= req_bytes; }}; // Make the request; ircd::ctx blocks here. Throws on error const size_t bytes { request() }; // Does linux ever not complete all bytes for an AIO? assert(bytes == req_bytes); stats.bytes_write += bytes; stats.writes++; return bytes; } // // request::prefetch // void ircd::fs::aio::prefetch(const fd &fd, const size_t &size, const read_opts &opts) { } // // request // ircd::fs::aio::request::request(const int &fd, const struct opts *const &opts) :iocb{0} ,opts{opts} { assert(system); assert(ctx::current); aio_flags = IOCB_FLAG_RESFD; aio_resfd = system->resfd.native_handle(); aio_fildes = fd; aio_data = uintptr_t(this); } ircd::fs::aio::request::~request() noexcept { } /// Cancel a request. The handler callstack is invoked directly from here /// which means any callback will be invoked or ctx will be notified if /// appropriate. void ircd::fs::aio::request::cancel() { assert(system); system->cancel(*this); stats.bytes_cancel += bytes(iovec()); stats.cancel++; } /// Submit a request and properly yield the ircd::ctx. When this returns the /// result will be available or an exception will be thrown. size_t ircd::fs::aio::request::operator()() { assert(system); assert(ctx::current); assert(waiter == ctx::current); const size_t submitted_bytes { bytes(iovec()) }; // Update stats for submission phase stats.bytes_requests += submitted_bytes; stats.requests++; const auto &curcnt(stats.requests - stats.complete); stats.max_requests = std::max(stats.max_requests, curcnt); // Wait here until there's room to submit a request system->dock.wait([] { return system->request_avail() > 0; }); // Submit to system system->submit(*this); // Wait for completion system->wait(*this); assert(retval <= ssize_t(submitted_bytes)); // Update stats for completion phase. stats.bytes_complete += submitted_bytes; stats.complete++; if(retval == -1) { stats.bytes_errors += submitted_bytes; stats.errors++; throw fs::error { make_error_code(errcode) }; } return size_t(retval); } bool ircd::fs::aio::request::completed() const { return retval != std::numeric_limits::min(); } ircd::fs::const_iovec_view ircd::fs::aio::request::iovec() const { return { reinterpret_cast(aio_buf), aio_nbytes }; } // // system // decltype(ircd::fs::aio::system::eventfd_flags) ircd::fs::aio::system::eventfd_flags { EFD_CLOEXEC | EFD_NONBLOCK }; // // system::system // ircd::fs::aio::system::system(const size_t &max_events, const size_t &max_submit) try :event { max_events } ,queue { max_submit } ,resfd { ios::get(), int(syscall(::eventfd, ecount, eventfd_flags)) } { syscall(this->max_events(), &idp); log::debug { "Established AIO(%p) context (fd:%d max_events:%zu max_submit:%zu)", this, int(resfd.native_handle()), this->max_events(), this->max_submit(), }; } catch(const std::exception &e) { log::error { "Error starting AIO context %p :%s", (const void *)this, e.what() }; } ircd::fs::aio::system::~system() noexcept try { assert(qcount == 0); const ctx::uninterruptible::nothrow ui; interrupt(); wait(); boost::system::error_code ec; resfd.close(ec); syscall(idp); } catch(const std::exception &e) { log::critical { "Error shutting down AIO context %p :%s", (const void *)this, e.what() }; } bool ircd::fs::aio::system::interrupt() { if(!resfd.is_open()) return false; if(handle_set) resfd.cancel(); else ecount = -1; return true; } bool ircd::fs::aio::system::wait() { if(!resfd.is_open()) return false; log::debug { "Waiting for AIO context %p", this }; dock.wait([this] { return ecount == uint64_t(-1); }); assert(request_count() == 0); return true; } void ircd::fs::aio::system::wait(request &request) try { assert(ctx::current == request.waiter); while(request.retval == std::numeric_limits::min()) ctx::wait(); } catch(const ctx::interrupted &e) { // When the ctx is interrupted we're obligated to cancel the request. // The handler callstack is invoked directly from here by cancel() for // what it's worth but we rethrow the interrupt