0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2025-01-01 02:14:13 +01:00
construct/rb/radixtree.c
Jason Volk ea53aab823 Refactor repository layout.
* librb is no longer a separately configured subproject.
* charybdis is now a standalone directory with a binary.
* Include path layout now requires a directory ircd/ rb/ etc.
2016-07-21 20:51:02 -07:00

1099 lines
22 KiB
C

/*
* charybdis: an advanced ircd.
* rb_radixtree.c: Dictionary-based information storage.
*
* Copyright (c) 2007-2016 William Pitcock <nenolod -at- dereferenced.org>
* Copyright (c) 2007-2016 Jilles Tjoelker <jilles -at- stack.nl>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <rb/rb.h>
rb_dlink_list radixtree_list = {NULL, NULL, 0};
/*
* Patricia tree.
*
* A radix trie that avoids one-way branching and redundant nodes.
*
* To find a node, the tree is traversed starting from the root. The
* nibnum in each node indicates which nibble of the key needs to be
* tested, and the appropriate branch is taken.
*
* The nibnum values are strictly increasing while going down the tree.
*
* -- jilles
*/
union rb_radixtree_elem;
typedef union rb_radixtree_elem rb_radixtree_elem;
/* Other typedefs are in rb_radixtree.h */
typedef struct rb_radixtree_node rb_radixtree_node;
struct rb_radixtree
{
void (*canonize_cb)(char *key);
rb_radixtree_elem *root;
unsigned int count;
char *id;
rb_dlink_node node;
};
#define POINTERS_PER_NODE 16
#define NIBBLE_VAL(key, nibnum) (((key)[(nibnum) / 2] >> ((nibnum) & 1 ? 0 : 4)) & 0xF)
struct rb_radixtree_node
{
/* nibble to test (nibble NUM%2 of byte NUM/2) */
int nibnum;
/* branches of the tree */
rb_radixtree_elem *down[POINTERS_PER_NODE];
rb_radixtree_elem *parent;
char parent_val;
};
struct rb_radixtree_leaf
{
/* -1 to indicate this is a leaf, not a node */
int nibnum;
/* data associated with the key */
void *data;
/* key (canonized copy) */
char *key;
rb_radixtree_elem *parent;
char parent_val;
};
union rb_radixtree_elem
{
int nibnum;
rb_radixtree_node node;
rb_radixtree_leaf leaf;
};
#define IS_LEAF(elem) ((elem)->nibnum == -1)
/* Preserve compatibility with the old mowgli_patricia.h */
#define STATE_CUR(state) ((state)->pspare[0])
#define STATE_NEXT(state) ((state)->pspare[1])
/*
* first_leaf()
*
* Find the smallest leaf hanging off a subtree.
*
* Inputs:
* - element (may be leaf or node) heading subtree
*
* Outputs:
* - lowest leaf in subtree
*
* Side Effects:
* - none
*/
static rb_radixtree_elem *
first_leaf(rb_radixtree_elem *delem)
{
int val;
while (!IS_LEAF(delem))
{
for (val = 0; val < POINTERS_PER_NODE; val++)
if (delem->node.down[val] != NULL)
{
delem = delem->node.down[val];
break;
}
}
return delem;
}
/*
* rb_radixtree_create_named(const char *name,
* void (*canonize_cb)(char *key))
*
* Dictionary object factory.
*
* Inputs:
* - patricia name
* - function to use for canonizing keys (for example, use
* a function that makes the string upper case to create
* a patricia with case-insensitive matching)
*
* Outputs:
* - on success, a new patricia object.
*
* Side Effects:
* - if services runs out of memory and cannot allocate the object,
* the program will abort.
*/
rb_radixtree *
rb_radixtree_create(const char *name, void (*canonize_cb)(char *key))
{
rb_radixtree *dtree = (rb_radixtree *) rb_malloc(sizeof(rb_radixtree));
dtree->canonize_cb = canonize_cb;
dtree->id = rb_strdup(name);
dtree->root = NULL;
rb_dlinkAdd(dtree, &dtree->node, &radixtree_list);
return dtree;
}
/*
* rb_radixtree_destroy(rb_radixtree *dtree,
* void (*destroy_cb)(const char *key, void *data, void *privdata),
* void *privdata);
*
* Recursively destroys all nodes in a patricia tree.
*
* Inputs:
* - patricia tree object
* - optional iteration callback
* - optional opaque/private data to pass to callback
*
* Outputs:
* - nothing
*
* Side Effects:
* - on success, a dtree and optionally it's children are destroyed.
*
* Notes:
* - if this is called without a callback, the objects bound to the
* DTree will not be destroyed.
