construct/ircd/net.cc

3567 lines
71 KiB
C++

// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2018 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
namespace ircd::net
{
ctx::dock dock;
std::optional<dns::init> _dns_;
static void init_ipv6();
static void wait_close_sockets();
}
void
ircd::net::wait_close_sockets()
{
while(socket::instances)
if(!dock.wait_for(seconds(2)))
log::warning
{
log, "Waiting for %zu sockets to destruct", socket::instances
};
}
void
ircd::net::init_ipv6()
{
if(!enable_ipv6)
{
log::warning
{
log, "IPv6 is disabled by the configuration."
" Not checking for usable interfaces."
};
return;
}
if(!addrs::has_usable_ipv6_interface())
{
log::dwarning
{
log, "No usable IPv6 interfaces detected."
};
enable_ipv6.set("false");
return;
}
log::info
{
log, "Detected usable IPv6 interfaces."
" Server will query AAAA records and attempt IPv6 connections. If this"
" is an error please set ircd.net.enable_ipv6 to false or start with -no6."
};
}
///////////////////////////////////////////////////////////////////////////////
//
// init
//
/// Network subsystem initialization
ircd::net::init::init()
{
init_ipv6();
sslv23_client.set_verify_mode(asio::ssl::verify_peer);
sslv23_client.set_default_verify_paths();
_dns_.emplace();
}
/// Network subsystem shutdown
[[gnu::cold]]
ircd::net::init::~init()
noexcept
{
_dns_.reset();
wait_close_sockets();
}
///////////////////////////////////////////////////////////////////////////////
//
// net/net.h
//
decltype(ircd::net::eof)
ircd::net::eof
{
make_error_code(boost::system::error_code
{
boost::asio::error::eof,
boost::asio::error::get_misc_category()
})
};
decltype(ircd::net::enable_ipv6)
ircd::net::enable_ipv6
{
{ "name", "ircd.net.enable_ipv6" },
{ "default", true },
{ "persist", false },
};
/// Network subsystem log facility
decltype(ircd::net::log)
ircd::net::log
{
"net", 'N'
};
ircd::string_view
ircd::net::peer_cert_der_sha256_b64(const mutable_buffer &buf,
const socket &socket)
{
char shabuf alignas(32) [sha256::digest_size];
const auto hash
{
peer_cert_der_sha256(shabuf, socket)
};
return b64::encode_unpadded(buf, hash);
}
ircd::const_buffer
ircd::net::peer_cert_der_sha256(const mutable_buffer &buf,
const socket &socket)
{
thread_local char derbuf[16384];
sha256
{
buf, peer_cert_der(derbuf, socket)
};
return
{
data(buf), sha256::digest_size
};
}
ircd::const_buffer
ircd::net::peer_cert_der(const mutable_buffer &buf,
const socket &socket)
{
const SSL &ssl(socket);
const X509 &cert
{
openssl::peer_cert(ssl)
};
return openssl::i2d(buf, cert);
}
std::pair<size_t, size_t>
ircd::net::calls(const socket &socket)
noexcept
{
return
{
socket.in.calls, socket.out.calls
};
}
std::pair<size_t, size_t>
ircd::net::bytes(const socket &socket)
noexcept
{
return
{
socket.in.bytes, socket.out.bytes
};
}
ircd::string_view
ircd::net::loghead(const socket &socket)
{
thread_local char buf[512];
return loghead(buf, socket);
}
ircd::string_view
ircd::net::loghead(const mutable_buffer &out,
const socket &socket)
{
char buf[2][128];
return fmt::sprintf
{
out, "socket:%lu local:%s remote:%s",
id(socket),
string(buf[0], local_ipport(socket)),
string(buf[1], remote_ipport(socket)),
};
}
ircd::net::ipport
ircd::net::remote_ipport(const socket &socket)
noexcept try
{
if(!opened(socket))
return {};
const auto &ep(socket.remote);
return make_ipport(ep);
}
catch(...)
{
return {};
}
ircd::net::ipport
ircd::net::local_ipport(const socket &socket)
noexcept try
{
if(!opened(socket))
return {};
const auto &ep(socket.local);
return make_ipport(ep);
}
catch(...)
{
return {};
}
bool
ircd::net::opened(const socket &socket)
noexcept try
{
const ip::tcp::socket &sd(socket);
return sd.is_open();
}
catch(...)
{
return false;
}
const uint64_t &
ircd::net::id(const socket &socket)
{
return socket.id;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/write.h
//
void
ircd::net::flush(socket &socket)
{
if(nodelay(socket))
return;
nodelay(socket, true);
nodelay(socket, false);
}
/// Yields ircd::ctx until all buffers are sent.
///
/// This is blocking behavior; use this if the following are true:
///
/// * You put a timer on the socket so if the remote slows us down the data
/// will not occupy the daemon's memory for a long time. Remember, *all* of
/// the data will be sitting in memory even after some of it was ack'ed by
/// the remote.
///
/// * You are willing to dedicate the ircd::ctx to sending all the data to
/// the remote. The ircd::ctx will be yielding until everything is sent.
///
size_t
ircd::net::write_all(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_all(buffers);
}
/// Yields ircd::ctx until at least some buffers are sent.
///
/// This is blocking behavior; use this if the following are true:
///
/// * You put a timer on the socket so if the remote slows us down the data
/// will not occupy the daemon's memory for a long time.
///
/// * You are willing to dedicate the ircd::ctx to sending the data to
/// the remote. The ircd::ctx will be yielding until the kernel has at least
/// some space to consume at least something from the supplied buffers.
///
size_t
ircd::net::write_few(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_few(buffers);
}
/// Writes as much as possible until one of the following is true:
///
/// * The kernel buffer for the socket is full.
/// * The user buffer is exhausted.
///
/// This is non-blocking behavior. No yielding will take place; no timer is
/// needed. Multiple syscalls will be composed to fulfill the above points.
///
size_t
ircd::net::write_any(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_any(buffers);
}
/// Writes one "unit" of data or less; never more. The size of that unit
/// is determined by the system. Less may be written if one of the following
/// is true:
///
/// * The kernel buffer for the socket is full.
/// * The user buffer is exhausted.
///
/// If neither are true, more can be written using additional calls;
/// alternatively, use other variants of write_ for that.
///
/// This is non-blocking behavior. No yielding will take place; no timer is
/// needed. Only one syscall will occur.
///
size_t
ircd::net::write_one(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_one(buffers);
}
/// Bytes remaining for transmission (in the kernel)
size_t
ircd::net::writable(const socket &socket)
{
const ssize_t write_bufsz
(
net::write_bufsz(socket)
);
const ssize_t flushing
(
net::flushing(socket)
);
assert(write_bufsz >= flushing);
return std::max(write_bufsz - flushing, 0L);
}
/// Bytes buffered for transmission (in the kernel)
size_t
ircd::net::flushing(const socket &socket)
{
const ip::tcp::socket &sd(socket);
const auto &fd
{
mutable_cast(sd).lowest_layer().native_handle()
};
long value(0);
#ifdef TIOCOUTQ
syscall(::ioctl, fd, TIOCOUTQ, &value);
#else
#warning "TIOCOUTQ is not defined on this platform."
#endif
return value;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/read.h
//
/// Yields ircd::ctx until len bytes have been received and discarded from the
/// socket.
///
size_t
ircd::net::discard_all(socket &socket,
const size_t &len)
{
static char buffer[512];
size_t remain{len}; while(remain)
{
const mutable_buffer mb
{
buffer, std::min(remain, sizeof(buffer))
};
remain -= read_all(socket, mb);
}
return len;
}
/// Non-blocking discard of up to len bytes. The amount of bytes discarded
/// is returned. Zero is only returned if len==0 because the EAGAIN is
/// thrown. If any bytes have been discarded any EAGAIN encountered in
/// this function's internal loop is not thrown, but used to exit the loop.
///
size_t
ircd::net::discard_any(socket &socket,
const size_t &len)
{
static char buffer[512];
size_t remain{len}; while(remain)
{
const mutable_buffer mb
{
buffer, std::min(remain, sizeof(buffer))
};
size_t read;
if(!(read = read_one(socket, mb)))
break;
remain -= read;
}
return len - remain;
}
/// Yields ircd::ctx until buffers are full.
///
/// Use this only if the following are true:
///
/// * You know the remote has made a guarantee to send you a specific amount
/// of data.
///
/// * You put a timer on the socket so that if the remote runs short this
/// call doesn't hang the ircd::ctx forever, otherwise it will until cancel.
///
/// * You are willing to dedicate the ircd::ctx to just this operation for
/// that amount of time.
///
size_t
ircd::net::read_all(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_all(buffers);
}
/// Yields ircd::ctx until remote has sent at least one frame. The buffers may
/// be filled with any amount of data depending on what has accumulated.
///
/// Use this if the following are true:
///
/// * You know there is data to be read; you can do this asynchronously with
/// other features of the socket. Otherwise this will hang the ircd::ctx.
///
/// * You are willing to dedicate the ircd::ctx to just this operation,
/// which is non-blocking if data is known to be available, but may be
/// blocking if this call is made in the blind.
