// Matrix Construct // // Copyright (C) Matrix Construct Developers, Authors & Contributors // Copyright (C) 2016-2018 Jason Volk <jason@zemos.net> // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice is present in all copies. The // full license for this software is available in the LICENSE file. #include "ctx.h" /// Dedicated log facility for the ircd::ctx subsystem. decltype(ircd::ctx::log) ircd::ctx::log { "ctx" }; // // ctx::ctx (internal) // /// Allocator instance for the ctx instance_list. This allocator will place /// the std::list nodes in the ctx struct itself. template<> decltype(ircd::util::instance_list<ircd::ctx::ctx>::allocator) ircd::util::instance_list<ircd::ctx::ctx>::allocator {}; /// Instance list linkage for the list of all ctx instances. All ctxs can be /// iterated through this list. The allocator makes the overhead of this list /// negligible. template<> decltype(ircd::util::instance_list<ircd::ctx::ctx>::list) ircd::util::instance_list<ircd::ctx::ctx>::list { allocator }; /// Monotonic ctx id counter state. This counter is incremented for each /// newly created context. decltype(ircd::ctx::ctx::id_ctr) ircd::ctx::ctx::id_ctr { 0 }; /// This is a pseudo ircd::ios descriptor. We want to account for a ctx's /// execution slice in the ircd::ios handler list. This posits the entire /// ircd::ctx system as one ircd::ios handler type among all the others. /// At this time it is unclear how to hook a context's execution slice in the ircd::ios system. decltype(ircd::ctx::ctx::ios_desc) ircd::ctx::ctx::ios_desc { "ircd::ctx::ctx" }; /// This is a pseudo ircd::ios handler. See ios_desc decltype(ircd::ctx::ctx::ios_handler) ircd::ctx::ctx::ios_handler { &ios_desc }; /// Points to the next context to spawn (internal use) [[gnu::visibility("internal")]] decltype(ircd::ctx::ctx::spawning) ircd::ctx::ctx::spawning; /// Used to notify of context completion [[gnu::visibility("hidden")]] decltype(ircd::ctx::ctx::adjoindre) ircd::ctx::ctx::adjoindre; /// Internal context struct ctor ircd::ctx::ctx::ctx(const string_view &name, const ircd::ctx::stack &stack, const context::flags &flags) :name { name } ,flags { flags } ,alarm { ios::get() } ,stack { stack } { } ircd::ctx::ctx::~ctx() noexcept { assert(yc == nullptr); // Check that the context isn't active. } /// Internal wrapper for asio::spawn; never call directly. void IRCD_CTX_STACK_PROTECT ircd::ctx::ctx::spawn(context::function func) { const boost::coroutines::attributes attrs { // Pass the requested stack size stack.max, // We ensure stack unwinding and cleanup out here instead. boost::coroutines::no_stack_unwind, }; const scope_restore spawning { ircd::ctx::ctx::spawning, this }; auto bound { std::bind(&ctx::operator(), this, ph::_1, std::move(func)) }; auto *const parent_context { ircd::ctx::current }; auto *const parent_handler { ircd::ios::handler::current }; assert(!parent_context); assert(parent_handler); try { ios::handler::leave(parent_handler); boost::asio::spawn(ios::get(), std::move(bound), attrs); ios::handler::enter(parent_handler); } catch(...) { ios::handler::enter(parent_handler); throw; } } /// Base frame for a context. /// /// This function is the first thing executed on the new context's stack /// and calls the user's function. void IRCD_CTX_STACK_PROTECT ircd::ctx::ctx::operator()(boost::asio::yield_context yc, const std::function<void ()> func) noexcept try { assert(!ircd::ctx::current); ircd::ctx::current = this; this->yc = &yc; notes = 1; stack.base = uintptr_t(__builtin_frame_address(0)); const unwind atexit{[this] { adjoindre.notify_all(); stack.at = 0; notes = 0; this->yc = nullptr; ircd::ctx::current = nullptr; if(flags & context::DETACH && !std::uncaught_exceptions()) delete this; }}; // Check for a precocious interrupt interruption_point(); // Mark the point of context entry only after the interrupt check. If the // context was interrupted without ever entering (which makes the above // check throw) we never record any execution slice or increment the epoch // counter for it. This can allow a parent context to assume application // state remains unmodified by the aborted context. mark(prof::event::ENTER); const unwind leaver{[this] { mark(prof::event::LEAVE); }}; // Call the user's function. func(); assert(!std::uncaught_exceptions()); } catch(const ircd::ctx::interrupted &) { assert(!std::uncaught_exceptions()); if(flags & context::DETACH) delete this; } catch(const ircd::ctx::terminated &) { assert(!std::uncaught_exceptions()); if(flags & context::DETACH) delete this; } catch(const std::exception &e) { log::critical { log, "ctx('%s' id:%u): unhandled: %s", name, id, e.what() }; assert(!std::uncaught_exceptions()); if(flags & context::DETACH) delete this; } /// Direct context switch to this context. /// /// This currently doesn't work yet because the suspension state of this /// context has to be ready to be jumped to and that isn't implemented yet. void IRCD_CTX_STACK_PROTECT ircd::ctx::ctx::jump() { assert(this->yc); assert(current != this); // can't jump to self auto &yc(*this->yc); auto &target(*yc.coro_.lock()); // Jump from the currently running context (source) to *this (target) // with continuation of source after target current->notes = 0; // Unconditionally cleared here continuation { continuation::false_predicate, continuation::noop_interruptor, [&target] (auto &yield) noexcept { target(); } }; assert(current != this); assert(current->notes == 1); // notes = 1; set by continuation dtor on wakeup } /// Yield (suspend) this context until notified. /// /// This context must be currently running otherwise bad things. Returns false /// if the context was notified before actually suspending; the note is then /// considered handled an another attempt to `wait()` can be made. Returns true /// if the context suspended and was notified. When a context wakes up the /// note counter is reset. [[gnu::hot]] bool IRCD_CTX_STACK_PROTECT ircd::ctx::ctx::wait() { namespace errc = boost::system::errc; assert(this->yc); assert(current == this); assert(notes == 1); // Clear the notification counter. notes = 0; // This is currently a dummy predicate; this is where we can take the // user's real wakeup condition (i.e from a ctx::dock) and use it with // an internal scheduler. const predicate &predicate{[this]() noexcept { return notes > 0; }}; // An interrupt invokes this closure to force the alarm to return. const interruptor &interruptor{[this] (ctx *const &interruptor) noexcept { wake(); }}; // The construction of the arguments to the call on this stack comprise // our final control before the context switch. The destruction of the // arguments comprise the initial control after the context switch. boost::system::error_code ec; continuation { predicate, interruptor, [this, &ec] (auto &yield) noexcept { alarm.async_wait(yield[ec]); } }; assert(ec == errc::operation_canceled || ec == errc::success); assert(current == this); assert(notes == 1); // notes = 1; set by continuation dtor on wakeup return true; } /// Notifies this context to resume (wake up from waiting). /// /// Returns true if this note was the first note received by this context /// while it's been suspended or false if it's already been notified. bool ircd::ctx::ctx::note() noexcept { if(notes++ > 0) return false; if(this == current) return true; return wake(); } /// Wakes a context without a note (internal) bool ircd::ctx::ctx::wake() noexcept try { alarm.cancel(); return true; } catch(const std::exception &e) { log::critical { log, "ctx::wake(%p): %s", this, e.what() }; return false; } /// Throws if this context has been flagged for interruption and clears /// the flag. [[gnu::hot]] void ircd::ctx::ctx::interruption_point() { if(unlikely(interruption())) { if(termination_point(std::nothrow)) throw terminated{}; if(likely(interruption_point(std::nothrow))) throw interrupted { "ctx:%lu '%s'", id, name }; } } /// Returns true if this context has been flagged for termination. Does not /// clear the flag. Sets the NOINTERRUPT flag so the context cannot be further // interrupted which simplifies