// Matrix Construct Is All You Need Is All You Need Is AllĊĊĊĊĊĊĊĊ // // Copyright (C) Matrix Construct Developers, Authors & Contributors // Copyright (C) 2016-2021 Jason Volk // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice is present in all copies. The // full license for this software is available in the LICENSE file. decltype(ircd::gpt::log) ircd::gpt::log { "gpt" }; // // debug // void ircd::gpt::log_debug_prof(const opts &opts, const ctrl &ctrl, const pipe::prof &prof) { static char buf[2][512]; const auto head { debug_head(buf[0], opts, ctrl) }; for(uint i(0); i < prof.stages; ++i) { if(!std::get<1>(prof.info[i])) continue; log::logf { log, log::level::DEBUG, "%s %2u: %s", head, i, pipe::debug(buf[1], prof, i), }; } } void ircd::gpt::log_debug_topn(const opts &opts, const ctrl &ctrl) { static char buf[2][512]; const auto head { debug_head(buf[0], opts, ctrl) }; for(uint i(0); i < opts.top_n; ++i) log::logf { log, log::level::DEBUG, "%s %s", head, debug_top(buf[1], opts, ctrl, i), }; } void ircd::gpt::log_debug_labels(const opts &opts, const ctrl &ctrl) { static char buf[2][512]; const auto head { debug_head(buf[0], opts, ctrl) }; for(uint i(0); i < opts.labels; ++i) log::logf { log, log::level::DEBUG, "%s %s", head, debug_label(buf[1], opts, ctrl, i, 1), }; } void ircd::gpt::log_debug_attns_top(const opts &opts, const ctrl &ctrl) { static char buf[8][512]; const auto head { debug_head(buf[0], opts, ctrl) }; std::map tokm; for(uint i(0); i < opts.layers; ++i) for(uint j(0); j < opts.attn_rank; ++j) tokm[ctrl.attn[i][j]]++; std::vector> tok(begin(tokm), end(tokm)); std::sort(begin(tok), end(tok), [&tokm] (const auto &a, const auto &b) { return b.second < a.second; }); for(const auto &[idx, score] : tok) { const auto barsz { std::min(score, std::min(80U, uint(sizeof(buf[2]) - 1))) }; memset(buf[2], '|', barsz); buf[2][barsz] = '\0'; log::logf { log, log::level::DEBUG, "%s %s [%3u] %s %-3u", head, vocab::debug(buf[1], ctrl.token[idx], 1), idx, buf[2], score, }; } } void ircd::gpt::log_debug_attns(const opts &opts, const ctrl &ctrl) { static char buf[2][512]; const auto head { debug_head(buf[0], opts, ctrl) }; for(uint i(0); i < ctrl.count; ++i) log::logf { log, log::level::DEBUG, "%s %s", head, debug_attn(buf[1], opts, ctrl, i), }; } void ircd::gpt::log_debug_token(const opts &opts, const ctrl &ctrl, const uint i) { static char buf[2][512]; log::logf { log, log::level::DEBUG, "%s %s", debug_head(buf[0], opts, ctrl), debug_token_at(buf[1], opts, ctrl, i), }; } void ircd::gpt::log_debug(const opts &opts, const ctrl &ctrl) { static char buf[2][512]; log::logf { log, log::level::DEBUG, "%s %s", debug_head(buf[0], opts, ctrl), debug(buf[1], opts, ctrl), }; } /////////////////////////////////////////////////////////////////////////////// // // gpt::task // void ircd::gpt::reset(task &task) noexcept { clear(task); seed(task); } void ircd::gpt::clear(task &task) noexcept { assert(task.ctrl); memset(task.ctrl, 0x0, sizeof(gpt::ctrl)); } void ircd::gpt::seed(task &task) noexcept { assert(task.opts); seed(task, task.opts->seed); } void ircd::gpt::seed(task &task, const uint64_t &val) noexcept { assert(task.ctrl); task.ctrl->rand[0] = val; task.ctrl->rand[1] = val; task.ctrl->rand[2] = 