///
size_t
ircd::net::read_few(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_few(buffers);
}
/// Reads as much as possible. Non-blocking behavior.
///
/// This is intended for lowest-level/custom control and not preferred by
/// default for most users on an ircd::ctx.
///
size_t
ircd::net::read_any(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_any(buffers);
}
/// Reads one message or less in a single syscall. Non-blocking behavior.
///
/// This is intended for lowest-level/custom control and not preferred by
/// default for most users on an ircd::ctx.
///
size_t
ircd::net::read_one(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_one(buffers);
}
/// Bytes available for reading (SSL; w/ fallback).
/// @returns 0 for socket errors, unsupported, or nothing available.
size_t
ircd::net::pending(const socket &socket)
noexcept
{
if(!socket.ssl)
return available(socket);
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
return SSL_pending(mutable_cast(socket).ssl->native_handle());
#else
return 0;
#endif
}
/// Bytes available for reading (userspace)
size_t
ircd::net::available(const socket &socket)
noexcept
{
const ip::tcp::socket &sd(socket);
boost::system::error_code ec;
return sd.available(ec);
}
/// Bytes available for reading (kernel)
size_t
ircd::net::readable(const socket &socket)
{
ip::tcp::socket &sd(const_cast<net::socket &>(socket));
ip::tcp::socket::bytes_readable command{true};
sd.io_control(command);
return command.get();
}
///////////////////////////////////////////////////////////////////////////////
//
// net/check.h
//
void
ircd::net::check(socket &socket,
const ready &type)
{
const error_code ec
{
check(std::nothrow, socket, type)
};
if(likely(!ec))
return;
throw_system_error(ec);
__builtin_unreachable();
}
std::error_code
ircd::net::check(std::nothrow_t,
socket &socket,
const ready &type)
noexcept
{
return socket.check(std::nothrow, type);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/wait.h
//
namespace ircd::net
{
static asio::ip::tcp::socket::wait_type translate(const ready &) noexcept;
}
decltype(ircd::net::wait_opts_default)
ircd::net::wait_opts_default;
/// Wait for socket to become "ready" using a ctx::future.
ircd::ctx::future<void>
ircd::net::wait(use_future_t,
socket &socket,
const wait_opts &wait_opts)
{
ctx::promise<void> p;
ctx::future<void> f{p};
wait(socket, wait_opts, [p(std::move(p))]
(std::exception_ptr eptr)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value();
});
return f;
}
/// Wait for socket to become "ready"; yields ircd::ctx returning code.
std::error_code
ircd::net::wait(nothrow_t,
socket &socket,
const wait_opts &wait_opts)
try
{
wait(socket, wait_opts);
return {};
}
catch(const std::system_error &e)
{
return e.code();
}
/// Wait for socket to become "ready"; yields ircd::ctx; throws errors.
void
ircd::net::wait(socket &socket,
const wait_opts &wait_opts)
{
socket.wait(wait_opts);
}
/// Wait for socket to become "ready"; callback with exception_ptr
void
ircd::net::wait(socket &socket,
const wait_opts &wait_opts,
wait_callback_eptr callback)
{
socket.wait(wait_opts, std::move(callback));
}
void
ircd::net::wait(socket &socket,
const wait_opts &wait_opts,
wait_callback_ec callback)
{
socket.wait(wait_opts, std::move(callback));
}
boost::asio::ip::tcp::socket::wait_type
ircd::net::translate(const ready &ready)
noexcept
{
using wait_type = asio::ip::tcp::socket::wait_type;
switch(ready)
{
case ready::ANY:
return wait_type::wait_read | wait_type::wait_write | wait_type::wait_error;
case ready::READ:
return wait_type::wait_read;
case ready::WRITE:
return wait_type::wait_write;
case ready::ERROR:
return wait_type::wait_error;
}
assert(0);
__builtin_unreachable();
}
ircd::string_view
ircd::net::reflect(const ready &type)
{
switch(type)
{
case ready::ANY: return "ANY"_sv;
case ready::READ: return "READ"_sv;
case ready::WRITE: return "WRITE"_sv;
case ready::ERROR: return "ERROR"_sv;
}
return "????"_sv;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/close.h
//
namespace ircd::net
{
static asio::ip::tcp::socket::shutdown_type translate(const dc &) noexcept;
}
decltype(ircd::net::close_opts::default_timeout)
ircd::net::close_opts::default_timeout
{
{ "name", "ircd.net.close.timeout" },
{ "default", 7500L },
};
/// Static instance of default close options.
decltype(ircd::net::close_opts_default)
ircd::net::close_opts_default;
/// Static helper callback which may be passed to the callback-based overload
/// of close(). This callback does nothing.
ircd::net::close_callback
const ircd::net::close_ignore{[]
(std::exception_ptr eptr) noexcept
{
return;
}};
ircd::ctx::future<void>
ircd::net::close(socket &s,
const dc &type)
{
return close(s, close_opts
{
.type = type,
});
}
ircd::ctx::future<void>
ircd::net::close(socket &socket,
const close_opts &opts)
{
ctx::promise<void> p;
ctx::future<void> f(p);
close(socket, opts, [p(std::move(p))]
(std::exception_ptr eptr)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value();
});
return f;
}
void
ircd::net::close(socket &s,
const dc &type,
close_callback cb)
{
const close_opts opts
{
.type = type,
};
return close(s, opts, std::move(cb));
}
void
ircd::net::close(socket &socket,
const close_opts &opts,
close_callback callback)
{
socket.disconnect(opts, std::move(callback));
}
boost::asio::ip::tcp::socket::shutdown_type
ircd::net::translate(const dc &val)
noexcept
{
using type = asio::ip::tcp::socket::shutdown_type;
switch(val)
{
case dc::SSL_NOTIFY: assert(0); [[fallthrough]];
case dc::RST: assert(0); [[fallthrough]];
case dc::FIN:
return type::shutdown_both;
case dc::FIN_SEND:
return type::shutdown_send;
case dc::FIN_RECV:
return type::shutdown_receive;
}
assert(0);
__builtin_unreachable();
}
ircd::string_view
ircd::net::reflect(const dc type)
noexcept
{
switch(type)
{
case dc::RST: return "RST";
case dc::FIN: return "FIN";
case dc::FIN_SEND: return "FIN_SEND";
case dc::FIN_RECV: return "FIN_RECV";
case dc::SSL_NOTIFY: return "SSL_NOTIFY";
}
return "????"_sv;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/open.h
//
decltype(ircd::net::open_opts::default_connect_timeout)
ircd::net::open_opts::default_connect_timeout
{
{ "name", "ircd.net.open.connect_timeout" },
{ "default", 7500L },
};
decltype(ircd::net::open_opts::default_handshake_timeout)
ircd::net::open_opts::default_handshake_timeout
{
{ "name", "ircd.net.open.handshake_timeout" },
{ "default", 7500L },
};
decltype(ircd::net::open_opts::default_verify_certificate)
ircd::net::open_opts::default_verify_certificate
{
{ "name", "ircd.net.open.verify_certificate" },
{ "default", true },
};
decltype(ircd::net::open_opts::default_allow_self_signed)
ircd::net::open_opts::default_allow_self_signed
{
{ "name", "ircd.net.open.allow_self_signed" },
{ "default", false },
};
decltype(ircd::net::open_opts::default_allow_self_chain)
ircd::net::open_opts::default_allow_self_chain
{
{ "name", "ircd.net.open.allow_self_chain" },
{ "default", false },
};
decltype(ircd::net::open_opts::default_allow_expired)
ircd::net::open_opts::default_allow_expired
{
{ "name", "ircd.net.open.allow_expired" },
{ "default", false },
};
/// Open new socket with future-based report.
///
ircd::ctx::future<std::shared_ptr<ircd::net::socket>>
ircd::net::open(const open_opts &opts)
{
ctx::promise<std::shared_ptr<socket>> p;
ctx::future<std::shared_ptr<socket>> f(p);
auto s
{
opts.secure?
std::make_shared<socket>(sslv23_client):
std::make_shared<socket>()
};
open(*s, opts, [s, p(std::move(p))]
(std::exception_ptr eptr)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value(s);
});
return f;
}
/// Open existing socket with callback-based report.
///
std::shared_ptr<ircd::net::socket>
ircd::net::open(const open_opts &opts,
open_callback handler)
{
auto s
{
opts.secure?
std::make_shared<socket>(sslv23_client):
std::make_shared<socket>()
};
open(*s, opts, std::move(handler));
return s;
}
/// Open existing socket with callback-based report.