the termination process. [[gnu::hot]] bool ircd::ctx::ctx::termination_point(std::nothrow_t) noexcept { if(unlikely(flags & context::TERMINATED)) { assert(~flags & context::NOINTERRUPT); flags |= context::NOINTERRUPT; mark(prof::event::TERMINATE); return true; } else return false; } /// Returns true if this context has been flagged for interruption and /// clears the flag. [[gnu::hot]] bool ircd::ctx::ctx::interruption_point(std::nothrow_t) noexcept { if(unlikely(flags & context::INTERRUPTED)) { assert(~flags & context::NOINTERRUPT); flags &= ~context::INTERRUPTED; mark(prof::event::INTERRUPT); return true; } else return false; } /// True if this context has been flagged for interruption or termination /// and interrupts are not blocked. [[gnu::hot]] bool ircd::ctx::ctx::interruption() const noexcept { static const auto &flags { context::TERMINATED | context::INTERRUPTED }; // Fast test-and-bail for the very likely case there is no interrupt. if(likely((this->flags & flags) == 0)) return false; // The NOINTERRUPT flag works by pretending there is no interrupt flag // set and also does not clear the flag. This allows the interrupt // to remain pending until the uninterruptible section is complete. if(this->flags & context::NOINTERRUPT) return false; return true; } [[gnu::hot]] bool ircd::ctx::ctx::started() const noexcept { return stack.base != 0; } [[gnu::hot]] bool ircd::ctx::ctx::finished() const noexcept { return started() && yc == nullptr; } /////////////////////////////////////////////////////////////////////////////// // // ctx/ctx.h // [[gnu::hot]] const uint64_t & ircd::ctx::epoch() noexcept { return ctx::ios_handler.epoch; } bool ircd::ctx::for_each(const std::function<bool (ctx &)> &closure) { for(auto &ctx : ctx::list) if(!closure(*ctx)) return false; return true; } /// Yield to context `ctx`. /// /// [[gnu::hot]] void ircd::ctx::yield(ctx &ctx) { assert(current); //ctx.jump(); // !!! TODO !!! // XXX: We can't jump directly to a context if it's waiting on its alarm, and // we don't know whether it's waiting on its alarm. We can add another flag to // inform us of that, but most contexts are usually waiting on their alarm anyway. // // Perhaps a better way to do this would be to centralize the alarms into a single // context with the sole job of waiting on a single alarm. Then it can schedule // things allowing for more direct jumps until all work is complete. // !!! TODO !!! ctx.note(); } /// Notifies `ctx` to wake up from another std::thread void ircd::ctx::notify(ctx &ctx, threadsafe_t) { signal(ctx, [&ctx]() noexcept { notify(ctx); }); } /// Notifies `ctx` to wake up. This will enqueue the resumption, not jump /// directly to `ctx`. bool ircd::ctx::notify(ctx &ctx) noexcept { return ctx.note(); } /// Executes `func` sometime between executions of `ctx` with thread-safety /// so `func` and `ctx` are never executed concurrently no matter how many /// threads the io_service has available to execute events on. void ircd::ctx::signal(ctx &ctx, std::function<void ()> func) { ircd::dispatch(std::move(func)); } /// Marks `ctx` for termination. Terminate is similar to interrupt() but the /// exception thrown is ctx::terminate which does not participate in the /// std::exception hierarchy. Project code is unlikely to catch this. void ircd::ctx::terminate(ctx &ctx) { if(finished(ctx)) return; if(termination(ctx)) return; ctx.flags |= context::TERMINATED; if(likely(&ctx != current && ctx.cont != nullptr)) (*ctx.cont->intr)(current); } /// Marks `ctx` for interruption and enqueues it for resumption to receive the /// interrupt which will be an exception coming out of the point where the /// `ctx` was yielding. /// /// NOTE: If the IRCd run::level is QUIT, an interrupt() becomes a terminate(). void ircd::ctx::interrupt(ctx &ctx) { if(unlikely(run::level == run::level::QUIT)) return terminate(ctx); if(finished(ctx)) return; if(interruption(ctx)) return; ctx.flags |= context::INTERRUPTED; if(likely(&ctx != current && ctx.cont != nullptr)) (*ctx.cont->intr)(current); } int8_t ircd::ctx::nice(ctx &ctx, const int8_t &val) noexcept { ctx.nice = val; return ctx.nice; } int8_t ircd::ctx::ionice(ctx &ctx, const int8_t &val) noexcept { ctx.ionice = val; return ctx.ionice; } /// Returns writable reference to the flags of ctx [[gnu::hot]] uint32_t & ircd::ctx::flags(ctx &ctx) noexcept { return ctx.flags; } /// !running() && notes > 0 [[gnu::hot]] bool ircd::ctx::queued(const ctx &ctx) noexcept { return !running(ctx) && notes(ctx) > 0; } /// started() && !finished() && !running [[gnu::hot]] bool ircd::ctx::waiting(const ctx &ctx) noexcept { return started(ctx) && !finished(ctx) && !running(ctx); } /// Indicates if `ctx` is the current ctx [[gnu::hot]] bool ircd::ctx::running(const ctx &ctx) noexcept { return &ctx == current; } /// Indicates if `ctx` was ever jumped to [[gnu::hot]] bool ircd::ctx::started(const ctx &ctx) noexcept { return ctx.started(); } /// Indicates if the base frame for `ctx` returned [[gnu::hot]] bool ircd::ctx::finished(const ctx &ctx) noexcept { return ctx.finished(); } /// Returns the IO priority nice-value [[gnu::hot]] const int8_t & ircd::ctx::ionice(const ctx &ctx) noexcept { return ctx.ionice; } /// Returns the context scheduling priority nice-value [[gnu::hot]] const int8_t & ircd::ctx::nice(const ctx &ctx) noexcept { return ctx.nice; } /// Returns the notification count for `ctx` [[gnu::hot]] const int32_t & ircd::ctx::notes(const ctx &ctx) noexcept { return ctx.notes; } /// Returns reference to the flags of ctx [[gnu::hot]] const uint32_t & ircd::ctx::flags(const ctx &ctx) noexcept { return ctx.flags; } /// Returns the developer's optional name literal for `ctx` [[gnu::hot]] ircd::string_view ircd::ctx::name(const ctx &ctx) noexcept { return ctx.name; } /// Returns a reference to unique ID for `ctx` (which will go away with `ctx`) [[gnu::hot]] const uint64_t & ircd::ctx::id(const ctx &ctx) noexcept { return ctx.id; } /////////////////////////////////////////////////////////////////////////////// // // ctx/this_ctx.h // decltype(ircd::ctx::this_ctx::courtesy_yield_desc) ircd::ctx::this_ctx::courtesy_yield_desc { "ircd::ctx courtesy yield" }; // set by the continuation object and the base frame. thread_local ircd::ctx::ctx * ircd::ctx::current; /// Yield the currently running context until `time_point` ignoring notes void ircd::ctx::this_ctx::sleep_until(const system_point &tp) { while(!wait_until(tp, std::nothrow)); } /// Yield the currently running context for `duration` or until notified. /// /// Returns the duration remaining if notified, or <= 0 if suspended for /// the full duration, or unchanged if no suspend ever took place. ircd::microseconds ircd::ctx::this_ctx::wait(const microseconds &duration, const std::nothrow_t &) { const boost::posix_time::microseconds ptime_duration { duration.count() }; auto &c(cur()); c.alarm.expires_from_now(ptime_duration); c.wait(); // now you're yielding with portals const auto &ret { c.alarm.expires_from_now() }; // return remaining duration. // this is > 0 if notified // this is unchanged if a note prevented any wait at all return microseconds(ret.total_microseconds()); } /// Yield the currently running context until notified or `time_point`. /// /// Returns true if this function returned because `time_point` was hit or /// false because this context was notified. bool ircd::ctx::this_ctx::wait_until(const system_point &tp, const std::nothrow_t &) { const auto &diff { tp - now<system_point>() }; const boost::posix_time::microseconds duration { duration_cast<microseconds>(diff).count() }; const auto &expires_at { boost::posix_time::microsec_clock::universal_time() + duration }; auto &c(cur()); c.alarm.expires_at(expires_at); c.wait(); // now you're yielding with portals const auto &ret { c.alarm.expires_from_now() }; return ret <= boost::posix_time::microseconds(0); } /// Yield the currently running context until notified. [[gnu::hot]] void ircd::ctx::this_ctx::wait() { auto &c(cur()); c.alarm.expires_at(boost::posix_time::pos_infin); c.wait(); // now you're yielding with portals } size_t ircd::ctx::this_ctx::stack_at_here() { assert(current); return cur().stack.base - uintptr_t(__builtin_frame_address(0)); } /// Throws interrupted if the currently running context was interrupted /// and clears the interrupt flag. void ircd::ctx::this_ctx::interruption_point() { // Asserting to know if this call is useless as it's being made in // an uninterruptible scope anyway. It's okay to relax this assertion. //assert(interruptible()); return cur().interruption_point(); } /// Returns unique ID of currently running context [[gnu::hot]] const uint64_t & ircd::ctx::this_ctx::id() noexcept { static const uint64_t zero{0}; return current? id(cur()) : zero; } // // critical_assertion // namespace ircd::ctx { extern thread_local bool critical_asserted; } decltype(ircd::ctx::critical_asserted) thread_local ircd::ctx::critical_asserted; #ifndef NDEBUG ircd::ctx::this_ctx::critical_assertion::critical_assertion() :theirs{critical_asserted} { critical_asserted = true; } #endif #ifndef NDEBUG ircd::ctx::this_ctx::critical_assertion::~critical_assertion() noexcept { assert(critical_asserted); critical_asserted = theirs; } #endif #ifndef NDEBUG void ircd::ctx::assert_critical() { if(unlikely(critical_asserted)) throw panic { "%lu '%s' :Illegal context switch", id(), name() }; } #endif // // stack_usage_assertion // #ifndef NDEBUG ircd::ctx::this_ctx::stack_usage_assertion::stack_usage_assertion() { const auto stack_usage(stack_at_here()); assert(stack_usage < cur().stack.max * double(prof::settings::stack_usage_assertion)); } #endif #ifndef NDEBUG ircd::ctx::this_ctx::stack_usage_assertion::~stack_usage_assertion() noexcept { const auto stack_usage(stack_at_here()); assert(stack_usage < cur().stack.max * double(prof::settings::stack_usage_assertion)); } #endif /////////////////////////////////////////////////////////////////////////////// // // ctx/slice_usage_warning.h // #ifdef RB_DEBUG ircd::ctx::this_ctx::slice_usage_warning::slice_usage_warning(const string_view &fmt, va_rtti &&ap) :fmt { fmt } ,ap { std::move(ap) } ,epoch { current? ircd::ctx::epoch(cur()): ircd::ctx::epoch() } ,start { // Set the start value to the total number of cycles accrued by this // context including the current time slice. !current? prof::cycles(): ~cur().flags & context::SLICE_EXEMPT? prof::get(cur(), prof::event::CYCLES) + prof::cur_slice_cycles(): 0 } { } #endif #ifdef RB_DEBUG ircd::ctx::this_ctx::slice_usage_warning::~slice_usage_warning() noexcept { if(current && cur().flags & context::SLICE_EXEMPT) return; // Set the final value by first adding the total number of cycles ever // for this context to the current time slice. Then subtract the start // sample. This way we're only counting the execution time of this context // and not counting any time while it's yielding. A simple difference of // two rdtsc() samples would be insufficient. const auto stop { current? prof::get(cur(), prof::event::CYCLES) + prof::cur_slice_cycles(): prof::cycles() }; assert(stop >= start); const auto total(stop - start); if(likely(!prof::slice_exceeded_warning(total))) return; const auto span { current? ircd::ctx::epoch(cur()) - this->epoch: ircd::ctx::epoch() - this->epoch }; thread_local char buf[256]; const string_view reason{fmt::vsprintf { buf, fmt, ap }}; const ulong &threshold{prof::settings::slice_warning}; log::dwarning { prof::watchdog, "timeslice excessive; lim:%lu this:%lu pct:%.2lf span:%lu :%s", threshold, total, (double(total) / double(threshold)) * 100.0, span, reason }; } #endif /////////////////////////////////////////////////////////////////////////////// // // ctx/continuation.h // decltype(ircd::ctx::continuation::true_predicate) ircd::ctx::continuation::asio_predicate{[]() noexcept -> bool { return false; }}; decltype(ircd::ctx::continuation::true_predicate) ircd::ctx::continuation::true_predicate{[]() noexcept -> bool { return true; }}; decltype(ircd::ctx::continuation::false_predicate) ircd::ctx::continuation::false_predicate{[]() noexcept -> bool { return false; }}; decltype(ircd::ctx::continuation::noop_interruptor) ircd::ctx::continuation::noop_interruptor{[] (ctx *const &interruptor) noexcept -> void { return; }}; [[gnu::hot]] void ircd::ctx::continuation::leave() noexcept { assert(self != nullptr); assert(self->notes <= 1); // Check here if the developer has placed a critical assertion on the stack // but this yield is still occuring under its scope. That's bad. assert_critical(); assert(!critical_asserted); // Confirming the uncaught exception count was saved and set to zero in the // initializer list. assert(!std::uncaught_exceptions()); // Note: Construct an instance of ctx::exception_handler to enable yielding // in your catch block. // // GNU cxxabi uses a singly-linked forward list (aka the 'exception // stack') for pending exception activities. Due to this limitation we // cannot interleave _cxa_begin_catch() and __cxa_end_catch() by yielding // the ircd::ctx in an exception handler. assert(!std::current_exception()); // Check that we saved a valid context reference to this object for later. assert(self->yc); // Point to this continuation instance (which is on the context's stack) // from the context's instance. This allows its features to be accessed // while the context is asleep (i.e interruptor and predicate functions). // NOTE that this pointer is not ever null'ed after being set here. It will // remain invalid once the context resumes. You know if this is a valid // pointer because the context is asleep; otherwise it's a trash value. self->cont = this; // Tell the profiler this is the point where the context has concluded // its execution run and is now yielding. mark(prof::event::YIELD); // Null the fundamental current context register as the last operation // during execution before yielding. When a context resumes it will // restore this register; otherwise it remains null for executions on // the program's main stack. ircd::ctx::current = nullptr; } [[gnu::hot]] void ircd::ctx::continuation::enter() { // Restore the current context register. ircd::ctx::current = self; // Unconditionally reset the notes counter to 1 because we're awake now. self->notes = 1; // Restore exception state assert(std::uncaught_exceptions() == 0); exception_handler::uncaught_exceptions(uncaught_exceptions); // self->continuation is not null'ed here; it remains an invalid // pointer while the context is awake. // Tell the profiler this is the point where the context is now resuming. mark(prof::event::CONTINUE); // Check for an interrupt or termination that was sent while asleep. if(unlikely(self->interruption())) { self->interruption_point(); __builtin_unreachable(); } } ircd::ctx::continuation::operator boost::asio::yield_context &() noexcept { assert(self); assert(self->yc); return *self->yc; } ircd::ctx::continuation::operator const boost::asio::yield_context &() const noexcept { assert(self); assert(self->yc); return *self->yc; } /////////////////////////////////////////////////////////////////////////////// // // ctx/context.h // namespace ircd::ctx { [[gnu::visibility("hidden")]] extern ios::descriptor spawn_desc[3]; } decltype(ircd::ctx::spawn_desc) ircd::ctx::spawn_desc { { "ircd::ctx::spawn post" }, { "ircd::ctx::spawn defer" }, { "ircd::ctx::spawn dispatch" }, }; decltype(ircd::ctx::DEFAULT_STACK_SIZE) ircd::ctx::DEFAULT_STACK_SIZE { 128_KiB }; // // context::context // // Linkage here for default construction because ctx is internal. ircd::ctx::context::context() { } ircd::ctx::context::context(const string_view &name, const size_t &stack_size, function func, const flags &flags) :context { name, stack_size, flags, std::move(func) } { } ircd::ctx::context::context(const string_view &name, const flags &flags, function func) :context { name, DEFAULT_STACK_SIZE, flags, std::move(func) } { } ircd::ctx::context::context(const string_view &name, function func, const flags &flags) :context { name, DEFAULT_STACK_SIZE, flags, std::move(func) } { } ircd::ctx::context::context(function func, const flags &flags) :context { "<noname>", DEFAULT_STACK_SIZE, flags, std::move(func) } { } ircd::ctx::context::context(const string_view &name, const size_t &stack_sz, const flags &flags, function func) :context { name, mutable_buffer{nullptr, stack_sz}, flags, std::move(func) } { } ircd::ctx::context::context(const string_view &name, const mutable_buffer &stack, const flags &flags, function func) :c { std::make_unique<ctx> ( name, stack, !current? flags | POST : flags ) } { auto spawn { std::bind(&ctx::spawn, c.get(), std::move(func)) }; // When the user passes the DETACH flag we want to release the unique_ptr // of the ctx if and only if that ctx is committed to freeing itself. Our // commitment ends at the 180 of this function. If no exception was thrown // we expect the context to be committed to entry. If the POST flag is // supplied and it gets lost in the asio queue it will not be entered, and // will not be able to free itself; that will leak. const unwind_nominal release{[this] { assert(c); if(c->flags & context::DETACH) this->detach(); }}; // Indicates to the profiler that this context is spawning a child. if(likely(ircd::ctx::current)) mark(prof::event::SPAWN); // Branch to spawn via POST mechanism. This is an asynchronous method which // returns immediately so this context doesn't yield. The spawning occurs // sometime after this context next yields. This is the primary method to // spawn contexts. Note: This is the method to spawn contexts when this // parent is not itself a context as yielding is not possible anyway. assert(c->flags & POST || ircd::ctx::current); if(c->flags & POST) ios::post(spawn_desc[0], std::move(spawn)); // (experimental) Branch to spawn via defer mechanism. else if(c->flags & DEFER) ios::defer(spawn_desc[1], ios::synchronous, std::move(spawn)); // Branch to spawn via dispatch mechanism. This context will yield while // the spawning takes place on this stack. This is the closest to a direct // context switch since we don't call spawn() directly from this frame // which allows the ctx/ios infrastructure to account for the context // switch. Note: This is also the default method when no flags are given // and this parent is another context. else if(c->flags & DISPATCH || (true)) ios::dispatch(spawn_desc[2], ios::synchronous, std::move(spawn)); } ircd::ctx::context::context(context &&other) noexcept :c{std::move(other.c)} { } ircd::ctx::context & ircd::ctx::context::operator=(context &&other) noexcept { std::swap(this->c, other.c); return *this; } ircd::ctx::context::~context() noexcept { if(!c) return; // Can't join to bare metal, only from within another context. if(current) { const uninterruptible::nothrow ui; // When the WAIT_JOIN flag is given we wait for the context to // complete cooperatively before this destructs. if(~c->flags & context::WAIT_JOIN) terminate(); join(); return; } // because *this uses unique_ptr's, if we dtor the ircd::ctx from // right here and ircd::ctx hasn't been entered yet because the user // passed the POST flag, the ctx::spawn() is still sitting in the ios // queue. if(!started(*c)) { detach(); return; } // When this is bare metal the above join branch will not have been // taken. In that case we should detach the context so it frees itself, // but only if the context has not already finished. if(!current && !finished(*c)) { detach(); return; } } void ircd::ctx::context::join() { if(joined()) return; assert(bool(c)); mark(prof::event::JOIN); ctx::adjoindre.wait([this] { return joined(); }); mark(prof::event::JOINED); } ircd::ctx::ctx * ircd::ctx::context::detach() { assert(bool(c)); c->flags |= DETACH; return c.release(); } /////////////////////////////////////////////////////////////////////////////// // // ctx_pool.h // const ircd::string_view & ircd::ctx::name(const pool &pool) { return pool.name; } decltype(ircd::ctx::pool::default_name) ircd::ctx::pool::default_name { "<unnamed pool>" }; decltype(ircd::ctx::pool::default_opts) ircd::ctx::pool::default_opts {}; // // pool::pool // ircd::ctx::pool::pool(const string_view &name, const opts &opt) :name{name} ,opt{&opt} { // Can't spawn contexts when the ios isn't available. This may be the // case for some static instances of pool: initial_ctxs value is ignored. if(ircd::ios::available()) add(this->opt->initial_ctxs); } ircd::ctx::pool::~pool() noexcept { terminate(); join(); assert(ctxs.empty()); assert(q.empty()); } void ircd::ctx::pool::join() { set(0); } void ircd::ctx::pool::interrupt() { for(auto &context : ctxs) context.interrupt(); } void ircd::ctx::pool::terminate() { for(auto &context : ctxs) context.terminate(); } void ircd::ctx::pool::min(const size_t &num) { if(size() < num) set(num); } void ircd::ctx::pool::set(const size_t &num) { if(size() > num) del(size() - num); else add(num - size()); } void ircd::ctx::pool::del(const size_t &num) { const auto requested { ssize_t(size()) - ssize_t(num) }; const auto target { size_t(std::max(requested, 0L)) }; while(ctxs.size() > target) ctxs.pop_back(); } void ircd::ctx::pool::add(const size_t &num) { assert(opt); for(size_t i(0); i < num; ++i) { ctxs.emplace_back(name, opt->stack_size, context::POST, std::bind(&pool::main, this)); assert(opt); ionice(ctxs.back(), opt->ionice); nice(ctxs.back(), opt->nice); } } void ircd::ctx::pool::operator()(closure closure) { assert(opt); if(!avail() && q.size() > size_t(opt->queue_max_soft) && opt->queue_max_dwarning) log::dwarning { log, "pool(%p '%s') ctx(%p): size:%zu active:%zu queue:%zu exceeded soft max:%zu", this, name, current, size(), active(), q.size(), opt->queue_max_soft }; if(current && opt->queue_max_soft >= 0 && opt->queue_max_blocking) q_max.wait([this] { return !wouldblock(); }); if(unlikely(q.size() >= size_t(opt->queue_max_hard))) throw error { "pool(%p '%s') ctx(%p): size:%zu avail:%zu queue:%zu exceeded hard max:%zu", this, name, current, size(), avail(), q.size(), opt->queue_max_hard }; q.push(std::move(closure)); } bool ircd::ctx::pool::wouldblock() const { if(q.size() < size_t(opt->queue_max_soft)) return false; if(!opt->queue_max_soft && q.size() < avail()) return false; return true; } /// Main execution loop for a pool. void ircd::ctx::pool::main() noexcept try { const scope_count running { this->running }; q_max.notify(); while(!termination(cur())) work(); } catch(const interrupted &e) { // log::debug // { // log, "pool(%p) ctx(%p): %s", this, &cur(), e.what() // }; } catch(const terminated &e) { // log::debug // { // log, "pool(%p) ctx(%p): terminated", this, &cur() // }; } void ircd::ctx::pool::work() try { const auto func { q.pop() }; const scope_count working { this->working }; const unwind avail{[this]() noexcept { q_max.notify(); }}; // Execute the user's function func(); // Check for latent interruption to this ctx. If there's anything pending // it's best to get rid of it sooner rather than later. interruption_point(); } catch(const interrupted &e) { // Interrupt is stopped here so this ctx can be reused for a new job. return; } catch(const std::exception &e) { log::critical { log, "pool(%p '%s') ctx(%p '%s' id:%u): unhandled: %s", this, name, current, ircd::ctx::name(cur()), ircd::ctx::id(cur()), e.what() }; } void ircd::ctx::debug_stats(const pool &pool) { log::debug { log, "pool '%s' total: %zu avail: %zu queued: %zu active: %zu pending: %zu", pool.name, pool.size(), pool.avail(), pool.queued(), pool.active(), pool.pending() }; } /////////////////////////////////////////////////////////////////////////////// // // ctx_prof.h // namespace ircd::ctx::prof { thread_local ticker _total; // Totals kept for all contexts. static void check_stack(); static void check_slice(); static void slice_leave() noexcept; static void slice_enter() noexcept; static void handle_cur_yield(); static void handle_cur_leave(); static void handle_cur_continue() noexcept; static void handle_cur_enter() noexcept; static void inc_ticker(const event &e) noexcept; } decltype(ircd::ctx::prof::watchdog) ircd::ctx::prof::watchdog { "ctx.watchdog" }; // stack_usage_warning at 1/3 engineering tolerance decltype(ircd::ctx::prof::settings::stack_usage_warning) ircd::ctx::prof::settings::stack_usage_warning { { "name", "ircd.ctx.prof.stack_usage_warning" }, { "default", 0.33 }, }; // stack_usage_assertion at 1/2 engineering tolerance decltype(ircd::ctx::prof::settings::stack_usage_assertion) ircd::ctx::prof::settings::stack_usage_assertion { { "name", "ircd.ctx.prof.stack_usage_assertion" }, { "default", 0.50 }, }; // slice_warning after this number of tsc ticks... decltype(ircd::ctx::prof::settings::slice_warning) ircd::ctx::prof::settings::slice_warning { { "name", "ircd.ctx.prof.slice_warning" }, { "default", 280 * 1000000L }, }; // slice_interrupt after this number of tsc ticks... decltype(ircd::ctx::prof::settings::slice_interrupt) ircd::ctx::prof::settings::slice_interrupt { { "name", "ircd.ctx.prof.slice_interrupt" }, { "default", 0L }, { "persist", false }, }; // slice_assertion after this number of tsc ticks... decltype(ircd::ctx::prof::settings::slice_assertion) ircd::ctx::prof::settings::slice_assertion { { "name", "ircd.ctx.prof.slice_assertion" }, { "default", 0L }, { "persist", false }, }; [[using gnu: flatten, always_inline]] inline void ircd::ctx::prof::mark(const event &e) { inc_ticker(e); switch(e) { case event::ENTER: handle_cur_enter(); break; case event::LEAVE: handle_cur_leave(); break; case event::YIELD: handle_cur_yield(); break; case event::CONTINUE: handle_cur_continue(); break; default: break; } } void ircd::ctx::prof::inc_ticker(const event &e) noexcept { assert(uint8_t(e) < num_of<event>()); // Increment the ticker for all contexts. _total.event[uint8_t(e)]++; // Increment the ticker for the context's instance static uint64_t dummy; uint64_t &ticker { current? current->profile.event[uint8_t(e)]: dummy }; ++ticker; } void ircd::ctx::prof::handle_cur_enter() noexcept { slice_enter(); } void ircd::ctx::prof::handle_cur_continue() noexcept { slice_enter(); } void ircd::ctx::prof::handle_cur_leave() { slice_leave(); check_slice(); } void ircd::ctx::prof::handle_cur_yield() { slice_leave(); check_slice(); check_stack(); } void ircd::ctx::prof::slice_enter() noexcept { ios::handler::enter(&ctx::ios_handler); } void ircd::ctx::prof::slice_leave() noexcept { ios::handler::leave(&ctx::ios_handler); static constexpr auto pos { size_t(prof::event::CYCLES) }; assert(ctx::ios_desc.stats); const auto &last_slice { ctx::ios_desc.stats->slice_last }; auto &c(cur()); c.profile.event.at(pos) += last_slice; c.stack.at = stack_at_here(); c.stack.peak = std::max(c.stack.at, c.stack.peak); _total.event.at(pos) += last_slice; } #ifndef NDEBUG void ircd::ctx::prof::check_slice() { auto &c(cur()); const auto &slice_exempt { c.flags & context::SLICE_EXEMPT }; assert(ctx::ios_desc.stats); const auto &last_slice { ctx::ios_desc.stats->slice_last }; // Slice warning if(unlikely(slice_exceeded_warning(last_slice) && !slice_exempt)) log::dwarning { watchdog, "timeslice excessive; lim:%lu last:%lu pct:%.2lf", ulong(settings::slice_warning), last_slice, ((double(last_slice) / double(ulong(settings::slice_warning))) * 100.0) }; // Slice assertion assert(!slice_exceeded_assertion(last_slice) || slice_exempt); // Slice interrupt if(unlikely(slice_exceeded_interrupt(last_slice) && !slice_exempt)) throw interrupted { "[%s] context id:%lu watchdog interrupt; lim:%lu last:%lu total:%lu", name(c), id(c), ulong(settings::slice_interrupt), last_slice, cycles(c), }; } #else void ircd::ctx::prof::check_slice() { } #endif // NDEBUG #ifndef NDEBUG void ircd::ctx::prof::check_stack() { auto &c(cur()); const auto &stack_exempt { c.flags & context::STACK_EXEMPT }; const auto &stack_at { c.stack.at }; // Stack warning if(unlikely(!stack_exempt && stack_exceeded_warning(stack_at))) log::dwarning { watchdog, "stack used %zu of %zu bytes", stack_at, c.stack.max }; // Stack assertion assert(stack_exempt || !stack_exceeded_assertion(stack_at)); } #else void ircd::ctx::prof::check_stack() { } #endif // NDEBUG bool ircd::ctx::prof::stack_exceeded_assertion(const size_t &stack_at) noexcept { const auto &c(cur()); const auto &stack_max(c.stack.max); const double &stack_usage_assertion(settings::stack_usage_assertion); return stack_usage_assertion > 0.0? stack_at >= c.stack.max * settings::stack_usage_assertion: false; } bool ircd::ctx::prof::stack_exceeded_warning(const size_t &stack_at) noexcept { const auto &c(cur()); const auto &stack_max(c.stack.max); const double &stack_usage_warning(settings::stack_usage_warning); return stack_usage_warning > 0.0? stack_at >= c.stack.max * stack_usage_warning: false; } bool ircd::ctx::prof::slice_exceeded_interrupt(const ulong &cycles) noexcept { const ulong &threshold(settings::slice_interrupt); return threshold > 0 && cycles >= threshold; } bool ircd::ctx::prof::slice_exceeded_assertion(const ulong &cycles) noexcept { const ulong &threshold(settings::slice_assertion); return threshold > 0 && cycles >= threshold; } bool ircd::ctx::prof::slice_exceeded_warning(const ulong &cycles) noexcept { const ulong &threshold(settings::slice_warning); return threshold > 0 && cycles >= threshold; } [[gnu::hot]] ulong ircd::ctx::prof::cur_slice_start() noexcept { return ctx::ios_handler.ts; } [[gnu::hot]] const uint64_t & ircd::ctx::prof::get(const ctx &c, const event &e) { return get(c).event.at(uint8_t(e)); } [[gnu::hot]] const ircd::ctx::prof::ticker & ircd::ctx::prof::get(const ctx &c) noexcept { return c.profile; } [[gnu::hot]] const uint64_t & ircd::ctx::prof::get(const event &e) { return get().event.at(uint8_t(e)); } [[gnu::hot]] const ircd::ctx::prof::ticker & ircd::ctx::prof::get() noexcept { return _total; } ircd::string_view ircd::ctx::prof::reflect(const event &e) { switch(e) { case event::SPAWN: return "SPAWN"; case event::JOIN: return "JOIN"; case event::JOINED: return "JOINED"; case event::ENTER: return "ENTER"; case event::LEAVE: return "LEAVE"; case event::YIELD: return "YIELD"; case event::CONTINUE: return "CONTINUE"; case event::INTERRUPT: return "INTERRUPT"; case event::TERMINATE: return "TERMINATE"; case event::CYCLES: return "CYCLES"; case event::_NUM_: break; } return "?????"; } /////////////////////////////////////////////////////////////////////////////// // // ctx/promise.h // namespace ircd::ctx { static void set_promises_state(shared_state_base &); static void invalidate_promises(shared_state_base &); static void append(shared_state_base &new_, shared_state_base &old); static void update(shared_state_base &new_, shared_state_base &old); static void remove(shared_state_base &); static void notify(shared_state_base &); static void set_futures_promise(promise_base &); static void invalidate_futures(promise_base &); static void append(promise_base &new_, promise_base &old); static void update(promise_base &new_, promise_base &old); static void remove(promise_base &); } // // promise<void> // void ircd::ctx::promise<void>::set_value() { if(!valid()) return; check_pending(); make_ready(); } ircd::ctx::shared_state<void> & ircd::ctx::promise<void>::state() { return promise_base::state<void>(); } const ircd::ctx::shared_state<void> & ircd::ctx::promise<void>::state() const { return promise_base::state<void>(); } // // promise_base::promise_base // ircd::ctx::promise_base::promise_base(promise_base &&o) noexcept :st{std::move(o.st)} ,next{std::move(o.next)} { update(*this, o); } ircd::ctx::promise_base::promise_base(const promise_base &o) :st{o.st} ,next{nullptr} { append(*this, mutable_cast(o)); } ircd::ctx::promise_base & ircd::ctx::promise_base::operator=(promise_base &&o) noexcept { this->~promise_base(); st = std::move(o.st); next = std::move(o.next); update(*this, o); return *this; } ircd::ctx::promise_base::~promise_base() noexcept { if(promise_base::refcount(*this) == 1) set_exception(make_exception_ptr<broken_promise>()); remove(); } void ircd::ctx::promise_base::set_exception(std::exception_ptr eptr) { if(!valid()) return; check_pending(); for(auto *st(shared_state_base::head(*this)); st; st = st->next) st->eptr = eptr; make_ready(); } void ircd::ctx::promise_base::remove() { if(!valid()) return; ircd::ctx::remove(*this); assert(!valid()); } void ircd::ctx::promise_base::make_ready() { const critical_assertion