*/
void
rb_radixtree_destroy(rb_radixtree *dtree, void (*destroy_cb)(const char *key, void *data, void *privdata), void *privdata)
{
rb_radixtree_iteration_state state;
rb_radixtree_elem *delem;
void *entry;
lrb_assert(dtree != NULL);
RB_RADIXTREE_FOREACH(entry, &state, dtree)
{
delem = STATE_CUR(&state);
if (destroy_cb != NULL)
(*destroy_cb)(delem->leaf.key, delem->leaf.data,
privdata);
rb_radixtree_delete(dtree, delem->leaf.key);
}
rb_dlinkDelete(&dtree->node, &radixtree_list);
rb_free(dtree->id);
rb_free(dtree);
}
/*
* rb_radixtree_foreach(rb_radixtree *dtree,
* int (*foreach_cb)(const char *key, void *data, void *privdata),
* void *privdata);
*
* Iterates over all entries in a DTree.
*
* Inputs:
* - patricia tree object
* - optional iteration callback
* - optional opaque/private data to pass to callback
*
* Outputs:
* - nothing
*
* Side Effects:
* - on success, a dtree is iterated
*/
void
rb_radixtree_foreach(rb_radixtree *dtree, int (*foreach_cb)(const char *key, void *data, void *privdata), void *privdata)
{
rb_radixtree_elem *delem, *next;
int val;
lrb_assert(dtree != NULL);
delem = dtree->root;
if (delem == NULL)
return;
/* Only one element in the tree */
if (IS_LEAF(delem))
{
if (foreach_cb != NULL)
(*foreach_cb)(delem->leaf.key, delem->leaf.data, privdata);
return;
}
val = 0;
do
{
do
next = delem->node.down[val++];
while (next == NULL && val < POINTERS_PER_NODE);
if (next != NULL)
{
if (IS_LEAF(next))
{
if (foreach_cb != NULL)
(*foreach_cb)(next->leaf.key, next->leaf.data, privdata);
}
else
{
delem = next;
val = 0;
}
}
while (val >= POINTERS_PER_NODE)
{
val = delem->node.parent_val;
delem = delem->node.parent;
if (delem == NULL)
break;
val++;
}
} while (delem != NULL);
}
/*
* rb_radixtree_search(rb_radixtree *dtree,
* void *(*foreach_cb)(const char *key, void *data, void *privdata),
* void *privdata);
*
* Searches all entries in a DTree using a custom callback.
*
* Inputs:
* - patricia tree object
* - optional iteration callback
* - optional opaque/private data to pass to callback
*
* Outputs:
* - on success, the requested object
* - on failure, NULL.
*
* Side Effects:
* - a dtree is iterated until the requested conditions are met
*/
void *
rb_radixtree_search(rb_radixtree *dtree, void *(*foreach_cb)(const char *key, void *data, void *privdata), void *privdata)
{
rb_radixtree_elem *delem, *next;
int val;
void *ret = NULL;
lrb_assert(dtree != NULL);
delem = dtree->root;
if (delem == NULL)
return NULL;
/* Only one element in the tree */
if (IS_LEAF(delem))
{
if (foreach_cb != NULL)
return (*foreach_cb)(delem->leaf.key, delem->leaf.data, privdata);
return NULL;
}
val = 0;
for (;;)
{
do
next = delem->node.down[val++];
while (next == NULL && val < POINTERS_PER_NODE);
if (next != NULL)
{
if (IS_LEAF(next))
{
if (foreach_cb != NULL)
ret = (*foreach_cb)(next->leaf.key, next->leaf.data, privdata);
if (ret != NULL)
break;
}
else
{
delem = next;
val = 0;
}
}
while (val >= POINTERS_PER_NODE)
{
val = delem->node.parent_val;
delem = delem->node.parent;
if (delem == NULL)
break;
val++;
}
}
return ret;
}
/*
* rb_radixtree_foreach_start(rb_radixtree *dtree,
* rb_radixtree_iteration_state *state);
*
* Initializes a static DTree iterator.
*
* Inputs:
* - patricia tree object
* - static DTree iterator
*
* Outputs:
* - nothing
*
* Side Effects:
* - the static iterator, &state, is initialized.
*/
void
rb_radixtree_foreach_start(rb_radixtree *dtree, rb_radixtree_iteration_state *state)
{
if (dtree == NULL)
return;
lrb_assert(state != NULL);
if (dtree->root != NULL)
STATE_NEXT(state) = first_leaf(dtree->root);
else
STATE_NEXT(state) = NULL;
STATE_CUR(state) = STATE_NEXT(state);
if (STATE_NEXT(state) == NULL)
return;
/* make STATE_CUR point to first item and STATE_NEXT point to
* second item */
rb_radixtree_foreach_next(dtree, state);
}
/*
* rb_radixtree_foreach_cur(rb_radixtree *dtree,
* rb_radixtree_iteration_state *state);
*
* Returns the data from the current node being iterated by the
* static iterator.