///
void
ircd::net::open(socket &socket,
const open_opts &opts,
open_callback handler)
{
auto complete{[s(shared_from(socket)), handler(std::move(handler))]
(std::exception_ptr eptr)
{
if(eptr && !s->fini)
close(*s, dc::RST, close_ignore);
handler(std::move(eptr));
}};
const dns::callback_ipport connector{[&socket, opts, complete(std::move(complete))]
(std::exception_ptr eptr, const hostport &hp, const ipport &ipport)
{
if(eptr)
return complete(std::move(eptr));
const auto ep{make_endpoint(ipport)};
socket.connect(ep, opts, std::move(complete));
}};
if(!opts.ipport)
dns::resolve(opts.hostport, dns::opts_default, std::move(connector));
else
connector({}, opts.hostport, opts.ipport);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/sopts.h
//
/// Construct sock_opts with the current options from socket argument
ircd::net::sock_opts::sock_opts(const socket &socket)
:v6only{net::v6only(socket)}
,blocking{net::blocking(socket)}
,nopush{net::nopush(socket)}
,nodelay{net::nodelay(socket)}
,quickack{net::quickack(socket)}
,keepalive{net::keepalive(socket)}
,linger{net::linger(socket)}
,read_bufsz{ssize_t(net::read_bufsz(socket))}
,write_bufsz{ssize_t(net::write_bufsz(socket))}
,read_lowat{ssize_t(net::read_lowat(socket))}
,write_lowat{ssize_t(net::write_lowat(socket))}
{
}
/// Updates the socket with provided options. Defaulted / -1'ed options are
/// ignored for updating.
void
ircd::net::set(socket &socket,
const sock_opts &opts)
{
if(opts.v6only != opts.IGN)
net::v6only(socket, opts.v6only);
if(opts.blocking != opts.IGN)
net::blocking(socket, opts.blocking);
if(opts.nopush != opts.IGN)
net::nopush(socket, opts.nopush);
if(opts.nodelay != opts.IGN)
net::nodelay(socket, opts.nodelay);
if(opts.quickack != opts.IGN)
net::quickack(socket, opts.quickack);
if(opts.keepalive != opts.IGN)
net::keepalive(socket, opts.keepalive);
if(opts.linger != opts.IGN)
net::linger(socket, opts.linger);
if(opts.read_bufsz != opts.IGN)
net::read_bufsz(socket, opts.read_bufsz);
if(opts.write_bufsz != opts.IGN)
net::write_bufsz(socket, opts.write_bufsz);
if(opts.read_lowat != opts.IGN)
net::read_lowat(socket, opts.read_lowat);
if(opts.write_lowat != opts.IGN)
net::write_lowat(socket, opts.write_lowat);
if(opts.ebpf != -1)
net::attach(socket, opts.ebpf);
}
bool
ircd::net::detach(socket &socket,
const int prog_fd)
{
ip::tcp::socket &sd(socket);
const auto &fd
{
sd.lowest_layer().native_handle()
};
detach(fd, prog_fd);
return true;
}
bool
ircd::net::detach(const int sd,
const int prog_fd)
#if defined(SO_DETACH_BPF) && defined(SOL_SOCKET)
{
const socklen_t len(sizeof(prog_fd));
sys::call(::setsockopt, sd, SOL_SOCKET, SO_DETACH_BPF, &prog_fd, len);
return true;
}
#else
{
#warning "SO_DETACH_BPF is not defined on this platform."
return false;
}
#endif
bool
ircd::net::attach(socket &socket,
const int prog_fd)
{
ip::tcp::socket &sd(socket);
const auto &fd
{
sd.lowest_layer().native_handle()
};
attach(fd, prog_fd);
return true;
}
bool
ircd::net::attach(const int sd,
const int prog_fd)
#if defined(SO_ATTACH_BPF) && defined(SOL_SOCKET)
{
const socklen_t len(sizeof(prog_fd));
sys::call(::setsockopt, sd, SOL_SOCKET, SO_ATTACH_BPF, &prog_fd, len);
return true;
}
#else
{
#warning "SO_ATTACH_BPF is not defined on this platform."
return false;
}
#endif
bool
ircd::net::write_lowat(socket &socket,
const size_t bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
const ip::tcp::socket::send_low_watermark option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
return true;
}
bool
ircd::net::read_lowat(socket &socket,
const size_t bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
const ip::tcp::socket::receive_low_watermark option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
return true;
}
bool
ircd::net::write_bufsz(socket &socket,
const size_t bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
const ip::tcp::socket::send_buffer_size option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
return true;
}
bool
ircd::net::read_bufsz(socket &socket,
const size_t bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
const ip::tcp::socket::receive_buffer_size option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
return true;
}
bool
ircd::net::linger(socket &socket,
const time_t t)
{
assert(t >= std::numeric_limits<int>::min());
assert(t <= std::numeric_limits<int>::max());
const ip::tcp::socket::linger option
{
t >= 0, // ON / OFF boolean
t >= 0? int(t) : 0 // Uses 0 when OFF
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
return true;
}
bool
ircd::net::keepalive(socket &socket,
const bool b)
{
const ip::tcp::socket::keep_alive option{b};
ip::tcp::socket &sd(socket);
sd.set_option(option);
return true;
}
bool
ircd::net::quickack(socket &socket,
const bool b)
#if defined(TCP_QUICKACK) && defined(SOL_SOCKET)
{
ip::tcp::socket &sd(socket);
const auto &fd
{
sd.lowest_layer().native_handle()
};
const int val(b);
const socklen_t len(sizeof(val));
syscall(::setsockopt, fd, SOL_SOCKET, TCP_QUICKACK, &val, len);
return true;
}
#else
{
#warning "TCP_QUICKACK is not defined on this platform."
return false;
}
#endif
bool
ircd::net::nodelay(socket &socket,
const bool b)
{
if(likely(nodelay(socket) != b))
nodelay(socket, b, system);
return true;
}
bool
ircd::net::nodelay(socket &socket,
const bool b,
system_t)
{
const ip::tcp::no_delay option{b};
ip::tcp::socket &sd(socket);
sd.set_option(option);
socket._nodelay = b;
return true;
}
bool
ircd::net::nopush(socket &socket,
const bool b)
#if defined(TCP_CORK) && defined(SOL_SOCKET)
{
ip::tcp::socket &sd(socket);
const auto &fd
{
sd.lowest_layer().native_handle()
};
const int val(b);
const socklen_t len(sizeof(val));
syscall(::setsockopt, fd, SOL_SOCKET, TCP_CORK, &val, len);
return true;
}
#else
{
#warning "TCP_CORK is not defined on this platform."
return false;
}
#endif
/// Toggles the behavior of non-async asio calls.
///
/// This option affects very little in practice and only sets a flag in
/// userspace in asio, not an actual ioctl(2) (XXX this is not true anymore,
/// sd.non_blocking() and sd.native_non_blocking() both seem to ioctl(2)).
/// See below the deprecated section.
///
/// ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
/// * All sockets are already set by asio to FIONBIO=1 no matter what, thus
/// nothing really blocks the event loop ever by default unless you try hard.
///
/// * All asio::async_ and sd.async_ and ssl.async_ calls will always do what
/// the synchronous/blocking alternative would have accomplished but using
/// the async methodology. i.e if a buffer is full you will always wait
/// asynchronously: async_write() will wait for everything, async_write_some()
/// will wait for something, etc -- but there will never be true non-blocking
/// _effective behavior_ from these calls.
///
/// * All asio non-async calls conduct blocking by (on linux) poll()'ing the
/// socket to get a real kernel-blocking operation out of it (this is the
/// try-hard part).
///
/// This flag only controls the behavior of the last bullet. In practice,
/// in this project there is never a reason to ever set this to true,
/// however, sockets do get constructed by asio in blocking mode by default
/// so we mostly use this function to set it to non-blocking.
/// ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
///
/// The kern argument has been added to decide between native_non_blocking()
/// (when kern=true) or non_blocking() (when kern=false). These both set
/// different flags in asio but they both result in the same ioctl(FIONBIO)
/// probably due to third-party libraries flipping FIONBIO outside of asio's
/// knowledge and naive users complaining too much to the maintainer.
///
/// To deal with this we have added a query to the sd.non_blocking() getter
/// which AT LEAST FOR NOW only reads asio's flags without a syscall and
/// won't call the sd.non_blocking() setter if it's superfluous.
bool
ircd::net::blocking(socket &socket,
const bool b)
{
ip::tcp::socket &sd(socket);
if(likely(sd.non_blocking() == b))
sd.non_blocking(!b);
return true;
}
bool
ircd::net::blocking(socket &socket,
const bool b,
system_t)
{
ip::tcp::socket &sd(socket);
sd.native_non_blocking(!b);
return true;
}
bool
ircd::net::v6only(socket &socket,
const bool b)
{
const ip::v6_only option{b};
ip::tcp::socket &sd(socket);
sd.set_option(option);
return true;
}
int
ircd::net::attach(const socket &socket)
#if defined(SO_ATTACH_BPF) && defined(SOL_SOCKET)
{
const ip::tcp::socket &sd(socket);
const auto &fd
{
mutable_cast(sd).lowest_layer().native_handle()
};
int ret {-1};
socklen_t len(sizeof(ret));
sys::call(::getsockopt, fd, SOL_SOCKET, SO_ATTACH_BPF, &ret, &len);
assert(len <= sizeof(ret));
return ret;
}
#else
{
#warning "SO_ATTACH_BPF is not defined on this platform."