anyway. if(!request.completed()) request.cancel(); throw; } catch(const ctx::terminated &) { if(!request.completed()) request.cancel(); throw; } void ircd::fs::aio::system::cancel(request &request) { assert(request.retval == std::numeric_limits::min()); assert(request.aio_data == uintptr_t(&request)); iocb *const cb { static_cast(&request) }; const auto eit { std::remove(begin(queue), begin(queue) + qcount, cb) }; const auto qcount { size_t(std::distance(begin(queue), eit)) }; // We know something was erased if the qcount no longer matches const bool erased_from_queue { this->qcount > qcount }; // Make the qcount accurate again after any erasure. assert(!erased_from_queue || this->qcount == qcount + 1); assert(erased_from_queue || this->qcount == qcount); if(erased_from_queue) { this->qcount--; dock.notify_one(); stats.cur_queued--; } // Setup an io_event result which we will handle as a normal event // immediately on this stack. We create our own cancel result if // the request was not yet submitted to the system so the handler // remains agnostic to our userspace queues. io_event result {0}; if(erased_from_queue) { result.data = cb->aio_data; result.obj = uintptr_t(cb); result.res = -1; result.res2 = ECANCELED; } else { syscall_nointr(idp, cb, &result); in_flight--; stats.cur_submits--; dock.notify_one(); } handle_event(result); } void ircd::fs::aio::system::submit(request &request) { assert(request.opts); assert(qcount < queue.size()); assert(qcount + in_flight < max_events()); assert(request.aio_data == uintptr_t(&request)); const ctx::critical_assertion ca; queue.at(qcount++) = static_cast(&request); stats.cur_queued++; stats.max_queued = std::max(stats.max_queued, stats.cur_queued); assert(stats.cur_queued == qcount); // Determine whether this request will trigger a flush of the queue // and be submitted itself as well. const bool submit_now { // The nodelay flag is set by the user. request.opts->nodelay // The queue has reached its limits. || qcount >= max_submit() }; const size_t submitted { submit_now? submit() : 0 }; // Only post the chaser when the queue has one item. If it has more // items the chaser was already posted after the first item and will // flush the whole queue down to 0. if(qcount == 1) ircd::post(std::bind(&system::chase, this)); } /// The chaser is posted to the IRCd event loop after the first request is /// Ideally more requests will queue up before the chaser reaches the front /// of the IRCd event queue and executes. void ircd::fs::aio::system::chase() noexcept try { if(!qcount) return; const auto submitted { submit() }; stats.chases++; assert(!qcount); } catch(const std::exception &e) { throw panic { "AIO(%p) system::chase() qcount:%zu :%s", this, qcount, e.what() }; } /// The submitter submits all queued requests and resets the count. size_t ircd::fs::aio::system::submit() try { assert(qcount > 0); assert(in_flight + qcount <= MAX_EVENTS); assert(in_flight + qcount <= max_events()); const ctx::slice_usage_warning message { "fs::aio::system::submit(in_flight:%zu qcount:%zu)", in_flight, qcount }; const bool idle { in_flight == 0 }; const auto submitted { syscall(idp, qcount, queue.data()) }; in_flight += submitted; qcount -= submitted; assert(!qcount); stats.submits++; stats.cur_queued -= submitted; stats.cur_submits += submitted; stats.max_submits = std::max(stats.max_submits, stats.cur_submits); assert(stats.cur_queued == qcount); assert(stats.cur_submits == in_flight); if(idle && submitted > 0 && !handle_set) set_handle(); return submitted; } catch(const std::system_error &e) { using std::errc; switch(e.code().value()) { // EAGAIN may be thrown to prevent blocking. TODO: handle case int(errc::resource_unavailable_try_again): //throw; // Manpages sez that EBADF is thrown if the fd in the FIRST iocb has // an issue. TODO: handle this by tossing the first iocb and continue. case int(errc::bad_file_descriptor): //throw; // All other errors unexpected. default: ircd::terminate{ircd::error { "AIO(%p) system::submit() qcount:%zu :%s", this, qcount, e.what() }}; } } void ircd::fs::aio::system::set_handle() try { assert(!handle_set); handle_set = true; ecount = 0; const asio::mutable_buffers_1 bufs { &ecount, sizeof(ecount) }; auto handler { std::bind(&system::handle, this, ph::_1, ph::_2) }; resfd.async_read_some(bufs, std::move(handler)); } catch(...) { handle_set = false; throw; } /// Handle notifications that requests are complete. void ircd::fs::aio::system::handle(const boost::system::error_code &ec, const size_t bytes) noexcept try { namespace errc = boost::system::errc; assert((bytes == 8 && !ec && ecount >= 1) || (bytes == 0 && ec)); assert(!ec || ec.category() == asio::error::get_system_category()); assert(handle_set); handle_set = false; switch(ec.value()) { case errc::success: handle_events(); break; case errc::interrupted: break; case errc::operation_canceled: throw ctx::interrupted(); default: throw_system_error(ec); } if(in_flight > 0 && !handle_set) set_handle(); } catch(const ctx::interrupted &) { log::debug { "AIO context %p interrupted", this }; ecount = -1; dock.notify_all(); } void ircd::fs::aio::system::handle_events() noexcept try { assert(!ctx::current); // The number of completed requests available in events[]. This syscall // is restarted by us on EINTR. After restart, it may or may not find any ready // events but it never blocks to do so. const auto count { syscall_nointr(idp, 0, event.size(), event.data(), nullptr) }; // The count should be at least 1 event. The only reason to return 0 might // be related to an INTR; this assert will find out and may be commented. //assert(count > 0); assert(count >= 0); in_flight -= count; stats.cur_submits -= count; stats.handles++; if(likely(count)) dock.notify_one(); for(ssize_t i(0); i < count; ++i) handle_event(event[i]); } catch(const std::exception &e) { log::error { "AIO(%p) handle_events: %s", this, e.what() }; } void ircd::fs::aio::system::handle_event(const io_event &event) noexcept try { // The kernel always references the iocb in `event.obj` auto *const iocb { reinterpret_cast(event.obj) }; // We referenced our request (which extends the same iocb anyway) // for the kernel to carry through as an opaque in `event.data`. auto &request { *reinterpret_cast(event.data) }; // Check that everything lines up. assert(iocb == static_cast(&request)); assert(request.aio_data == iocb->aio_data); assert(request.aio_data == uintptr_t(&request)); // Assert that we understand the return-value semantics of this interface. assert(event.res2 >= 0); assert(event.res == -1 || event.res2 == 0); // Set result indicators request.retval = std::max(event.res, -1LL); request.errcode = event.res >= -1? event.res2 : std::abs(event.res); // Notify the waiting context. Note that we are on the main async stack // but it is safe to notify from here. assert(request.waiter); assert(ctx::current == nullptr); ctx::notify(*request.waiter); stats.events++; } catch(const std::exception &e) { log::critical { "Unhandled request(%lu) event(%p) error: %s", event.data, &event, e.what() }; } size_t ircd::fs::aio::system::request_avail() const { assert(request_count() <= max_events()); return max_events() - request_count(); } size_t ircd::fs::aio::system::request_count() const { return qcount + in_flight; } size_t ircd::fs::aio::system::max_submit() const { return queue.size(); } size_t ircd::fs::aio::system::max_events() const { return event.size(); } // // internal util // /// Translate an ircd::fs opts priority integer to an AIO priority integer. /// The ircd::fs priority integer is like a nice value. The AIO value is /// positive [0, MAX_REQPRIO]. This function takes an ircd::fs value and /// shifts it to the AIO value. int ircd::fs::aio::reqprio(int input) { static const auto median { int(MAX_REQPRIO / 2) }; input = std::max(input, 0 - median); input = std::min(input, median); input = MAX_REQPRIO - (input + median); assert(input >= 0 && input <= int(MAX_REQPRIO)); return input; }