/* * charybdis: an advanced ircd. * client.c: Controls clients. * * Copyright (C) 1990 Jarkko Oikarinen and University of Oulu, Co Center * Copyright (C) 1996-2002 Hybrid Development Team * Copyright (C) 2002-2005 ircd-ratbox development team * Copyright (C) 2007 William Pitcock * Copyright (C) 2016 Charybdis Development Team * Copyright (C) 2016 Jason Volk * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA */ #include namespace ircd { // Default time limit for how long a client connection can be in "async mode" // (or idle mode) after which it is disconnected. const auto async_timeout { 40s }; // Time limit for how long a connected client can be in "request mode." This // should never be hit unless there's an error in the handling code. const auto request_timeout { 20s }; // The pool of request contexts. When a client makes a request it does so by acquiring // a stack from this pool. The request handling and response logic can then be written // in a synchronous manner as if each connection had its own thread. ctx::pool request { "request", 4_MiB }; // Container for all active clients (connections) for iteration purposes. client::list client::clients; static bool handle_ec(client &, const net::error_code &); void async_recv_next(std::shared_ptr, const milliseconds &timeout); void async_recv_next(std::shared_ptr); void disconnect(client &, const net::dc & = net::dc::RST); void disconnect_all(); template std::shared_ptr make_client(args&&...); } // namespace ircd ircd::client::init::init() { request.add(32); } void ircd::client::init::interrupt() { if(request.active() || !client::clients.empty()) log::warning("Interrupting %zu requests; dropping %zu requests; disconnecting %zu clients...", request.active(), request.pending(), client::clients.size()); request.interrupt(); disconnect_all(); } ircd::client::init::~init() noexcept { interrupt(); if(request.active()) log::warning("Joining %zu active of %zu remaining request contexts...", request.active(), request.size()); else log::debug("Waiting for %zu request contexts to join...", request.size()); request.join(); if(unlikely(!client::clients.empty())) { log::error("%zu clients are unterminated...", client::clients.size()); assert(client::clients.empty()); } } ircd::hostport ircd::local(const client &client) { if(!client.sock) return hostport::null; return net::local_hostport(*client.sock); } ircd::hostport ircd::remote(const client &client) { if(!client.sock) return hostport::null; return net::remote_hostport(*client.sock); } ircd::http::response::write_closure ircd::write_closure(client &client) { // returns a function that can be called to send an iovector of data to a client return [&client](const ilist &iov) { //std::cout << "<<<< " << size(iov) << std::endl; //std::cout << iov << std::endl; //std::cout << "---- " << std::endl; const auto written { write(*client.sock, iov) }; }; } ircd::parse::read_closure ircd::read_closure(client &client) { // Returns a function the parser can call when it wants more data return [&client](char *&start, char *const &stop) { try { char *const got(start); read(client, start, stop); //std::cout << ">>>> " << std::distance(got, start) << std::endl; //std::cout << string_view{got, start} << std::endl; //std::cout << "----" << std::endl; } catch(const boost::system::system_error &e) { using namespace boost::system::errc; switch(e.code().value()) { case operation_canceled: throw http::error(http::REQUEST_TIMEOUT); default: throw; } } }; } char * ircd::read(client &client, char *&start, char *const &stop) { auto &sock(*client.sock); const std::array bufs {{ { start, stop } }}; char *const base(start); start += sock.read_some(bufs); return base; } const char * ircd::write(client &client, const char *&start, const char *const &stop) { auto &sock(*client.sock); const std::array bufs {{ { start, stop } }}; const char *const base(start); start += sock.write(bufs); return base; } void ircd::async_recv_next(std::shared_ptr client) { async_recv_next(std::move(client), milliseconds(-1)); } /// /// This function is the basis for the client's request loop. We still use /// an asynchronous pattern until there is activity on the socket (a request) /// in which case the switch to synchronous mode is made by jumping into