}
#endif
size_t
ircd::net::write_lowat(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::send_low_watermark option{};
sd.get_option(option);
return option.value();
}
size_t
ircd::net::read_lowat(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::receive_low_watermark option{};
sd.get_option(option);
return option.value();
}
size_t
ircd::net::write_bufsz(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::send_buffer_size option{};
sd.get_option(option);
return option.value();
}
size_t
ircd::net::read_bufsz(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::receive_buffer_size option{};
sd.get_option(option);
return option.value();
}
time_t
ircd::net::linger(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::linger option;
sd.get_option(option);
return option.enabled()? option.timeout() : -1;
}
bool
ircd::net::keepalive(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::keep_alive option;
sd.get_option(option);
return option.value();
}
bool
ircd::net::quickack(const socket &socket)
#if defined(TCP_QUICKACK) && defined(SOL_SOCKET)
{
const ip::tcp::socket &sd(socket);
const auto &fd
{
mutable_cast(sd).lowest_layer().native_handle()
};
uint32_t ret;
socklen_t len(sizeof(ret));
syscall(::getsockopt, fd, SOL_SOCKET, TCP_QUICKACK, &ret, &len);
assert(len <= sizeof(ret));
return ret;
}
#else
{
#warning "TCP_QUICKACK is not defined on this platform."
return false;
}
#endif
bool
ircd::net::nodelay(const socket &socket,
system_t)
{
const ip::tcp::socket &sd(socket);
ip::tcp::no_delay option;
sd.get_option(option);
mutable_cast(socket)._nodelay = option.value();
return socket._nodelay;
}
bool
ircd::net::nodelay(const socket &socket)
{
return socket._nodelay;
}
bool
ircd::net::nopush(const socket &socket)
#if defined(TCP_CORK) && defined(SOL_SOCKET)
{
const ip::tcp::socket &sd(socket);
const auto &fd
{
mutable_cast(sd).lowest_layer().native_handle()
};
uint32_t ret;
socklen_t len(sizeof(ret));
syscall(::getsockopt, fd, SOL_SOCKET, TCP_CORK, &ret, &len);
assert(len <= sizeof(ret));
return ret;
}
#else
{
#warning "TCP_CORK is not defined on this platform."
return false;
}
#endif
bool
ircd::net::blocking(const socket &socket)
{
const ip::tcp::socket &sd(socket);
return !sd.non_blocking();
}
bool
ircd::net::blocking(const socket &socket,
system_t)
{
const ip::tcp::socket &sd(socket);
return !sd.native_non_blocking();
}
bool
ircd::net::v6only(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::v6_only option;
sd.get_option(option);
return option.value();
}
///////////////////////////////////////////////////////////////////////////////
//
// net/scope_timeout.h
//
ircd::net::scope_timeout::scope_timeout(socket &socket,
const milliseconds &timeout)
:s
{
timeout < 0ms? nullptr : &socket
}
{
if(timeout < 0ms)
return;
socket.set_timeout(timeout);
}
ircd::net::scope_timeout::scope_timeout(socket &socket,
const milliseconds &timeout,
handler callback)
:s
{
timeout < 0ms? nullptr : &socket
}
{
if(timeout < 0ms)
return;
socket.set_timeout(timeout, [callback(std::move(callback))]
(const error_code &ec)
{
const bool &timed_out{!ec}; // success = timeout
callback(timed_out);
});
}
ircd::net::scope_timeout::scope_timeout(scope_timeout &&other)
noexcept
:s{std::move(other.s)}
{
other.s = nullptr;
}
ircd::net::scope_timeout &
ircd::net::scope_timeout::operator=(scope_timeout &&other)
noexcept
{
this->~scope_timeout();
s = std::move(other.s);
other.s = nullptr;
return *this;
}
ircd::net::scope_timeout::~scope_timeout()
noexcept
{
cancel();
}
bool
ircd::net::scope_timeout::cancel()
noexcept try
{
if(!this->s)
return false;
auto *const s{this->s};
this->s = nullptr;
s->cancel_timeout();
return true;
}
catch(const std::exception &e)
{
log::error
{
log, "socket(%p) scope_timeout::cancel :%s",
(const void *)s,
e.what()
};
return false;
}
bool
ircd::net::scope_timeout::release()
{
const auto s{this->s};
this->s = nullptr;
return s != nullptr;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/socket.h
//
[[clang::always_destroy]]
decltype(ircd::net::ssl_curve_list)
ircd::net::ssl_curve_list
{
{ "name", "ircd.net.ssl.curve.list" },
{ "default", string_view{} },
};
[[clang::always_destroy]]
decltype(ircd::net::ssl_cipher_list)
ircd::net::ssl_cipher_list
{
{ "name", "ircd.net.ssl.cipher.list" },
{ "default", string_view{} },
};
[[clang::always_destroy]]
decltype(ircd::net::ssl_cipher_blacklist)
ircd::net::ssl_cipher_blacklist
{
{ "name", "ircd.net.ssl.cipher.blacklist" },
{ "default", string_view{} },
};
[[clang::always_destroy]]
[[gnu::visibility("hidden")]]
boost::asio::ssl::context
ircd::net::sslv23_client
{
boost::asio::ssl::context::method::sslv23_client
};
decltype(ircd::net::socket::count)
ircd::net::socket::count;
decltype(ircd::net::socket::instances)
ircd::net::socket::instances;
[[clang::always_destroy]]
decltype(ircd::net::socket::desc_connect)
ircd::net::socket::desc_connect
{
"ircd.net.socket.connect"
};
[[clang::always_destroy]]
decltype(ircd::net::socket::desc_handshake)
ircd::net::socket::desc_handshake
{
"ircd.net.socket.handshake"
};
[[clang::always_destroy]]
decltype(ircd::net::socket::desc_disconnect)
ircd::net::socket::desc_disconnect
{
"ircd.net.socket.disconnect"
};
[[clang::always_destroy]]
decltype(ircd::net::socket::desc_timeout)
ircd::net::socket::desc_timeout
{
"ircd.net.socket.timeout"
};
[[clang::always_destroy]]
decltype(ircd::net::socket::desc_wait)
ircd::net::socket::desc_wait
{
{ "ircd.net.socket.wait.ready.ANY" },
{ "ircd.net.socket.wait.ready.READ" },
{ "ircd.net.socket.wait.ready.WRITE" },
{ "ircd.net.socket.wait.ready.ERROR" },
};
decltype(ircd::net::socket::total_bytes_in)
ircd::net::socket::total_bytes_in
{
{ "name", "ircd.net.socket.in.total.bytes" },
{ "desc", "The total number of bytes received by all sockets" },
};
decltype(ircd::net::socket::total_bytes_out)
ircd::net::socket::total_bytes_out
{
{ "name", "ircd.net.socket.out.total.bytes" },
{ "desc", "The total number of bytes received by all sockets" },
};
decltype(ircd::net::socket::total_calls_in)
ircd::net::socket::total_calls_in
{
{ "name", "ircd.net.socket.in.total.calls" },
{ "desc", "The total number of read operations on all sockets" },
};
decltype(ircd::net::socket::total_calls_out)
ircd::net::socket::total_calls_out
{
{ "name", "ircd.net.socket.out.total.calls" },
{ "desc", "The total number of write operations on all sockets" },
};
//
// socket::socket
//
ircd::net::socket::socket()
:sd
{
ios::get()
}
,timer
{
ios::get()
}
{
++instances;
}
ircd::net::socket::socket(asio::ssl::context &ssl)
:sd
{
ios::get()
}
,ssl
{
std::in_place, this->sd, ssl
}
,timer
{
ios::get()
}
{
++instances;
}
/// The dtor asserts that the socket is not open/connected requiring a
/// an SSL close_notify. There's no more room for async callbacks via
/// shared_ptr after this dtor.
ircd::net::socket::~socket()
noexcept try
{
assert(instances > 0);
if(unlikely(--instances == 0))
net::dock.notify_all();
if(unlikely(opened(*this)))
{
char buf[128];
throw panic
{
"Failed to ensure socket(%p) is disconnected from %s before dtor.",
this,
string(buf, remote_ipport(*this)),
};
}
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) close :%s",
this,
e.what()
};
return;
}
catch(...)
