/* * charybdis: 21st Century IRC++d * util.h: Miscellaneous utilities * * Copyright (C) 2016 Charybdis Development Team * Copyright (C) 2016 Jason Volk * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice is present in all copies. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #pragma once #define HAVE_IRCD_UTIL_H #ifdef __cplusplus namespace ircd { inline namespace util { #define IRCD_EXPCAT(a, b) a ## b #define IRCD_CONCAT(a, b) IRCD_EXPCAT(a, b) #define IRCD_UNIQUE(a) IRCD_CONCAT(a, __COUNTER__) #define IRCD_OVERLOAD(NAME) \ struct NAME##_t {}; \ static constexpr NAME##_t NAME {}; #define IRCD_WEAK_TYPEDEF(TYPE, NAME) \ struct NAME \ :TYPE \ { \ using TYPE::TYPE; \ }; #define IRCD_STRONG_TYPEDEF(TYPE, NAME) \ struct NAME \ { \ TYPE val; \ \ operator const TYPE &() const { return val; } \ operator TYPE &() { return val; } \ }; #define IRCD_WEAK_T(TYPE) \ IRCD_WEAK_TYPEDEF(TYPE, IRCD_UNIQUE(weak_t)) // ex: using foo_t = IRCD_STRONG_T(int) #define IRCD_STRONG_T(TYPE) \ IRCD_STRONG_TYPEDEF(TYPE, IRCD_UNIQUE(strong_t)) template using custom_ptr = std::unique_ptr>; struct scope { const std::function func; template scope(F &&func); scope(const scope &) = delete; ~scope() noexcept; }; template scope::scope(F &&func) :func(std::forward(func)) { } inline scope::~scope() noexcept { func(); } // For conforming enums include a _NUM_ as the last element, // then num_of() works template constexpr typename std::underlying_type::type num_of() { return static_cast::type>(Enum::_NUM_); } // Iteration of a num_of() conforming enum template typename std::enable_if::value, void>::type for_each(const std::function &func) { for(size_t i(0); i < num_of(); ++i) func(static_cast(i)); } struct case_insensitive_less { bool operator()(const std::string &a, const std::string &b) const { return std::lexicographical_compare(begin(a), end(a), begin(b), end(b), [] (const char &a, const char &b) { return tolower(a) < tolower(b); }); } }; /** * flag-enum utilities * * This relaxes the strong typing of enums to allow bitflags with operations on the elements * with intuitive behavior. * * If the project desires absolute guarantees on the strong enum typing then this can be tucked * away in some namespace and imported into select scopes instead. */ template constexpr typename std::enable_if::value, Enum>::type operator~(const Enum &a) { using enum_t = typename std::underlying_type::type; return static_cast(~static_cast(a)); } template constexpr typename std::enable_if::value, bool>::type operator!(const Enum &a) { using enum_t = typename std::underlying_type::type; return !static_cast(a); } template constexpr typename std::enable_if::value, Enum>::type operator|(const Enum &a, const Enum &b) { using enum_t = typename std::underlying_type::type; return static_cast(static_cast(a) | static_cast(b)); } template constexpr typename std::enable_if::value, Enum>::type operator&(const Enum &a, const Enum &b) { using enum_t = typename std::underlying_type::type; return static_cast(static_cast(a) & static_cast(b)); } template constexpr typename std::enable_if::value, Enum>::type operator^(const Enum &a, const Enum &b) { using enum_t = typename std::underlying_type::type; return static_cast(static_cast(a) ^ static_cast(b)); } template constexpr typename std::enable_if::value, Enum &>::type operator|=(Enum &a, const Enum &b) { using enum_t = typename std::underlying_type::type; return (a = (a | b)); } template constexpr typename std::enable_if::value, Enum &>::type operator&=(Enum &a, const Enum &b) { using enum_t = typename std::underlying_type::type; return (a = (a & b)); } template constexpr typename std::enable_if::value, Enum &>::type operator^=(Enum &a, const Enum &b) { using enum_t = typename std::underlying_type::type; return (a = (a ^ b)); } inline size_t size(std::ostream &s) { const auto cur(s.tellp()); s.seekp(0, std::ios::end); const auto ret(s.tellp()); s.seekp(cur, std::ios::beg); return ret; } inline std::pair microtime() { struct timeval tv; gettimeofday(&tv, nullptr); return { tv.tv_sec, tv.tv_usec }; } inline ssize_t microtime(char *const &buf, const size_t &size) { const auto mt(microtime()); return snprintf(buf, size, "%zd.