65537; task.ctrl->rand[3] = -1UL; } // // gpt::task::task // ircd::gpt::task::task(const gpt::opts *const opts, gpt::ctrl *const ctrl) try :opts { opts } ,ctrl { ctrl } ,code { pipe::default_code?: (pipe::default_code = std::make_shared()) } ,model { std::make_unique ( *const_cast(gpt::model::default_model) ) } ,desc { this->opts, this->ctrl, *this->model, *this->code, } { assert(aligned(opts, size_t(cl::data::gart_page_size))); assert(aligned(ctrl, size_t(cl::data::gart_page_size))); seed(*this, this->opts->seed); } catch(const std::exception &e) { log::error { log, "Task ctor :%s", e.what() }; throw; } ircd::gpt::task::~task() noexcept { } ircd::string_view ircd::gpt::task::operator()(const mutable_buffer &out, const string_view &in) { u16 input_buf[1024]; const auto input_tokens { gpt::vocab::tokenize(input_buf, in) }; u16 output_buf[1024]; const auto output_tokens { operator()(output_buf, input_tokens) }; const auto output { gpt::vocab::detokenize(out, output_tokens) }; return output; } ircd::vector_view ircd::gpt::task::operator()(const vector_view &out, const vector_view &in) { assert(this->opts); const auto &opts{*this->opts}; assert(this->ctrl); auto &ctrl{*this->ctrl}; size_t in_i(0); for(; in_i < in.size() && ctrl.count < opts.buffer_tokens; in_i++) if(in[in_i] == 628) { ctrl.token[ctrl.count++] = 198; ctrl.token[ctrl.count++] = 198; } else ctrl.token[ctrl.count++] = in[in_i]; gpt::epoch epoch { *this, }; gpt::step step { epoch }; gpt::samp samp { step }; bool halt {false}; do { halt = samp(); } while(!halt); size_t out_i(0); for(; out_i < out.size() && in_i + out_i < ctrl.count; out_i++) out[out_i] = ctrl.token[in_i + out_i]; return vector_view { out, out_i }; } bool ircd::gpt::task::operator()() { gpt::epoch epoch { *this }; while(!epoch()) ctx::interruption_point(); return done(); } bool ircd::gpt::task::done() const noexcept { return false; } /////////////////////////////////////////////////////////////////////////////// // // epoch // namespace ircd::gpt { static thread_local u16 marker alignas(64) [1024]; } // // epoch::epoch // ircd::gpt::epoch::epoch(gpt::task &task) :task { task } ,desc { task.desc } ,opts { *task.opts } ,ctrl { *task.ctrl } ,id { ctrl.clk.epoch } ,start { 0 } ,stop { std::min(start + uint(opts.batch_size), gpt::model::default_data.size()) } ,moment { gpt::model::default_moment[0], gpt::model::default_moment[1], } { assert(task.opts); assert(task.ctrl); ctrl.clk.step = 0; } ircd::gpt::epoch::~epoch() noexcept { if(opts.debug & 0x80000000U) log_debug_prof(opts, ctrl, this->profile); } bool ircd::gpt::epoch::operator()() { gpt::step step { *this }; while(!step()) ctx::interruption_point(); if(!step.backpropagate()) throw error { "Failed to backprop." }; return done(); } bool ircd::gpt::epoch::done() const noexcept { return ctrl.clk.epoch != id; } void ircd::gpt::epoch::profile_accumulate(const pipe::prof &profile) { for(size_t i(0); i < profile.ts.size(); ++i) for(size_t j(0); j < profile.phases; ++j) this->profile.ts[i][j] += profile.ts[i][j]; } /////////////////////////////////////////////////////////////////////////////// // // step::step // ircd::gpt::step::step(gpt::epoch &epoch) :epoch { epoch } ,desc { epoch.desc } ,opts { epoch.opts } ,ctrl { epoch.ctrl } ,id { ctrl.clk.step } ,start { ctrl.clk.step * opts.batch_size } { assert(opts.batch_size > 0); ctrl.clk.samp = 0; ctrl.hit = 0; ctrl.miss = 0; ctrl.target.ppl = {{0}}; ctrl.target.loss = {{0}}; ctrl.select.ppl = {{0}}; ctrl.select.loss = {{0}}; for(uint i(0); i < opts.labels; ++i) { ctrl.label[i].ppl = {{0}}; ctrl.label[i].loss = {{0}}; } } ircd::gpt::step::~step() noexcept { if(opts.debug & 0x40000000U) log_debug_prof(opts, ctrl, this->profile); } bool ircd::gpt::step::backpropagate() { const auto hit { ctrl.target.logit.token == ctrl.select.logit.token }; const auto select_loss_mean { ctrl.select.loss.mean }; const auto target_loss_mean { ctrl.target.loss.mean }; const auto loss_mean { (target_loss_mean + select_loss_mean) / 2.0f }; static float mean_best { 10000.0f }, target_mean_best { 10000.0f }; static ulong hit_best; static bool tack, last_tack; last_tack = tack; const auto loss { loss_mean }; const bool improve_global { target_loss_mean < target_mean_best }; const bool improve { improve_global }; if(improve) mean_best = loss, target_mean_best = target_loss_mean, hit_best = ctrl.hit; else tack = !tack; const auto grad { !tack? loss : -loss }; const auto steps { (opts.training_steps + opts.validation_steps + opts.testing_steps) / opts.batch_size }; const auto step { this->epoch.id * steps + this->id }; log::logf { log, improve? log::level::INFO: log::level::ERROR, "epoch:%u step:%u completed range[%u -> %zu] dsid:%u target:%-10.7f select:%-10.7f loss:%-10.7f [ %10.7f ] hit:%u miss:%u", this->epoch.id, step, this->start, this->start + opts.batch_size, this->id * opts.batch_size + ctrl.clk.samp, target_loss_mean, select_loss_mean, loss, grad * opts.alpha, ctrl.hit, ctrl.miss, }; if(!opts.alpha) return true; if(!improve) return false; cl::exec { desc.model->decode->master[0], std::memory_order_acq_rel }; auto &model { *mutable_cast(desc.model->decode_const) }; const mutable_buffer model_buffer { reinterpret_cast(&model), sizeof(gpt::model::decoder) * 3 }; const mutable_buffer checkpoint_buffer { reinterpret_cast(&model) + sizeof(gpt::model::decoder) * 3, sizeof(gpt::model::decoder) * 3 }; if(improve) copy(checkpoint_buffer, model_buffer); else copy(model_buffer, checkpoint_buffer); ircd::timer stopwatch; backprop(opts, step, grad, model, epoch.moment); allocator::sync(model_buffer); char pbuf[1][32]; log::logf { log, improve? log::level::DEBUG: log::level::ERROR, "backpropagation step:%u lr:%-8.6f mean:%-10.7f$L hits:%-5u Tbest:%-10.7f$L Mbest:%-10.7f$L Hbest:%-5lu grad:{ %10.7f$L } %s", step, opts.alpha, loss_mean, ctrl.hit, target_mean_best, mean_best, hit_best, grad, pretty(pbuf[0], stopwatch.at(), 1), }; return true; } bool ircd::gpt::step::operator()() { gpt::samp samp { *this }; while(!samp()) ctx::interruption_point(); return done(); } bool ircd::gpt::step::done() const noexcept { return ctrl.clk.step != id; } void ircd::gpt::step::profile_accumulate(const pipe::prof &profile) { for(size_t i(0); i < profile.ts.size(); ++i) for(size_t j(0); j < profile.phases; ++j) this->profile.ts[i][j] += profile.ts[i][j]; epoch.profile_accumulate(profile); } /////////////////////////////////////////////////////////////////////////////// // // samp::samp // ircd::gpt::samp::samp(gpt::step &step) :step { step } ,desc { step.desc } ,opts { step.opts } ,ctrl { step.ctrl } ,id { ctrl.clk.samp } ,accept { -1 } ,dispatch { 1 } ,cycle { 0 } ,tokens { ctrl.count?: tokenize() } ,count { opts.limit > 0? tokens - opts.limit: opts.limit < 0? std::abs(opts.limit): !ctrl.count? tokens: 1 } { desc.cached = 0; ctrl.clk.cycle = cycle; ctrl.dispatch = dispatch; ctrl.accept = accept; ctrl.count = count; ctrl.tokens = tokens; ctrl.magic = 0xDEADBEEF; for(uint i(0); i < opts.labels; ++i) { ctrl.label[i].ppl = {{0}}; ctrl.label[i].loss = {{0}}; } assert(ctrl.count > 0); assert(ctrl.count < opts.context_tokens); assert(ctrl.count <= ctrl.tokens); if(opts.debug & 0x01) for(uint j(0); j < ctrl.count; ++j) log_debug_token(opts, ctrl, j); } ircd::gpt::samp::~samp() noexcept { if(run::level != run::level::RUN) return; cl::exec { desc.ctrl, std::memory_order_acq_rel }; if(opts.debug & 0x04) log_debug(opts, ctrl); if(opts.debug & 0x40) log_debug_labels(opts, ctrl); if(opts.debug & 0x20000000U) log_debug_prof(opts, ctrl, this->profile); } bool ircd::gpt::samp::operator()() { if(dispatch > 0) { ctx::interruption_point(); queue.emplace_back(*this); desc.cached = tokens; tokens += count >= tokens; ++cycle; ++count; --dispatch; return false; } while(!queue.empty()) { const unwind pop{[this] { queue.pop_front(); }}; if(evaluate(queue.front())) break; } return done(); } bool ircd::gpt::samp::done() const noexcept { return accept >= 0; } uint ircd::gpt::samp::tokenize() { const auto idx { step.start + ctrl.clk.samp }; const gpt::model::text text { gpt::model::default_data.at(idx) }; const json::string input { json::get<"text"_>(text) }; thread_local char str_buf[16_KiB]; const string_view str { json::unescape(str_buf, input) }; assert(!empty(str)); static const auto delim { "\n\n"_sv }; const int phrases ( ircd::token_count(str, delim) ); uint count(0); int p(phrases); assert(p >= 0); if(startswith(str, delim)) { ctrl.token[count++] = 198; ctrl.token[count++] = 198; } ircd::tokens(str, delim, [this, &count, &p, &phrases] (const string_view &phrase) noexcept -> bool { assert(!empty(phrase)); const vector_view buf { ctrl.token + count, opts.buffer_tokens - count }; const auto in { gpt::vocab::tokenize(buf, phrase) }; if(count + size(in) + 2 > opts.context_tokens) return false; count += size(in); ctrl.token[count++] = 198; ctrl.token[count++] = 198; assert(p > 0); marker[--p] = count; return true; }); for(assert(p >= 0); p < phrases; ++p) if(marker[p] <= opts.context_tokens) break; assert(p <= phrases); count = marker[p]; for(uint i(count); i < opts.buffer_tokens; ++i) ctrl.token[i] = 198; if(!endswith(str, delim)) count -= 2; assert(count > 0); assert(count <= opts.context_tokens); return count; } bool ircd::gpt::samp::evaluate(pipe::cycle &cycle) { cl::exec { desc.frame[cycle.frame], std::memory_order_consume }; const auto &frame { acquire(cycle) }; if(!retire(cycle, frame)) return false; memcpy(&ctrl, &frame, sizeof(gpt::ctrl)); const uint batch_size = opts.batch_size, samps = opts.training_steps + opts.validation_steps + opts.testing_steps, steps = samps / batch_size; const bool accepting = accept >= 0, cycling = !accepting, sampling = accepting, stepping = sampling && (frame.clk.samp + 1) >= batch_size, epoching = stepping && (frame.clk.step + 1) >= steps; //ctrl.token[ctrl.count] = ctrl.select.logit.token; //ctrl.count++; if(accepting) { ctrl.clk.cycle += cycling; ctrl.clk.samp += sampling; ctrl.clk.step += stepping; ctrl.clk.epoch += epoching; } return true; } bool ircd::gpt::samp::retire(pipe::cycle &cycle, const gpt::ctrl &frame) { assert(accept < 0); accept = frame.accept; dispatch = frame.dispatch; if(cl::profile_queue) { const pipe::prof profile { cycle }; if(opts.debug & 0x10000000U) log_debug_prof(opts, frame, profile); profile_accumulate(profile); } if(opts.debug & 0x02) log_debug(opts, frame); if(opts.debug & 0x20) log_debug_labels(opts, frame); if(opts.debug & 0x10) log_debug_topn(opts, frame); if(opts.debug & 0x200) log_debug_attns_top(opts, frame); dispatch &= boolmask(ircd::run::level == run::level::RUN); dispatch &= boolmask(!ctx::interruption_requested()); dispatch &= boolmask(accept < 0); const bool finished { dispatch == 0 }; return finished; } void ircd::gpt::samp::profile_accumulate(const pipe::prof &profile) { for(size_t i(0); i < profile.ts.size(); ++i) for(size_t j(0); j < profile.phases; ++j) this->profile.ts[i][j] += profile.ts[i][j]; step.profile_accumulate(profile); } /////////////////////////////////////////////////////////////////////////////// // // ctrl // ircd::string_view ircd::gpt::debug_top(const mutable_buffer &out, const opts &opts, const ctrl &ctrl, const uint i) { thread_local char buf[2][256]; assert(opts.top_n > i); const auto &top { ctrl.top[i] }; return fmt::sprintf { out, "%s T%02d %s", vocab::debug(buf[0], top.token, 1), i, debug(buf[1], opts, top), }; } ircd::string_view ircd::gpt::debug_label(const mutable_buffer &out, const opts &opts, const ctrl &ctrl, const uint i, const uint fmt) { thread_local char buf[2][256]; assert(opts.labels > i); const auto &label { ctrl.label[i] }; return fmt::sprintf { out, "%s L%02d %s", vocab::debug(buf[0], label.logit.token, 1), i, debug(buf[1], opts, label, fmt), }; } ircd::string_view ircd::gpt::debug_attn(const mutable_buffer &out, const opts &opts, const ctrl &ctrl, const uint ti) { thread_local char buf[4][256]; assert(ti < ctrl.count); memset(buf[1], 0x0, sizeof(buf[1])); for(uint i(0); i < opts.layers; ++i) { const auto f{[&](const auto &a) { return a == ti; }}; if(std::none_of(ctrl.attn[i], ctrl.attn[i] + opts.attn_rank, f)) continue; strlcat{buf[1], fmt::sprintf { buf[2], " %1x[", uint(i) }}; for(uint j(0); j < opts.attn_rank; ++j) if(ctrl.attn[i][j] == ti) strlcat{buf[1], fmt::sprintf { buf[2], "%1x", uint(j) }}; strlcat{buf[1], "]"_sv}; } return fmt::sprintf { out, "%s [%3u] <-%s", vocab::debug(buf[0], ctrl.token[ti], 1), ti, string_view{buf[1]}, }; } ircd::string_view ircd::gpt::debug(const mutable_buffer &out, const opts &opts, const ctrl &ctrl) { thread_local char buf[8][128], tmbuf[4][32]; int top_idx {-1}; for(uint i(0); i < opts.top_n; ++i) if(ctrl.top[i].token == ctrl.select.logit.token) { top_idx = i; break; } return fmt::sprintf { out, "%s %s %c T%02d %4u %6.2f%% %10.7f$L %c %s %s", vocab::debug(buf[0], ctrl.select.logit.token, 1), debug(buf[1], opts, ctrl.select), ctrl.target.logit.token == ctrl.top[0].token? '=' : ' ', top_idx, ctrl.hit, (ctrl.hit / float(ctrl.hit + ctrl.miss)) * 100.0f, ctrl.target.loss.mean - ctrl.select.loss.mean, ctrl.target.logit.token == ctrl.select.logit.token? '=' : ' ', debug(buf[2], opts, ctrl.target), vocab::debug(buf[3], ctrl.target.logit.token, 1), }; } ircd::string_view ircd::gpt::debug(const mutable_buffer &out, const opts &opts, const ctrl_label &label, const uint fmt) { thread_local char buf[64], bar[128]; const auto diff { log2f(65536) - label.loss.mean }; const auto pct { (diff / log2f(opts.logits)) * 100.0f }; const auto barsz { std::min(uint(pct), std::min(66U, uint(sizeof(bar) - 1))) }; memset(bar, '|', barsz); bar[barsz] = '\0'; return fmt::sprintf { out, fmt == 1? "%s %10.7f$La %6.2f%% %s": "%s %10.7f$La", debug(buf, opts, label.logit, fmt), label.loss.mean, pct, string_view{bar}, }; } ircd::string_view ircd::gpt::debug(const mutable_buffer &out, const opts &opts, const ctrl_logit &logit, const uint fmt) { return fmt::sprintf { out, "%6.2f%% %10.7f$L %5.1f$P", logit.samax * 100.0f, +0.0f - logf(logit.samax), (1.0f - logit.samax) * log2f(opts.logits), }; } ircd::string_view ircd::gpt::debug_head(const mutable_buffer &out, const opts &opts, const ctrl &ctrl) { thread_local char head[64]; return fmt::sprintf { out, "%s[%4u]-%1u", debug_head(head, opts, ctrl.clk), ctrl.count, ctrl.dispatch, }; } ircd::string_view ircd::gpt::debug_head(const mutable_buffer &out, const opts &opts, const ctrl_clk &clk) { return fmt::sprintf { out, "%02u:%06u|%04u|%04u|%04u", clk.epoch, clk.step * opts.batch_size + clk.samp, clk.step, clk.samp, clk.cycle, }; } ircd::string_view ircd::gpt::debug_token(const mutable_buffer &out, const opts &opts, const ctrl &ctrl, const uint fmt) { assert(ctrl.count > 0); const auto pos { ctrl.count - 1 }; return debug_token_at(out, opts, ctrl, pos, fmt); } ircd::string_view ircd::gpt::debug_token_at(const mutable_buffer &out, const opts &opts, const ctrl &ctrl, const uint i, const uint fmt) { const auto &token { ctrl.token[i] }; return vocab::debug(out, token, fmt); } /////////////////////////////////////////////////////////////////////////////// // // opts // ircd_gpt_opts::ircd_gpt_opts() noexcept :seed { 1234567890UL } ,top_k { 16 } ,top_p { 0.90f } ,top_n { 0 } ,labels { 0 } ,frames { 8 } ,limit { -1 } ,debug { 0x00 } ,accept { { 198, 198, ushort(-1), }, { 0, 0, 0, ushort(-1), }, { ushort(-1), }, { ushort(-1), }, } ,batch_size { 32 } ,training_steps { 250000 } ,validation_steps { 5000 } ,testing_steps { 5000 } ,alpha { 0.00002 } ,beta { 0.9f, 0.999f, } ,epsilon { 0.00001 } ,lambda { 0.5 } ,logits { 50256 } ,buffer_tokens { 1024 - 16 // XXX } ,context_tokens { 512 // 1024 } ,layers { 12 } ,lanes { 4 } ,embed_elems { 768 } ,embed_width { embed_elems / lanes } ,attn_rank { 12 } ,attn_mult { 3 } ,attn_elems { embed_elems * attn_mult } ,attn_fcon_width { attn_elems / lanes } ,attn_fcon_height { embed_elems / lanes } ,attn_proj_width { embed_elems / lanes } ,attn_proj_height { embed_elems / lanes } ,attn_self_elems { (uint(powl(context_tokens, 2)) / 2) * attn_rank } ,ffnn_mult { 4 } ,ffnn_elems { embed_elems * ffnn_mult } ,ffnn_fcon_width { ffnn_elems / lanes } ,ffnn_fcon_height { embed_elems / lanes } ,ffnn_proj_width { embed_elems / lanes } ,ffnn_proj_height { ffnn_elems / lanes } { }