{
log::critical
{
log, "socket(%p) close: unexpected",
this,
};
ircd::terminate();
}
void
ircd::net::socket::connect(const endpoint &ep,
const open_opts &opts,
eptr_handler callback)
{
char epbuf[128];
log::debug
{
log, "socket:%lu attempting connect remote[%s] to:%ld$ms",
this->id,
string(epbuf, ep),
opts.connect_timeout.count()
};
auto connect_handler
{
std::bind(&socket::handle_connect, this, weak_from(*this), opts, std::move(callback), ph::_1)
};
this->remote = ep;
set_timeout(opts.connect_timeout);
sd.async_connect(ep, ios::handle(desc_connect, std::move(connect_handler)));
}
void
ircd::net::socket::handshake(const open_opts &opts,
eptr_handler callback)
{
assert(!fini);
assert(sd.is_open());
assert(ssl);
log::debug
{
log, "%s handshaking to '%s' for '%s' to:%ld$ms",
loghead(*this),
opts.send_sni?
server_name(opts):
"<no sni>"_sv,
common_name(opts),
opts.handshake_timeout.count()
};
auto handshake_handler
{
std::bind(&socket::handle_handshake, this, weak_from(*this), std::move(callback), ph::_1)
};
auto verify_handler
{
std::bind(&socket::handle_verify, this, ph::_1, ph::_2, opts)
};
assert(!fini);
set_timeout(opts.handshake_timeout);
if(opts.send_sni && server_name(opts))
openssl::server_name(*this, server_name(opts));
ssl->set_verify_callback(std::move(verify_handler));
ssl->async_handshake(handshake_type::client, ios::handle(desc_handshake, std::move(handshake_handler)));
}
void
ircd::net::socket::disconnect(const close_opts &opts,
eptr_handler callback)
try
{
if(!sd.is_open())
{
call_user(callback, {});
return;
}
assert(!fini);
log::debug
{
log, "%s disconnect type:%s shut:%s user[in:%zu out:%zu]",
loghead(*this),
reflect(opts.type),
!ssl? reflect(opts.shutdown): "--"_sv,
in.bytes,
out.bytes
};
cancel();
assert(!fini);
fini = true;
if(opts.sopts)
set(*this, *opts.sopts);
switch(opts.type)
{
case dc::RST:
sd.close();
break;
case dc::FIN:
case dc::FIN_SEND:
case dc::FIN_RECV:
sd.shutdown(translate(opts.type));
break;
case dc::SSL_NOTIFY:
{
if(!ssl)
{
// Redirect SSL_NOTIFY to another strategy for non-SSL sockets.
if(opts.shutdown != dc::RST)
sd.shutdown(translate(opts.shutdown));
sd.close();
break;
}
auto disconnect_handler
{
std::bind(&socket::handle_disconnect, this, shared_from(*this), std::move(callback), ph::_1)
};
set_timeout(opts.timeout);
ssl->async_shutdown(ios::handle(desc_disconnect, std::move(disconnect_handler)));
return;
}
}
call_user(callback, {});
}
catch(const boost::system::system_error &e)
{
log::derror
{
log, "socket:%lu disconnect type:%d :%s",
this->id,
uint(opts.type),
e.what()
};
call_user(callback, make_error_code(e));
}
catch(const std::exception &e)
{
throw panic
{
"socket:%lu disconnect: type: %d :%s",
this->id,
uint(opts.type),
e.what()
};
}
bool
ircd::net::socket::cancel()
noexcept
{
cancel_timeout();
boost::system::error_code ec;
sd.cancel(ec);
if(unlikely(ec))
{
char ecbuf[64];
log::dwarning
{
log, "socket:%lu cancel :%s",
this->id,
string(ecbuf, ec)
};
}
return !ec;
}
void
ircd::net::socket::wait(const wait_opts &opts,
wait_callback_eptr callback)
{
wait(opts, [callback(std::move(callback))]
(const error_code &ec)
{
if(likely(!ec))
return callback(std::exception_ptr{});
callback(make_system_eptr(ec));
});
}
/// Asynchronous callback when the socket is ready
///
/// Overload for operator() without a timeout. see: operator()
///
void
ircd::net::socket::wait(const wait_opts &opts)
try
{
assert(!fini);
const auto interruption{[this]
(ctx::ctx *const &) noexcept
{
this->cancel();
}};
const scope_timeout timeout
{
*this, opts.timeout
};
const auto wait_cond
{
translate(opts.type)
};
continuation
{
continuation::asio_predicate, interruption, [this, &wait_cond]
(auto &yield)
{
sd.async_wait(wait_cond, yield);
}
};
}
catch(const boost::system::system_error &e)
{
if(e.code() == boost::system::errc::operation_canceled && timedout)
throw_system_error(std::errc::timed_out);
throw_system_error(e);
}
/// Asynchronous callback when the socket is ready
///
/// This function calls back the handler when the socket is ready
/// for the operation of the specified type.
///
void
ircd::net::socket::wait(const wait_opts &opts,
wait_callback_ec callback)
try
{
assert(!fini);
set_timeout(opts.timeout);
const unwind_exceptional unset{[this]
{
cancel_timeout();
}};
auto handle
{
std::bind(&socket::handle_ready, this, weak_from(*this), opts.type, std::move(callback), ph::_1)
};
switch(opts.type)
{
case ready::READ:
{
// The problem here is that waiting on the sd doesn't account for bytes
// read into SSL that we didn't consume yet. If something is stuck in
// those userspace buffers, the socket won't know about it and perform
// the wait. ASIO should fix this by adding a ssl::stream.wait() method
// which will bail out immediately in this case before passing up to the
// real socket wait.
static char buf[64];
static const ilist<mutable_buffer> bufs{buf};
if(ssl && SSL_peek(ssl->native_handle(), buf, sizeof(buf)) > 0)
{
ircd::dispatch{desc_wait[1], ios::defer, [handle(std::move(handle))]
{
handle(error_code{});
}};
return;
}
// The problem here is that the wait operation gives ec=success on both a
// socket error and when data is actually available. We then have to check
// using a non-blocking peek in the handler. By doing it this way here we
// just get the error in the handler's ec.
//sd.async_wait(bufs, sd.message_peek, ios::handle(desc_wait[1], [handle(std::move(handle))]
sd.async_receive(bufs, sd.message_peek, ios::handle(desc_wait[1], [handle(std::move(handle))]
(const auto &ec, const size_t bytes)
{
handle
(
!ec && bytes?
error_code{}:
!ec && !bytes?
net::eof:
make_error_code(ec)
);
}));
return;
}
case ready::WRITE:
{
sd.async_wait(wait_type::wait_write, ios::handle(desc_wait[2], std::move(handle)));
return;
}
case ready::ERROR:
{
sd.async_wait(wait_type::wait_error, ios::handle(desc_wait[3], std::move(handle)));
return;
}
[[unlikely]]
default:
throw ircd::not_implemented{};
}
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
[[gnu::always_inline]]
inline std::error_code
ircd::net::socket::check(std::nothrow_t,
const ready &type)
noexcept
{
static char buf[64];
static const ilist<mutable_buffer> bufs
{
buf
};
if(!sd.is_open())
return make_error_code(std::errc::bad_file_descriptor);
if(fini)
return make_error_code(std::errc::not_connected);
std::error_code ret;
if(ssl && SSL_peek(ssl->native_handle(), buf, sizeof(buf)) > 0)
return ret;
assert(!blocking(*this));
boost::system::error_code ec;
if(sd.receive(bufs, sd.message_peek, ec) > 0)
{
assert(!ec.value());
return ret;
}
if(ec.value())
ret = make_error_code(ec);
else
ret = eof;
if(ret == std::errc::resource_unavailable_try_again)
ret = {};
return ret;
}
/// Yields ircd::ctx until buffers are full.
[[gnu::always_inline]]
inline size_t
ircd::net::socket::read_all(const mutable_buffers &bufs)
try
{
static const auto completion
{
asio::transfer_all()
};
assert(!fini);
const auto interruption{[this]
(ctx::ctx *const &) noexcept
{
this->cancel();
}};
size_t ret{};
continuation
{
continuation::asio_predicate, interruption, [this, &ret, &bufs]
(auto &yield)
{
ret = ssl?
asio::async_read(*ssl, bufs, completion, yield):
asio::async_read(sd, bufs, completion, yield);
}
};
if(!ret)
throw std::system_error
{
eof
};
++in.calls;
in.bytes += ret;
++total_calls_in;
total_bytes_in += ret;
return ret;
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
/// Yields ircd::ctx until remote has sent at least some data.
[[gnu::always_inline]]
inline size_t
ircd::net::socket::read_few(const mutable_buffers &bufs)
try
{
assert(!fini);
const auto interruption{[this]
(ctx::ctx *const &) noexcept
{
this->cancel();
}};
size_t ret{};
continuation
{
continuation::asio_predicate, interruption, [this, &ret, &bufs]
(auto &yield)
{
ret = ssl?
ssl->async_read_some(bufs, yield):
sd.async_read_some(bufs, yield);
}
};
if(!ret)
throw std::system_error
{
eof
};
++in.calls;
in.bytes += ret;
++total_calls_in;
total_bytes_in += ret;
return ret;
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
/// Non-blocking; as much as possible without blocking
[[gnu::always_inline]]
inline size_t
ircd::net::socket::read_any(const mutable_buffers &bufs)
{
static const auto completion
{
asio::transfer_all()
};
assert(!fini);
assert(!blocking(*this));
boost::system::error_code ec;
const size_t ret
{
ssl?
asio::read(*ssl, bufs, completion, ec):
asio::read(sd, bufs, completion, ec)
};
++in.calls;
in.bytes += ret;
++total_calls_in;
total_bytes_in += ret;
if(likely(!ec))
return ret;
if(ec == boost::system::errc::resource_unavailable_try_again)
return ret;
throw_system_error(ec);
__builtin_unreachable();
}
/// Non-blocking; One system call only; never throws eof;
[[gnu::always_inline]]
inline size_t
ircd::net::socket::read_one(const mutable_buffers &bufs)
{
assert(!fini);
assert(!blocking(*this));
boost::system::error_code ec;
const size_t ret
{
ssl?
ssl->read_some(bufs, ec):
sd.read_some(bufs, ec)
};
++in.calls;
in.bytes += ret;
++total_calls_in;
total_bytes_in += ret;
if(likely(!ec))
return ret;
if(ec == boost::system::errc::resource_unavailable_try_again)
return ret;
throw_system_error(ec);
__builtin_unreachable();
}
/// Yields ircd::ctx until all buffers are sent.