%06d", mt.first, mt.second); } template std::string string(const T &s) { using std::stringstream; return static_cast(stringstream{} << s).str(); } inline auto operator!(const std::string &str) { return str.empty(); } constexpr size_t hash(const char *const &str, const size_t i = 0) { return !str[i]? 7681ULL : (hash(str, i+1) * 33ULL) ^ str[i]; } inline size_t hash(const std::string &str, const size_t i = 0) { return i >= str.size()? 7681ULL : (hash(str, i+1) * 33ULL) ^ str.at(i); } /*** * C++14 user defined literals * * These are very useful for dealing with space. Simply write 8_MiB and it's * as if a macro turned that into (8 * 1024 * 1024) at compile time. */ #define UNIT_LITERAL_LL(name, morphism) \ constexpr auto \ operator"" _ ## name(const unsigned long long val) \ { \ return (morphism); \ } #define UNIT_LITERAL_LD(name, morphism) \ constexpr auto \ operator"" _ ## name(const long double val) \ { \ return (morphism); \ } // IEC unit literals UNIT_LITERAL_LL( B, val ) UNIT_LITERAL_LL( KiB, val * 1024LL ) UNIT_LITERAL_LL( MiB, val * 1024LL * 1024LL ) UNIT_LITERAL_LL( GiB, val * 1024LL * 1024LL * 1024LL ) UNIT_LITERAL_LL( TiB, val * 1024LL * 1024LL * 1024LL * 1024LL ) UNIT_LITERAL_LL( PiB, val * 1024LL * 1024LL * 1024LL * 1024LL * 1024LL ) UNIT_LITERAL_LL( EiB, val * 1024LL * 1024LL * 1024LL * 1024LL * 1024LL * 1024LL ) UNIT_LITERAL_LD( B, val ) UNIT_LITERAL_LD( KiB, val * 1024.0L ) UNIT_LITERAL_LD( MiB, val * 1024.0L * 1024.0L ) UNIT_LITERAL_LD( GiB, val * 1024.0L * 1024.0L * 1024.0L ) UNIT_LITERAL_LD( TiB, val * 1024.0L * 1024.0L * 1024.0L * 1024.0L ) UNIT_LITERAL_LD( PiB, val * 1024.0L * 1024.0L * 1024.0L * 1024.0L * 1024.0L ) UNIT_LITERAL_LD( EiB, val * 1024.0L * 1024.0L * 1024.0L * 1024.0L * 1024.0L * 1024.0L ) // SI unit literals UNIT_LITERAL_LL( KB, val * 1000LL ) UNIT_LITERAL_LL( MB, val * 1000LL * 1000LL ) UNIT_LITERAL_LL( GB, val * 1000LL * 1000LL * 1000LL ) UNIT_LITERAL_LL( TB, val * 1000LL * 1000LL * 1000LL * 1000LL ) UNIT_LITERAL_LL( PB, val * 1000LL * 1000LL * 1000LL * 1000LL * 1000LL ) UNIT_LITERAL_LL( EB, val * 1000LL * 1000LL * 1000LL * 1000LL * 1000LL * 1000LL ) UNIT_LITERAL_LD( KB, val * 1000.0L ) UNIT_LITERAL_LD( MB, val * 1000.0L * 1000.0L ) UNIT_LITERAL_LD( GB, val * 1000.0L * 1000.0L * 1000.0L ) UNIT_LITERAL_LD( TB, val * 1000.0L * 1000.0L * 1000.0L * 1000.0L ) UNIT_LITERAL_LD( PB, val * 1000.0L * 1000.0L * 1000.0L * 1000.0L * 1000.0L ) UNIT_LITERAL_LD( EB, val * 1000.0L * 1000.0L * 1000.0L * 1000.0L * 1000.0L * 1000.0L ) /* Output the sizeof a structure at compile time. * This stops the compiler with an error (good) containing the size of the target * in the message. * * example: struct foo {}; IRCD_TEST_SIZEOF(foo) */ template struct _TEST_SIZEOF_; #define IRCD_TEST_SIZEOF(name) \ ircd::util::_TEST_SIZEOF_ _test_; /* This is a template alternative to nothrow overloads, which * allows keeping the function arguments sanitized of the thrownness. */ template constexpr bool is_nothrow() { return std::is_same::value; } template using nothrow_overload = typename std::enable_if(), return_t>::type; template using throw_overload = typename std::enable_if(), return_t>::type; // // Test if type is forward declared or complete // template struct is_complete :std::false_type { }; template struct is_complete :std::true_type { }; } // namespace util } // namespace ircd #endif // __cplusplus