ca; assert(valid()); promise_base *p { promise_base::head(*this) }; assert(p); shared_state_base *next { shared_state_base::head(*p) }; // First we have to chase the linked list of promises reachable // from this shared_state. invalidate() will null their pointer // to the shared_state indicating the promise was already satisfied. // This is done first because the set() to the READY writes to the // same union as the promise pointer (see shared_state.h). Then // chase the linked lists of futures and make_ready() each one. assert(next); invalidate_promises(*next); do { // Now set the shared_state to READY. We know the location of the // shared state by saving it in this frame earlier, otherwise // invalidate_promises() would have nulled it. set(*next, future_state::READY); // Finally call the notify() routine which will tell the future the promise // was satisfied and the value/exception is ready for them. This call may // notify an ircd::ctx and/or post a function to the ircd::ios for a then() // callback etc. notify(*next); } while((next = next->next)); // At this point the promise should no longer be considered valid; no longer // referring to the shared_state. this->st = nullptr; assert(!valid()); } /// If no shared state anymore: refcount=0; otherwise the promise /// list head from p.st->p resolves to at least &p which means refcount>=1 size_t ircd::ctx::promise_base::refcount(const promise_base &p) { const auto ret { p.st? refcount(*p.st): 0UL }; assert((p.st && ret >= 1) || (!p.st && !ret)); return ret; } /// Internal use; returns the number of copies of the promise reachable from /// the linked list headed by the shared state. This is used to indicate when /// the last copy has destructed which may result in a broken_promise exception /// being sent to the future. size_t ircd::ctx::promise_base::refcount(const shared_state_base &st) { size_t ret{0}; if(!is(st, future_state::PENDING)) return ret; for(const auto *next(head(st)); next; next = next->next) ++ret; return ret; } ircd::ctx::promise_base * ircd::ctx::promise_base::head(promise_base &p) { return p.st && head(*p.st)? head(*p.st): std::addressof(p); } ircd::ctx::promise_base * ircd::ctx::promise_base::head(shared_state_base &st) { return is(st, future_state::PENDING)? st.p: nullptr; } const ircd::ctx::promise_base * ircd::ctx::promise_base::head(const promise_base &p) { return p.st && head(*p.st)? head(*p.st): std::addressof(p); } const ircd::ctx::promise_base * ircd::ctx::promise_base::head(const shared_state_base &st) { return is(st, future_state::PENDING)? st.p: nullptr; } // // internal // /// Internal semantics; removes the promise from the linked list of promises. void ircd::ctx::remove(promise_base &p) { promise_base *last { promise_base::head(p) }; if(last == &p) { if(p.next) set_futures_promise(*p.next); else invalidate_futures(p); } else if(last) for(auto *next{last->next}; next; last = next, next = next->next) if(next == &p) { last->next = next->next; break; } p.st = nullptr; p.next = nullptr; } /// Internal semantics; updates the location of a promise within the linked /// list of related promises (for move semantic). void ircd::ctx::update(promise_base &new_, promise_base &old) { new_.next = old.next; promise_base *last { promise_base::head(old) }; if(last == &old) set_futures_promise(new_); else if(last) for(auto *next{last->next}; next; last = next, next = last->next) if(next == &old) { last->next = &new_; break; } old.st = nullptr; old.next = nullptr; } /// Internal semantics; chases the linked list of promises and adds a reference /// to a new copy at the end (for copy semantic). void ircd::ctx::append(promise_base &new_, promise_base &old) { assert(new_.st); assert(old.st); if(!old.next) { old.next = &new_; return; } promise_base *next{old.next}; for(; next->next; next = next->next); assert(!next->next); next->next = &new_; } void ircd::ctx::set_futures_promise(promise_base &p) { auto *next { shared_state_base::head(p) }; for(; next; next = next->next) { assert(is(*next, future_state::PENDING)); next->p = std::addressof(p); } } void ircd::ctx::invalidate_futures(promise_base &p) { auto *next { shared_state_base::head(p) }; for(; next; next = next->next) { assert(is(*next, future_state::PENDING)); next->p = nullptr; } } /////////////////////////////////////////////////////////////////////////////// // // ctx/shared_shared.h // /// Internal use; sets the state indicator within the shared_state object. Take /// special note that this data is unionized. Setting a state here will clobber /// the shared_state's reference to its promise. void ircd::ctx::set(shared_state_base &st, const future_state &state) { switch(state) { case future_state::INVALID: assert(0); return; case future_state::PENDING: assert(0); return; case future_state::OBSERVED: case future_state::READY: case future_state::RETRIEVED: default: st.p = nullptr; st.st = state; return; } } /// Internal; check if the current state is something; safe but unnecessary /// for public use. Take special note here that the state value is unionized. /// /// A PENDING state returned here does not mean the state contains the /// enumerated PENDING value itself, but instead contains a valid pointer /// to a promise. /// /// An INVALID state shares a zero/null value in the unionized data. bool ircd::ctx::is(const shared_state_base &st, const future_state &state_) noexcept { switch(st.st) { case future_state::READY: case future_state::OBSERVED: case future_state::RETRIEVED: return state_ == st.st; default: switch(state_) { case future_state::INVALID: return st.p == nullptr; case future_state::PENDING: return uintptr_t(st.p) >= ircd::info::page_size; default: return false; } } } /// Internal; get the current state of the shared_state; safe but unnecessary /// for public use. /// /// NOTE: This operates over a union of a pointer and an enum class. The /// way we determine whether the data is a pointer or an enum value is /// with a test of the value being >= the system's page size. This assumes /// the system does not use the first page of a process's address space /// to fault on null pointer dereference. This assumption may not hold on /// all systems or in all environments. /// /// Alternatively, we can switch this to checking whether the value is simply /// above the few low-numbered enum values. ircd::ctx::future_state ircd::ctx::state(const shared_state_base &st) noexcept { return uintptr_t(st.p) >= ircd::info::page_size? future_state::PENDING: st.st; } // // shared_state_base::shared_state_base // ircd::ctx::shared_state_base::shared_state_base() noexcept { } ircd::ctx::shared_state_base::shared_state_base(already_t) noexcept { set(*this, future_state::READY); } ircd::ctx::shared_state_base::shared_state_base(promise_base &p) { // assign the promise pointer in our new shared_state contained // in the future. If the promise already has a shared_state, that // means this is a shared future. this->p = promise_base::head(p); assert(!this->next); // Add this future (shared_state) to the end of the list of futures. Else // this is not a shared future, this is the head of the futures list told // to all shared promises. if(!p.st) { p.st = this; set_promises_state(*this); } else append(*this, *p.st); assert(p.valid()); assert(is(*this, future_state::PENDING)); } ircd::ctx::shared_state_base::shared_state_base(shared_state_base &&o) noexcept :cond{std::move(o.cond)} ,eptr{std::move(o.eptr)} ,then{std::move(o.then)} ,next{std::move(o.next)} ,p{std::move(o.p)} { update(*this, o); } ircd::ctx::shared_state_base::shared_state_base(const shared_state_base &o) :p{o.p} { append(*this, mutable_cast(o)); } ircd::ctx::shared_state_base & ircd::ctx::shared_state_base::operator=(promise_base &p) { this->~shared_state_base(); new (this) shared_state_base{p}; assert(p.valid()); assert(is(*this, future_state::PENDING)); return *this; } ircd::ctx::shared_state_base & ircd::ctx::shared_state_base::operator=(shared_state_base &&o) noexcept { this->~shared_state_base(); eptr = std::move(o.eptr); then = std::move(o.then); next = std::move(o.next); p = std::move(o.p); update(*this, o); return *this; } ircd::ctx::shared_state_base & ircd::ctx::shared_state_base::operator=(const shared_state_base &o) { this->~shared_state_base(); eptr = o.eptr; then = o.then; p = o.p; append(*this, mutable_cast(o)); return *this; } ircd::ctx::shared_state_base::~shared_state_base() noexcept { const auto refcount { shared_state_base::refcount(*this) }; if(refcount == 1) invalidate_promises(*this); else if(refcount > 1) remove(*this); } // // util // /// Count the number of associated futures size_t ircd::ctx::shared_state_base::refcount(const shared_state_base &st) { size_t ret{0}; if(!is(st, future_state::PENDING)) return ret; for(const auto *next(head(st)); next; next = next->next) ++ret; return ret; } /// Get the head of the futures from any associated promise ircd::ctx::shared_state_base * ircd::ctx::shared_state_base::head(promise_base &p) { return p.st; } /// Get the head of the futures from any associated future ircd::ctx::shared_state_base * ircd::ctx::shared_state_base::head(shared_state_base &st) { return is(st, future_state::PENDING) && head(*st.p)? head(*st.p): std::addressof(st); } /// Get the head of the futures from any associated promise const ircd::ctx::shared_state_base * ircd::ctx::shared_state_base::head(const promise_base &p) { return p.st; } /// Get the head of the futures from any associated future const ircd::ctx::shared_state_base * ircd::ctx::shared_state_base::head(const shared_state_base &st) { return is(st, future_state::PENDING) && head(*st.p)? head(*st.p): std::addressof(st); } // // internal // void ircd::ctx::notify(shared_state_base &st) { if(!st.then) { st.cond.notify_all(); return; } if(!current) { st.cond.notify_all(); assert(bool(st.then)); st.then(st); st.then = {}; return; } const stack_usage_assertion sua; st.cond.notify_all(); assert(bool(st.then)); st.then(st); st.then = {}; } /// Remove the future from the list of futures. void ircd::ctx::remove(shared_state_base &st) { shared_state_base *last { shared_state_base::head(st) }; assert(last); if(last == &st && is(st, future_state::PENDING)) { if(last->next) set_promises_state(*last->next); else invalidate_promises(st); } else for(auto *next(last->next); next; last = next, next = next->next) if(next == &st) { last->next = next->next; break; } st.next = nullptr; st.p = nullptr; } /// Replace associated future old with new_. This is used to implement the /// object move semantics. void ircd::ctx::update(shared_state_base &new_, shared_state_base &old) { shared_state_base *last { shared_state_base::head(old) }; assert(last); if(last == &old && is(*last, future_state::PENDING)) set_promises_state(new_); new_.next = old.next; for(auto *next{last->next}; next; last = next, next = last->next) if(next == &old) { last->next = &new_; break; } old.p = nullptr; old.next = nullptr; } /// Add a new future sharing the list void ircd::ctx::append(shared_state_base &new_, shared_state_base &old) { assert(!new_.next); assert(is(new_, future_state::PENDING)); if(!old.next) { old.next = &new_; return; } shared_state_base *next{old.next}; for(; next->next; next = next->next); assert(!next->next); next->next = &new_; } /// Internal use; chases the linked list of promises starting from the head in /// the shared_state and updates the location of the shared_state within each /// promise. This is used to tell the promises when the shared_state itself /// has relocated. void ircd::ctx::set_promises_state(shared_state_base &st) { assert(is(st, future_state::PENDING)); promise_base *next { promise_base::head(st) }; assert(next); for(; next; next = next->next) next->st = std::addressof(st); } /// Chases the linked list of promises starting from the head /// in the shared_state and invalidates all of their references to the shared /// state. This will cause the promise to no longer be valid(). /// void ircd::ctx::invalidate_promises(shared_state_base &st) { promise_base *next { promise_base::head(st) }; for(; next; next = next->next) next->st = nullptr; } /////////////////////////////////////////////////////////////////////////////// // // condition_variable // /// Wake up the next context waiting on the condition_variable /// /// Unlike notify_one(), the next context in the queue is repositioned in the /// back before being woken up for fairness. void ircd::ctx::condition_variable::notify() noexcept { ctx *c; if(!(c = q.pop_front())) return; q.push_back(c); ircd::ctx::notify(*c); } /// Wake up the next context waiting on the dock void ircd::ctx::condition_variable::notify_one() noexcept { if(q.empty()) return; ircd::ctx::notify(*q.front()); } /// Wake up all contexts waiting on the condition_variable. /// /// We post all notifications without requesting direct context /// switches. This ensures everyone gets notified in a single /// transaction without any interleaving during this process. void ircd::ctx::condition_variable::notify_all() noexcept { q.for_each([this](ctx &c) noexcept { ircd::ctx::notify(c); }); } /// Wake up all contexts waiting on the condition_variable to throw an /// interrupt exception. void ircd::ctx::condition_variable::interrupt_all() noexcept { q.for_each([this](ctx &c) noexcept { ircd::ctx::interrupt(c); }); } /// Wake up all contexts waiting on the condition_variable to throw an /// interrupt exception. void ircd::ctx::condition_variable::terminate_all() noexcept { q.for_each([this](ctx &c) noexcept { ircd::ctx::terminate(c); }); } /// The number of contexts waiting in the queue. bool ircd::ctx::condition_variable::waiting(const ctx &a) const noexcept { // for_each returns false if a was found return !q.for_each(list::closure_bool_const{[&a](const ctx &b) noexcept { // return false to break on equal return std::addressof(a) != std::addressof(b); }}); } /////////////////////////////////////////////////////////////////////////////// // // dock.h // /// Wake up the next context waiting on the dock /// /// Unlike notify_one(), the next context in the queue is repositioned in the /// back before being woken up for fairness. void ircd::ctx::dock::notify() noexcept { ctx *c; if(!(c = q.pop_front())) return; q.push_back(c); ircd::ctx::notify(*c); } /// Wake up all contexts waiting on the dock. /// /// We post all notifications without requesting direct context /// switches. This ensures everyone gets notified in a single /// transaction without any interleaving during this process. void ircd::ctx::dock::notify_all() noexcept { q.for_each([this](ctx &c) noexcept { ircd::ctx::notify(c); }); } /// Wake up all contexts waiting on the dock to throw an interrupt exception. void ircd::ctx::dock::interrupt_all() noexcept { q.for_each([this](ctx &c) noexcept { ircd::ctx::interrupt(c); }); } /// Wake up all contexts waiting on the dock to throw an interrupt exception. void ircd::ctx::dock::terminate_all() noexcept { q.for_each([this](ctx &c) noexcept { ircd::ctx::terminate(c); }); } [[gnu::hot]] void ircd::ctx::dock::wait() { assert(current); const unwind_exceptional renotify{[this] { notify_one(); }}; const unwind remove{[this] { q.remove(current); }}; q.push_back(current); this_ctx::wait(); } void ircd::ctx::dock::wait(const predicate &pred) { if(pred()) return; assert(current); const unwind_exceptional renotify{[this] { notify_one(); }}; const unwind remove{[this] { q.remove(current); }}; q.push_back(current); do { this_ctx::wait(); } while(!pred()); } /// The number of contexts waiting in the queue. bool ircd::ctx::dock::waiting(const ctx &a) const noexcept { // for_each returns false if a was found return !q.for_each(list::closure_bool_const{[&a](const ctx &b) noexcept { // return false to break on equal return std::addressof(a) != std::addressof(b); }}); } /// The number of contexts waiting in the queue. size_t ircd::ctx::dock::size() const noexcept { return q.size(); } /// The number of contexts waiting in the queue. bool ircd::ctx::dock::empty() const noexcept { return q.empty(); } /////////////////////////////////////////////////////////////////////////////// // // ctx_list.h // void ircd::ctx::list::remove(ctx *const &c) noexcept { assert(c); if(c == head) { pop_front(); return; } if(c == tail) { pop_back(); return; } assert(next(c) && prev(c)); prev(next(c)) = prev(c); next(prev(c)) = next(c); next(c) = nullptr; prev(c) = nullptr; } ircd::ctx::ctx * ircd::ctx::list::pop_back() noexcept { const auto tail { this->tail }; if(!tail) { assert(!head); return tail; } assert(head); assert(!next(tail)); if(!prev(tail)) { this->head = nullptr; this->tail = nullptr; } else { assert(next(prev(tail)) == tail); next(prev(tail)) = nullptr; this->tail = prev(tail); } prev(tail) = nullptr; next(tail) = nullptr; return tail; } ircd::ctx::ctx * ircd::ctx::list::pop_front() noexcept { const auto head { this->head }; if(!head) { assert(!tail); return head; } assert(tail); assert(!prev(head)); if(!next(head)) { this->head = nullptr; this->tail = nullptr; } else { assert(prev(next(head)) == head); prev(next(head)) = nullptr; this->head = next(head); } prev(head) = nullptr; next(head) = nullptr; return head; } void ircd::ctx::list::push_front(ctx *const &c) noexcept { assert(next(c) == nullptr); assert(prev(c) == nullptr); if(!head) { assert(!tail); head = c; tail = c; return; } assert(prev(head) == nullptr); prev(head) = c; next(c) = head; head = c; } void ircd::ctx::list::push_back(ctx *const &c) noexcept { assert(next(c) == nullptr); assert(prev(c) == nullptr); if(!tail) { assert(!head); head = c; tail = c; return; } assert(next(tail) == nullptr); next(tail) = c; prev(c) = tail; tail = c; } size_t ircd::ctx::list::size() const noexcept { size_t i{0}; for_each([&i](const ctx &) noexcept { ++i; }); return i; } void ircd::ctx::list::rfor_each(const closure &closure) { for(ctx *tail{this->tail}; tail; tail = prev(tail)) closure(*tail); } void ircd::ctx::list::rfor_each(const closure_const &closure) const { for(const ctx *tail{this->tail}; tail; tail = prev(tail)) closure(*tail); } bool ircd::ctx::list::rfor_each(const closure_bool &closure) { for(ctx *tail{this->tail}; tail; tail = prev(tail)) if(!closure(*tail)) return false; return true; } bool ircd::ctx::list::rfor_each(const closure_bool_const &closure) const { for(const ctx *tail{this->tail}; tail; tail = prev(tail)) if(!closure(*tail)) return false; return true; } void ircd::ctx::list::for_each(const closure &closure) { for(ctx *head{this->head}; head; head = next(head)) closure(*head); } void ircd::ctx::list::for_each(const closure_const &closure) const { for(const ctx *head{this->head}; head; head = next(head)) closure(*head); } bool ircd::ctx::list::for_each(const closure_bool &closure) { for(ctx *head{this->head}; head; head = next(head)) if(!closure(*head)) return false; return true; } bool ircd::ctx::list::for_each(const closure_bool_const &closure) const { for(const ctx *head{this->head}; head; head = next(head)) if(!closure(*head)) return false; return true; } [[gnu::hot]] ircd::ctx::list::node & ircd::ctx::list::get(ctx &c) noexcept { return c.node; } [[gnu::hot]] const ircd::ctx::list::node & ircd::ctx::list::get(const ctx &c) noexcept { return c.node; } ////////////////////////////////////////////////////////////////////////////// // // ctx/stack.h // [[gnu::hot]] ircd::ctx::stack & ircd::ctx::stack::get(ctx &ctx) noexcept { return ctx.stack; } [[gnu::hot]] const ircd::ctx::stack & ircd::ctx::stack::get(const ctx &ctx) noexcept { return ctx.stack; } // // stack::stack // ircd::ctx::stack::stack(const mutable_buffer &buf) noexcept :buf { buf } ,max { //note: ircd::size() asserts because begin(buf) is nullptr, but that's ok //ircd::size(buf) size_t(std::distance(begin(buf), end(buf))) } { } // // stack::allocator // struct [[gnu::visibility("hidden")]] ircd::ctx::stack::allocator { using stack_context = boost::coroutines::stack_context; mutable_buffer &buf; bool owner {false}; void allocate(stack_context &, size_t size); void deallocate(stack_context &); }; void ircd::ctx::stack::allocator::allocate(stack_context &c, size_t size) { static const auto &alignment { info::page_size }; unique_mutable_buffer umb { null(this->buf)? size: 0, alignment }; const mutable_buffer &buf { umb? umb: this->buf }; c.size = ircd::size(buf); c.sp = ircd::data(buf) + c.size; #if defined(BOOST_USE_VALGRIND) if(vg::active) c.valgrind_stack_id = vg::stack::add(buf); #endif this->owner = bool(umb); this->buf = umb? umb.release(): this->buf; } void ircd::ctx::stack::allocator::deallocate(stack_context &c) { assert(c.sp); #if defined(BOOST_USE_VALGRIND) if(vg::active) vg::stack::del(c.valgrind_stack_id); #endif const auto base { (reinterpret_cast<uintptr_t>(c.sp) - c.size) & boolmask<uintptr_t>(owner) }; std::free(reinterpret_cast<void *>(base)); } /////////////////////////////////////////////////////////////////////////////// // // (internal) boost::asio // template<class Function> struct [[gnu::visibility("hidden")]] boost::asio::detail::spawn_data < boost::asio::executor_binder<void (*)(), boost::asio::strand<boost::asio::executor>>, Function > { using Handler = boost::asio::executor_binder<void (*)(), boost::asio::strand<boost::asio::executor>>; using caller_type = typename basic_yield_context<Handler>::caller_type; using callee_type = typename basic_yield_context<Handler>::callee_type; weak_ptr<callee_type> coro_; Function function_; Handler handler_; ircd::ctx::ctx *ctrl; template<class H, class F> spawn_data(H&& handler, bool call_handler, F&& function) :function_(std::move(function)) ,handler_(std::move(handler)) ,ctrl{ircd::ctx::ctx::spawning} { assert(call_handler); assert(ctrl); } }; template<class Function> struct [[gnu::visibility("hidden")]] boost::asio::detail::coro_entry_point < boost::asio::executor_binder<void (*)(), boost::asio::strand<boost::asio::executor>>, Function > { using Handler = boost::asio::executor_binder<void (*)(), boost::asio::strand<boost::asio::executor>>; using caller_type = typename basic_yield_context<Handler>::caller_type; void operator()(caller_type &ca) // pull { const auto data { this->data }; basic_yield_context<Handler> yc { data->coro_, ca, data->handler_ }; (data->function_)(yc); (data->handler_)(); } shared_ptr<spawn_data<Handler, Function>> data; }; // Hooks the first push phase of coroutine spawn to supply our own stack // allocator. template<class Function> struct [[gnu::visibility("hidden")]] boost::asio::detail::spawn_helper < boost::asio::executor_binder<void (*)(), boost::asio::strand<boost::asio::executor>>, Function > { using Handler = boost::asio::executor_binder<void (*)(), boost::asio::strand<boost::asio::executor>>; using callee_type = typename basic_yield_context<Handler>::callee_type; void operator()() // push { const auto coro { std::make_shared<callee_type> ( coro_entry_point<Handler, Function>{data_}, attributes_, ircd::ctx::stack::allocator{data_->ctrl->stack.buf} ) }; data_->coro_ = coro; (*coro)(); } shared_ptr<spawn_data<Handler, Function>> data_; boost::coroutines::attributes attributes_; }; /////////////////////////////////////////////////////////////////////////////// // // (internal) boost::asio // // // Optimize ctx::wake() by reimplementing the timer cancel's op scheduler to // enqueue as a defer (private/priority queue) rather than to the post queue. // This interposes the function for all callstacks in this translation unit, // including primarily ctx::wake(). // #if defined(BOOST_ASIO_HAS_EPOLL) using epoll_time_traits = boost::asio::time_traits<boost::posix_time::ptime>; template<> std::size_t __attribute__((visibility("internal"))) boost::asio::detail::epoll_reactor::cancel_timer(timer_queue<epoll_time_traits> &queue, typename timer_queue<epoll_time_traits>::per_timer_data &t, std::size_t max) { std::size_t ret; op_queue<operation> ops; { const mutex::scoped_lock lock(mutex_); ret = queue.cancel_timer(t, ops, max); } auto *const thread_info { static_cast<scheduler_thread_info *>(scheduler::thread_call_stack::top()) }; for(auto *op(ops.front()); op; ops.pop(), op = ops.front()) { static const bool is_continuation(true); scheduler_.post_immediate_completion(op, is_continuation); thread_info->private_outstanding_work -= is_continuation; } return ret; } #endif