[[gnu::always_inline]]
inline size_t
ircd::net::socket::write_all(const const_buffers &bufs)
try
{
static const auto completion
{
asio::transfer_all()
};
assert(!fini);
assert(!blocking(*this));
const auto interruption{[this]
(ctx::ctx *const &) noexcept
{
this->cancel();
}};
size_t ret{};
continuation
{
continuation::asio_predicate, interruption, [this, &ret, &bufs]
(auto &yield)
{
ret = ssl?
asio::async_write(*ssl, bufs, completion, yield):
asio::async_write(sd, bufs, completion, yield);
}
};
++out.calls;
out.bytes += ret;
++total_calls_out;
total_bytes_out += ret;
return ret;
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
/// Yields ircd::ctx until one or more bytes are sent.
[[gnu::always_inline]]
inline size_t
ircd::net::socket::write_few(const const_buffers &bufs)
try
{
assert(!fini);
assert(!blocking(*this));
const auto interruption{[this]
(ctx::ctx *const &) noexcept
{
this->cancel();
}};
size_t ret{};
continuation
{
continuation::asio_predicate, interruption, [this, &ret, &bufs]
(auto &yield)
{
ret = ssl?
ssl->async_write_some(bufs, yield):
sd.async_write_some(bufs, yield);
}
};
++out.calls;
out.bytes += ret;
++total_calls_out;
total_bytes_out += ret;
return ret;
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
/// Non-blocking; writes as much as possible without blocking
[[gnu::always_inline]]
inline size_t
ircd::net::socket::write_any(const const_buffers &bufs)
try
{
static const auto completion
{
asio::transfer_all()
};
assert(!fini);
assert(!blocking(*this));
const size_t ret
{
ssl?
asio::write(*ssl, bufs, completion):
asio::write(sd, bufs, completion)
};
++out.calls;
out.bytes += ret;
++total_calls_out;
total_bytes_out += ret;
return ret;
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
/// Non-blocking; Writes one "unit" of data or less; never more.
[[gnu::always_inline]]
inline size_t
ircd::net::socket::write_one(const const_buffers &bufs)
try
{
assert(!fini);
assert(!blocking(*this));
const size_t ret
{
ssl?
ssl->write_some(bufs):
sd.write_some(bufs)
};
++out.calls;
out.bytes += ret;
++total_calls_out;
total_bytes_out += ret;
return ret;
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
void
ircd::net::socket::handle_ready(const std::weak_ptr<socket> wp,
const net::ready type,
const ec_handler callback,
error_code ec)
noexcept try
{
using std::errc;
// After life_guard is constructed it is safe to use *this in this frame.
const life_guard<socket> s{wp};
if(!timedout && !is(ec, errc::operation_canceled) && !fini)
cancel_timeout();
if(timedout && is(ec, errc::operation_canceled))
ec = make_error_code(errc::timed_out);
if(unlikely(!ec && !sd.is_open()))
ec = make_error_code(errc::bad_file_descriptor);
if(unlikely(!ec && fini))
ec = make_error_code(errc::not_connected);
if constexpr((false)) // manual debug; large nr syscalls
{
char ecbuf[64];
log::debug
{
log, "%s ready %s %s avail:%zu:%zu",
loghead(*this),
reflect(type),
string(ecbuf, ec),
type == ready::READ? bytes : 0UL,
type == ready::READ? pending(*this): 0UL,
};
}
call_user(callback, ec);
}
catch(const std::bad_weak_ptr &e)
{
// This handler may still be registered with asio after the socket destructs, so
// the weak_ptr will indicate that fact. However, this is never intended and is
// a debug assertion which should be corrected.
log::warning
{
log, "socket(%p) belated callback to handler... (%s)",
this,
e.what()
};
assert(0);
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) handle :%s",
this,
e.what()
};
const ctx::exception_handler eh;
call_user(callback, ec);
}
void
ircd::net::socket::handle_timeout(const std::weak_ptr<socket> wp,
ec_handler callback,
error_code ec)
noexcept try
{
if(unlikely(wp.expired()))
return;
// We increment our end of the timer semaphore. If the count is still
// behind the other end of the semaphore, this callback was sitting in
// the ios queue while the timer was given a new task; any effects here
// will be erroneously bleeding into the next timeout. However the callback
// is still invoked to satisfy the user's expectation for receiving it.
assert(timer_sem[0] < timer_sem[1]);
if(++timer_sem[0] == timer_sem[1] && timer_set) switch(ec.value())
{
// A 'success' for this handler means there was a timeout on the socket
case 0:
{
assert(timedout == false);
timedout = true;
sd.cancel();
break;
}
// A cancelation means there was no timeout.
[[likely]]
case int(std::errc::operation_canceled):
{
assert(ec.category() == std::system_category());
assert(timedout == false);
break;
}
// All other errors are unexpected, logged and ignored here.
[[unlikely]]
default: throw panic
{
"socket(%p): unexpected :%s",
(const void *)this,
string(ec)
};
}
else ec = make_error_code(std::errc::operation_canceled);
if(callback)
call_user(callback, ec);
}
catch(const boost::system::system_error &e)
{
using std::errc;
const auto ec_(e.code());
if(system_category(ec_)) switch(ec_.value())
{
case int(errc::bad_file_descriptor):
{
if(fini)
break;
[[fallthrough]];
}
default:
{
assert(0);
log::critical
{
log, "socket(%p) handle timeout :%s",
(const void *)this,
string(e)
};
break;
}
}
if(callback)
{
const ctx::exception_handler eh;
call_user(callback, ec_);
}
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) handle timeout :%s",
(const void *)this,
e.what()
};
if(callback)
{
const ctx::exception_handler eh;
call_user(callback, ec);
}
}
void
ircd::net::socket::handle_connect(std::weak_ptr<socket> wp,
const open_opts &opts,
eptr_handler callback,
error_code ec)
noexcept try
{
using std::errc;
const life_guard<socket> s{wp};
if(likely(sd.is_open()))
this->local = sd.local_endpoint();
char ecbuf[64], epbuf[128];
log::debug
{
log, "%s connect to %s :%s",
loghead(*this),
string(epbuf, opts.ipport),
string(ecbuf, ec)
};
// The timer was set by socket::connect() and may need to be canceled.
if(!timedout && !is(ec, errc::operation_canceled) && !fini)
cancel_timeout();
if(timedout && is(ec, errc::operation_canceled))
ec = make_error_code(errc::timed_out);
if(!ec && opts.handshake && fini)
ec = make_error_code(errc::operation_canceled);
// A connect error; abort here by calling the user back with error.
if(ec)
return call_user(callback, ec);
// Try to set the user's socket options now; if something fails we can
// invoke their callback with the error from the exception handler.
if(opts.sopts && !fini)
set(*this, *opts.sopts);
// The user can opt out of performing the handshake here.
if(!ssl || !opts.handshake)
{
blocking(*this, false);
return call_user(callback, ec);
}
assert(!fini);
handshake(opts, std::move(callback));
}
catch(const std::bad_weak_ptr &e)
{
log::warning
{
log, "socket(%p) belated callback to handle_connect... (%s)",
this,
e.what()
};
assert(0);
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) handle_connect :%s",
this,
e.what()
};
const ctx::exception_handler eh;
call_user(callback, ec);
}
void
ircd::net::socket::handle_disconnect(std::shared_ptr<socket> s,
eptr_handler callback,
error_code ec)
noexcept try
{
using std::errc;
assert(fini);
if(!timedout && ec != errc::operation_canceled)
cancel_timeout();
if(timedout && ec == errc::operation_canceled)
ec = make_error_code(errc::timed_out);
char ecbuf[64];
log::debug
{
log, "%s disconnect %s",
loghead(*this),
string(ecbuf, ec)
};
// This ignores EOF and turns it into a success to alleviate user concern.
if(ec == eof)
ec = error_code{};
sd.close();
call_user(callback, ec);
}
catch(const boost::system::system_error &e)
{
log::error
{
log, "socket(%p) disconnect :%s",
this,
e.what()
};
const auto code(e.code());
const ctx::exception_handler eh;
call_user(callback, code);
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) disconnect :%s",
this,
e.what()
};
const ctx::exception_handler eh;
call_user(callback, ec);
}
void
ircd::net::socket::handle_handshake(std::weak_ptr<socket> wp,
eptr_handler callback,
error_code ec)
noexcept try
{
using std::errc;
const life_guard<socket> s{wp};
if(!timedout && ec != errc::operation_canceled && !fini)
cancel_timeout();
if(timedout && ec == errc::operation_canceled)
ec = make_error_code(errc::timed_out);
if constexpr(RB_DEBUG_LEVEL)
{
const auto *const current_cipher
{
!ec?