an /// ircd::context drawn from the request pool. When the request is finished, /// the client exits back into asynchronous mode until the next request is /// received and rinse and repeat. // /// This sequence exists to avoid any possible c10k-style limitation imposed by /// dedicating a context and its stack space to the lifetime of a connection. /// This is similar to the thread-per-request pattern before async was in vogue. // /// Developers: Pay close attention to the comments to know exactly where you /// are and what you can do at any given point in this sequence. /// void ircd::async_recv_next(std::shared_ptr client, const milliseconds &timeout) { assert(bool(client)); assert(bool(client->sock)); // This call returns immediately so we no longer block the current context and // its stack while waiting for activity on idle connections between requests. auto &sock(*client->sock); sock(timeout, [client(std::move(client)), timeout](const net::error_code &ec) noexcept { // Right here this handler is executing on the main stack (not in any // ircd::context). if(!handle_ec(*client, ec)) return; // This call returns immediately because we can never block the main stack outside // of the ircd::context system. The context the closure ends up getting is the next // available from the request pool, which may not be available immediately so this // handler might be queued for some time after this call returns. request([ec, client(std::move(client)), timeout] { // Right here this handler is executing on an ircd::context with its own // stack dedicated to the lifetime of this request. If client::main() // returns true, we bring the client back into async mode to wait for // the next request. if(client->main()) async_recv_next(std::move(client), timeout); else disconnect(*client, net::dc::SSL_NOTIFY_YIELD); }); }); } // // client // ircd::client::client() :client{std::shared_ptr{}} { } ircd::client::client(const hostport &host_port, const seconds &timeout) :client { net::connect(host_port, timeout) } { } ircd::client::client(std::shared_ptr sock) :clit{clients, clients.emplace(end(clients), this)} ,sock{std::move(sock)} ,request_timer{ircd::timer::nostart} { } ircd::client::~client() noexcept try { //assert(!sock || !connected(*sock)); } catch(const std::exception &e) { log::critical("~client(%p): %s", this, e.what()); return; } /// Main client loop. /// /// This function parses requests off the socket in a loop until there are no /// more requests or there is a fatal error. The ctx will "block" to wait for /// more data off the socket during the middle of a request until the request /// timeout is reached. main() will not "block" to wait for more data after a /// request; it will simply `return true` which puts this client back into /// async mode and relinquishes this stack. returning false will disconnect /// the client rather than putting it back into async mode. Exceptions do not /// pass below main() therefor anything unhandled is an internal server error /// and the client is disconnected as well. /// /// Before main(), the client had been sitting in async mode waiting for /// socket activity. Once activity with data was detected indicating a request, /// the client was dispatched to the request pool where it is paired to an /// ircd::ctx with a stack. main() is then invoked on that ircd::ctx stack. /// Nothing from the socket has been read into userspace before main(). /// bool ircd::client::main() noexcept try { const auto header_max{8_KiB}; //const auto content_max{64_KiB}; const auto content_max{8_MiB}; const unique_buffer buffer { header_max + content_max }; parse::buffer pb{buffer}; parse::capstan pc{pb, read_closure(*this)}; do { request_timer = ircd::timer{}; const socket::scope_timeout timeout { *sock, request_timeout, [client(shared_from(*this))] (const net::error_code &ec) { if(!ec) disconnect(*client, net::dc::SSL_NOTIFY_YIELD); } }; if(!handle_request(*this, pc)) return false; pb.remove(); } while(pc.unparsed()); return true; } catch(const boost::system::system_error &e) { using namespace boost::system::errc; using boost::system::get_system_category; using boost::asio::error::get_ssl_category; using boost::asio::error::get_misc_category; const error_code &ec{e.code()}; const int &value{ec.value()}; if(ec.category() == get_system_category()) switch(value) { case success: assert(0); return true; case broken_pipe: case connection_reset: case not_connected: disconnect(*this, net::dc::RST); return false; case operation_canceled: disconnect(*this, net::dc::SSL_NOTIFY); return false; case bad_file_descriptor: return false; default: break; } else if(ec.category() == get_ssl_category()) switch(uint8_t(value)) { case SSL_R_SHORT_READ: case SSL_R_PROTOCOL_IS_SHUTDOWN: disconnect(*this, net::dc::RST); return false; default: break; } else if(ec.category() == get_misc_category()) switch(value) { case boost::asio::error::eof: disconnect(*this, net::dc::RST); return false; default: break; } log::error("client(%p): (unexpected) %s: (%d) %s", (const void *)this, ec.category().name(), value, ec.message()); disconnect(*this, net::dc::RST); return false; } catch(const std::exception &e) { log::error("client[%s] [500 Internal Error]: %s", string(remote(*this)), e.what()); #ifdef RB_DEBUG throw; #else return false; #endif } std::shared_ptr ircd::add_client(std::shared_ptr s) { //ip::tcp::socket &sd(*s); //sd.non_blocking(false); //static const asio::socket_base::keep_alive keep_alive(true); //sd.set_option(keep_alive); //static const asio::socket_base::linger linger{true, 10}; //sd.set_option(linger); const auto client { make_client(std::move(s)) }; log::debug("client[%s] CONNECTED local[%s]", string(remote(*client)), string(local(*client))); async_recv_next(client, async_timeout); return client; } template std::shared_ptr ircd::make_client(args&&... a) { return std::make_shared(std::forward(a)...); } void ircd::disconnect_all() { auto it(begin(client::clients)); while(it != end(client::clients)) { auto *const client(*it); ++it; try { disconnect(*client, net::dc::SSL_NOTIFY); } catch(const std::exception &e) { log::warning("Error disconnecting client @%p: %s", client, e.what()); } } } void ircd::disconnect(client &client, const net::dc &type) { if(likely(client.sock)) disconnect(*client.sock, type); } namespace ircd { static bool handle_ec_success(client &); static bool handle_ec_timeout(client &); static bool handle_ec_eof(client &); static bool handle_ec_short_read(client &); static bool handle_ec_default(client &, const net::error_code &); } bool ircd::handle_ec(client &client, const net::error_code &ec) { using namespace boost::system::errc; using boost::system::get_system_category; using boost::asio::error::get_ssl_category; using boost::asio::error::get_misc_category; if(ec.category() == get_system_category()) switch(ec.value()) { case success: return handle_ec_success(client); case operation_canceled: return handle_ec_timeout(client); default: return handle_ec_default(client, ec); } else if(ec.category() == get_misc_category()) switch(ec.value()) { case asio::error::eof: return handle_ec_eof(client); default: return handle_ec_default(client, ec); } else if(ec.category() == get_ssl_category()) switch(ec.value()) { case SSL_R_SHORT_READ: return handle_ec_short_read(client); default: return handle_ec_default(client, ec); } else return handle_ec_default(client, ec); } bool ircd::handle_ec_default(client &client, const net::error_code &ec) { log::debug("client(%p): %s: %s", &client, ec.category().name(), ec.message()); disconnect(client, net::dc::SSL_NOTIFY); return false; } bool ircd::handle_ec_short_read(client &client) try { log::warning("client[%s]: short_read", string(remote(client))); disconnect(client, net::dc::RST); return false; } catch(const std::exception &e) { log::error("client(%p): short_read: %s", &client, e.what()); return false; } bool ircd::handle_ec_eof(client &client) try { log::debug("client[%s]: EOF", string(remote(client))); disconnect(client, net::dc::RST); return false; } catch(const std::exception &e) { log::error("client(%p): EOF: %s", &client, e.what()); return false; } bool ircd::handle_ec_timeout(client &client) try { assert(bool(client.sock)); log::warning("client[%s]: disconnecting after inactivity timeout", string(remote(client))); disconnect(client, net::dc::SSL_NOTIFY); return false; } catch(const std::exception &e) { log::error("client(%p): timeout: %s", &client, e.what()); return false; } bool ircd::handle_ec_success(client &client) { return true; }