openssl::current_cipher(*this):
nullptr
};
char ecbuf[64];
log::debug
{
log, "%s handshake cipher:%s %s",
loghead(*this),
current_cipher?
openssl::name(*current_cipher):
"<NO CIPHER>"_sv,
string(ecbuf, ec)
};
}
// Toggles the behavior of non-async functions; see func comment
if(!ec)
blocking(*this, false);
// This is the end of the asynchronous call chain; the user is called
// back with or without error here.
call_user(callback, ec);
}
catch(const boost::system::system_error &e)
{
log::error
{
log, "socket(%p) after handshake :%s",
this,
e.what()
};
const auto code(e.code());
const ctx::exception_handler eh;
call_user(callback, e.code());
}
catch(const std::bad_weak_ptr &e)
{
log::warning
{
log, "socket(%p) belated callback to handle_handshake... (%s)",
this,
e.what()
};
assert(0);
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) handle_handshake :%s",
this,
e.what()
};
const ctx::exception_handler eh;
call_user(callback, ec);
}
bool
ircd::net::socket::handle_verify(const bool valid,
asio::ssl::verify_context &vc,
const open_opts &opts)
noexcept try
{
// `valid` indicates whether or not there's an anomaly with the
// certificate; if so, it is usually enumerated by the `switch()`
// statement below. If `valid` is false, this function can return
// true to still continue.
// Socket ordered to shut down. We abort the verification here
// to allow the open_opts out of scope with the user.
if(fini || !sd.is_open())
return false;
// The user can set this option to bypass verification.
if(!opts.verify_certificate)
return true;
// X509_STORE_CTX &
assert(vc.native_handle());
const auto &stctx{*vc.native_handle()};
const auto &cert{openssl::current_cert(stctx)};
const auto reject{[&stctx, &opts]
{
throw inauthentic
{
"%s #%ld: %s",
common_name(opts),
openssl::get_error(stctx),
openssl::get_error_string(stctx)
};
}};
if(!valid)
{
thread_local char buf[16_KiB];
const critical_assertion ca;
log::warning
{
log, "verify[%s] :%s :%s",
common_name(opts),
openssl::get_error_string(stctx),
openssl::print_subject(buf, cert)
};
}
const auto err
{
openssl::get_error(stctx)
};
if(!valid) switch(err)
{
[[unlikely]]
case X509_V_OK:
assert(0);
[[fallthrough]];
default:
reject();
__builtin_unreachable();
case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT:
assert(openssl::get_error_depth(stctx) == 0);
if(opts.allow_self_signed)
return true;
reject();
__builtin_unreachable();
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY:
case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE:
case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN:
if(opts.allow_self_signed || opts.allow_self_chain)
return true;
reject();
__builtin_unreachable();
case X509_V_ERR_CERT_HAS_EXPIRED:
if(opts.allow_expired)
return true;
reject();
__builtin_unreachable();
}
const bool verify_common_name
{
opts.verify_common_name &&
(opts.verify_self_signed_common_name && err == X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT)
};
if(verify_common_name)
{
if(unlikely(!common_name(opts)))
throw inauthentic
{
"No common name specified in connection options"
};
boost::asio::ssl::rfc2818_verification verifier
{
common_name(opts)
};
if(!verifier(true, vc))
{
thread_local char buf[rfc1035::NAME_BUFSIZE];
const critical_assertion ca;
throw inauthentic
{
"/CN=%s does not match target host %s :%s",
openssl::subject_common_name(buf, cert),
common_name(opts),
openssl::get_error_string(stctx)
};
}
}
if constexpr(RB_DEBUG_LEVEL)
{
thread_local char buf[16_KiB];
const critical_assertion ca;
log::debug
{
log, "verify[%s] %s",
common_name(opts),
openssl::print_subject(buf, cert)
};
}
return true;
}
catch(const inauthentic &e)
{
log::error
{
log, "Certificate rejected :%s", e.what()
};
return false;
}
catch(const std::exception &e)
{
log::critical
{
log, "Certificate error :%s", e.what()
};
return false;
}
void
ircd::net::socket::call_user(const ec_handler &callback,
const error_code &ec)
noexcept try
{
callback(ec);
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) async handler: unhandled exception :%s",
this,
e.what()
};
close(*this, dc::RST, close_ignore);
}
void
ircd::net::socket::call_user(const eptr_handler &callback,
const error_code &ec)
noexcept try
{
if(likely(!ec))
return callback(std::exception_ptr{});
callback(make_system_eptr(ec));
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) async handler: unhandled exception :%s",
this,
e.what()
};
}
ircd::milliseconds
ircd::net::socket::cancel_timeout()
noexcept
{
const auto exp
{
timer.expires_from_now()
};
const milliseconds ret
{
exp.total_milliseconds()
};
timer_set = false;
timedout = false;
boost::system::error_code ec;
timer.cancel(ec);
assert(!ec);
return ret;
}
void
ircd::net::socket::set_timeout(const milliseconds &t)
{
set_timeout(t, nullptr);
}
void
ircd::net::socket::set_timeout(const milliseconds &t,
ec_handler callback)
{
cancel_timeout();
if(t < milliseconds(0))
return;
auto handler
{
std::bind(&socket::handle_timeout, this, weak_from(*this), std::move(callback), ph::_1)
};
// The sending-side of the semaphore is incremented here to invalidate any
// pending/queued callbacks to handle_timeout as to not conflict now. The
// required companion boolean timer_set is also lit here.
assert(timer_sem[0] <= timer_sem[1]);
assert(timer_set == false);
assert(timedout == false);
++timer_sem[1];
timer_set = true;
const boost::posix_time::milliseconds pt
{
t.count()
};
timer.expires_from_now(pt);
timer.async_wait(ios::handle(desc_timeout, std::move(handler)));
}
ircd::net::socket::operator
SSL &()
{
assert(ssl);
assert(ssl->native_handle());
return *ssl->native_handle();
}
ircd::net::socket::operator
const SSL &()
const
{
auto &ssl(mutable_cast(this)->ssl);
assert(ssl);
assert(ssl->native_handle());
return *ssl->native_handle();
}
///////////////////////////////////////////////////////////////////////////////
//
// net/ipport.h
//
std::ostream &
ircd::net::operator<<(std::ostream &s, const ipport &t)
{
char buf[128];
s << net::string(buf, t);
return s;
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const ipport &ipp)
{
mutable_buffer out{buf};
const bool has_port(port(ipp));
const bool need_bracket
{
has_port && is_v6(ipp) && !is_null(ipp)
};
if(need_bracket)
consume(out, copy(out, '['));
if(ipp)
consume(out, size(string(out, std::get<ipport::IP>(ipp))));
if(need_bracket)
consume(out, copy(out, ']'));
if(has_port)
{
consume(out, copy(out, ':'));
consume(out, size(lex_cast(port(ipp), out)));
}
return
{
data(buf), data(out)
};
}
[[gnu::visibility("protected")]]
ircd::net::ipport
ircd::net::make_ipport(const boost::asio::ip::udp::endpoint &ep)
{
return ipport
{
ep.address(), ep.port()
};
}
[[gnu::visibility("protected")]]
ircd::net::ipport
ircd::net::make_ipport(const boost::asio::ip::tcp::endpoint &ep)
{
return ipport
{
ep.address(), ep.port()
};
}
[[gnu::visibility("protected")]]
boost::asio::ip::udp::endpoint
ircd::net::make_endpoint_udp(const ipport &ipport)
{
return
{
make_address(std::get<ipport::IP>(ipport)), port(ipport)
};
}
[[gnu::visibility("protected")]]
boost::asio::ip::tcp::endpoint
ircd::net::make_endpoint(const ipport &ipport)
{
return
{
make_address(std::get<ipport::IP>(ipport)), port(ipport)
};
}
//
// cmp
//
bool
ircd::net::ipport::cmp_ip::operator()(const ipport &a, const ipport &b)
const
{
return ipaddr::cmp()(std::get<ipport::IP>(a), std::get<ipport::IP>(b));
}
bool
ircd::net::ipport::cmp_port::operator()(const ipport &a, const ipport &b)
const
{
return std::get<ipport::PORT>(a) < std::get<ipport::PORT>(b);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/ipaddr.h
//
[[gnu::visibility("protected")]]
boost::asio::ip::address
ircd::net::make_address(const ipaddr &ipaddr)
{
return is_v4(ipaddr)?
ip::address(make_address(ipaddr.v4)):
ip::address(make_address(ipaddr.v6));
}
[[gnu::visibility("protected")]]
boost::asio::ip::address
ircd::net::make_address(const string_view &ip)
try
{
return
ip && ip == "*"?
boost::asio::ip::address_v6::any():
ip?
boost::asio::ip::make_address(ip):
boost::asio::ip::address{};
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
[[gnu::visibility("protected")]]
boost::asio::ip::address_v4
ircd::net::make_address(const uint32_t &ip)
{
return ip::address_v4{ip};
}
[[gnu::visibility("protected")]]
boost::asio::ip::address_v6
ircd::net::make_address(const uint128_t &ip)
#ifdef __cpp_lib_bit_cast
{
return ip::address_v6
{
std::bit_cast<decltype(ipaddr::byte)>(hton(ip))
};
}
#else
{
return ip::address_v6
{
reinterpret_cast<const decltype(ipaddr::byte) &&>(hton(ip))
};
}
#endif
std::ostream &
ircd::net::operator<<(std::ostream &s, const ipaddr &ipa)
{
char buf[128];
s << net::string(buf, ipa);
return s;
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const ipaddr &ipaddr)
{
return is_v4(ipaddr)?
string_ip4(buf, ipaddr.v4):
string_ip6(buf, ipaddr.v6);
}
ircd::string_view
ircd::net::string_ip4(const mutable_buffer &buf,
const uint32_t &ip)
{
return string(buf, make_address(ip));
}
ircd::string_view
ircd::net::string_ip6(const mutable_buffer &buf,
const uint128_t &ip)
{
return string(buf, make_address(ip));
}
bool
ircd::net::is_loop(const ipaddr &ipaddr)
{
return is_v4(ipaddr)?
make_address(ipaddr.v4).is_loopback():
make_address(ipaddr.v6).is_loopback();
}
//
// ipaddr::ipaddr
//
static_assert
(
SIZEOF_LONG_LONG >= 8,
"8 byte integer literals are required."
);
decltype(ircd::net::ipaddr::v4_max)
ircd::net::ipaddr::v4_min
{
0x0000ffff00000000ULL
};
decltype(ircd::net::ipaddr::v4_max)
ircd::net::ipaddr::v4_max
{
v4_min +
0x00000000ffffffffULL
};
ircd::net::ipaddr::ipaddr(const string_view &ip)
:ipaddr
{
make_address(ip)
}
{
}
ircd::net::ipaddr::ipaddr(const rfc1035::record::A &rr)
:ipaddr
{
rr.ip4
}
{
}
ircd::net::ipaddr::ipaddr(const rfc1035::record::AAAA &rr)
:ipaddr
{
rr.ip6
}
{
}
ircd::net::ipaddr::ipaddr(const uint32_t &ip)
:ipaddr
{
make_address(ip)
}
{
}
ircd::net::ipaddr::ipaddr(const uint128_t &ip)
:ipaddr
{
make_address(ip)
}
{
}
[[gnu::visibility("protected")]]
ircd::net::ipaddr::ipaddr(const asio::ip::address &address)
{
const auto address_
{
address.is_v6()?
address.to_v6():
make_address_v6(ip::v4_mapped, address.to_v4())
};
byte = address_.to_bytes();
std::reverse(byte.begin(), byte.end());
}
//
// ipaddr::ipaddr
//
bool
ircd::net::ipaddr::cmp::operator()(const ipaddr &a, const ipaddr &b)
const
{
return a.byte < b.byte;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/hostport.h
//
/// Creates a host:service or host:port pair from the single string literally
/// containing the colon deliminated values. If the suffix is a port number
/// then the behavior for the port number constructor applies; if a service
/// string then the service constructor applies.
ircd::net::hostport::hostport(const string_view &amalgam)
:host
{
rfc3986::host(amalgam)
}
,port
{
rfc3986::port(amalgam)
}
{
// When the amalgam has no port || a valid integer port
if(amalgam == host || port)
return;
// When the port is actually a service string
this->service = rsplit(amalgam, ':').second;
}
ircd::net::hostport::hostport(const string_view &amalgam,
verbatim_t)
:host
{
rfc3986::host(amalgam)
}
,service
{
amalgam != host && !rfc3986::port(amalgam)?
rsplit(amalgam, ':').second:
string_view{}
}
,port
{
rfc3986::port(amalgam)
}
{}
std::ostream &
ircd::net::operator<<(std::ostream &s, const hostport &t)
{
thread_local char buf[rfc3986::DOMAIN_BUFSIZE * 2];
const critical_assertion ca;
s << string(buf, t);
return s;
}
std::string
ircd::net::canonize(const hostport &hostport)
{
const size_t len
{
size(host(hostport)) // host
+ 1 + size(service(hostport)) // ':' + service
+ 1 + 5 + 1 // ':' + portnum (optimistic)
};
return ircd::string(len, [&hostport]
(const mutable_buffer &buf)
{
return canonize(buf, hostport);
});
}
ircd::string_view
ircd::net::canonize(const mutable_buffer &buf,
const hostport &hostport)
{
thread_local char svc[32], tlbuf[2][rfc3986::DOMAIN_BUFSIZE * 2];
assert(service(hostport) || port(hostport));
const string_view &service_name
{
!service(hostport)?
net::dns::service_name(std::nothrow, svc, port(hostport), "tcp"):
service(hostport)
};
if(likely(service_name))
return fmt::sprintf
{
buf, "%s:%s",
tolower(tlbuf[0], host(hostport)),
tolower(tlbuf[1], service_name),
};
if(unlikely(!port(hostport)))
throw error
{
"Missing service suffix in hostname:service string.",
};
return fmt::sprintf
{
buf, "%s:%u",
tolower(tlbuf[0], host(hostport)),
port(hostport),
};
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const hostport &hp)
{
thread_local char tlbuf[2][rfc3986::DOMAIN_BUFSIZE * 2];
if(empty(service(hp)) && port(hp) == 0)
return fmt::sprintf
{
buf, "%s",
tolower(tlbuf[0], host(hp)),
};
if(empty(service(hp)) && port(hp) != 0)
return fmt::sprintf
{
buf, "%s:%u",
tolower(tlbuf[0], host(hp)),
port(hp)
};
if(!empty(service(hp)) && port(hp) == 0)
return fmt::sprintf
{
buf, "%s:%s",
tolower(tlbuf[0], host(hp)),
tolower(tlbuf[1], service(hp)),
};
return fmt::sprintf
{
buf, "%s:%u (%s)",
tolower(tlbuf[0], host(hp)),
port(hp),
tolower(tlbuf[1], service(hp)),
};
}
///////////////////////////////////////////////////////////////////////////////
//
// net/asio.h
//
[[gnu::visibility("protected")]]
std::string
ircd::net::string(const ip::tcp::endpoint &ep)
{
return string(make_ipport(ep));
}
[[gnu::visibility("protected")]]
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const ip::tcp::endpoint &ep)
{
return string(buf, make_ipport(ep));
}
[[gnu::visibility("protected")]]
std::string
ircd::net::host(const ip::tcp::endpoint &ep)
{
return string(addr(ep));
}
[[gnu::visibility("protected")]]
boost::asio::ip::address
ircd::net::addr(const ip::tcp::endpoint &ep)
{
return ep.address();
}
[[gnu::visibility("protected")]]
uint16_t
ircd::net::port(const ip::tcp::endpoint &ep)
{
return ep.port();
}
[[gnu::visibility("protected")]]
std::string
ircd::net::string(const ip::address &addr)
{
return
addr.is_v4()?
string(addr.to_v4()):
string(addr.to_v6());
}
[[gnu::visibility("protected")]]
std::string
ircd::net::string(const ip::address_v4 &addr)
{
return util::string(16, [&addr]
(const mutable_buffer &out)
{
return string(out, addr);
});
}
[[gnu::visibility("protected")]]
std::string
ircd::net::string(const ip::address_v6 &addr)
{
return addr.to_string();
}
[[gnu::visibility("protected")]]
ircd::string_view
ircd::net::string(const mutable_buffer &out,
const ip::address &addr)
{
return
addr.is_v4()?
string(out, addr.to_v4()):
string(out, addr.to_v6());
}
[[gnu::visibility("protected")]]
ircd::string_view
ircd::net::string(const mutable_buffer &out,
const ip::address_v4 &addr)
{
const uint32_t a(addr.to_ulong());
return fmt::sprintf
{
out, "%u.%u.%u.%u",
(a & 0xFF000000U) >> 24,
(a & 0x00FF0000U) >> 16,
(a & 0x0000FF00U) >> 8,
(a & 0x000000FFU) >> 0,
};
}
[[gnu::visibility("protected")]]
ircd::string_view
ircd::net::string(const mutable_buffer &out,
const ip::address_v6 &addr)
{
return
{
data(out), string(addr).copy(data(out), size(out))
};
}
///////////////////////////////////////////////////////////////////////////////
//
// buffer.h - provide definition for the null buffers and asio conversion
//
[[gnu::visibility("protected")]]
ircd::buffer::mutable_buffer::operator
boost::asio::mutable_buffer()
const noexcept
{
return boost::asio::mutable_buffer
{
data(*this), size(*this)
};
}
[[gnu::visibility("protected")]]
ircd::buffer::const_buffer::operator
boost::asio::const_buffer()
const noexcept
{
return boost::asio::const_buffer
{
data(*this), size(*this)
};
}