*
* Inputs:
* - patricia tree object
* - static DTree iterator
*
* Outputs:
* - reference to data in the current dtree node being iterated
*
* Side Effects:
* - none
*/
void *
rb_radixtree_foreach_cur(rb_radixtree *dtree, rb_radixtree_iteration_state *state)
{
if (dtree == NULL)
return NULL;
lrb_assert(state != NULL);
return STATE_CUR(state) != NULL ?
((rb_radixtree_leaf *) STATE_CUR(state))->data : NULL;
}
/*
* rb_radixtree_foreach_next(rb_radixtree *dtree,
* rb_radixtree_iteration_state *state);
*
* Advances a static DTree iterator.
*
* Inputs:
* - patricia tree object
* - static DTree iterator
*
* Outputs:
* - nothing
*
* Side Effects:
* - the static iterator, &state, is advanced to a new DTree node.
*/
void
rb_radixtree_foreach_next(rb_radixtree *dtree, rb_radixtree_iteration_state *state)
{
rb_radixtree_leaf *leaf;
rb_radixtree_elem *delem, *next;
int val;
if (dtree == NULL)
return;
lrb_assert(state != NULL);
if (STATE_CUR(state) == NULL)
return;
STATE_CUR(state) = STATE_NEXT(state);
if (STATE_NEXT(state) == NULL)
return;
leaf = STATE_NEXT(state);
delem = leaf->parent;
val = leaf->parent_val;
while (delem != NULL)
{
do
next = delem->node.down[val++];
while (next == NULL && val < POINTERS_PER_NODE);
if (next != NULL)
{
if (IS_LEAF(next))
{
/* We will find the original leaf first. */
if (&next->leaf != leaf)
{
if (strcmp(next->leaf.key, leaf->key) < 0)
{
STATE_NEXT(state) = NULL;
return;
}
STATE_NEXT(state) = next;
return;
}
}
else
{
delem = next;
val = 0;
}
}
while (val >= POINTERS_PER_NODE)
{
val = delem->node.parent_val;
delem = delem->node.parent;
if (delem == NULL)
break;
val++;
}
}
STATE_NEXT(state) = NULL;
}
/*
* rb_radixtree_elem_find(rb_radixtree *dtree, const char *key)
*
* Looks up a DTree node by name.
*
* Inputs:
* - patricia tree object
* - name of node to lookup
* - whether to do a direct or fuzzy match
*
* Outputs:
* - on success, the dtree node requested
* - on failure, NULL
*
* Side Effects:
* - none
*/
rb_radixtree_leaf *
rb_radixtree_elem_find(rb_radixtree *dict, const char *key, int fuzzy)
{
char ckey_store[256];
char *ckey_buf = NULL;
const char *ckey;
rb_radixtree_elem *delem;
int val, keylen;
lrb_assert(dict != NULL);
lrb_assert(key != NULL);
keylen = strlen(key);
if (dict->canonize_cb == NULL)
{
ckey = key;
}
else
{
if (keylen >= (int) sizeof(ckey_store))
{
ckey_buf = rb_strdup(key);
dict->canonize_cb(ckey_buf);
ckey = ckey_buf;
}
else
{
rb_strlcpy(ckey_store, key, sizeof ckey_store);
dict->canonize_cb(ckey_store);
ckey = ckey_store;
}
}
delem = dict->root;
while (delem != NULL && !IS_LEAF(delem))
{
if (delem->nibnum / 2 < keylen)
val = NIBBLE_VAL(ckey, delem->nibnum);
else
val = 0;
delem = delem->node.down[val];
}
/* Now, if the key is in the tree, delem contains it. */
if ((delem != NULL) && !fuzzy && strcmp(delem->leaf.key, ckey))
delem = NULL;
if (ckey_buf != NULL)
rb_free(ckey_buf);
return &delem->leaf;
}
/*
* rb_radixtree_foreach_start_from(rb_radixtree *dtree, rb_radixtree_iteration_state *state, const char *key)
*
* Starts iteration from a specified key, by wrapping rb_radixtree_elem_find().
*
* Inputs:
* - patricia tree object
* - iterator
* - key to start from
*
* Outputs:
* - none
*
* Side Effects:
* - the iterator's state is initialized at a specific point
*/
void
rb_radixtree_foreach_start_from(rb_radixtree *dtree, rb_radixtree_iteration_state *state, const char *key)
{
lrb_assert(dtree != NULL);
lrb_assert(state != NULL);
if (key != NULL)
{
STATE_CUR(state) = NULL;
STATE_NEXT(state) = rb_radixtree_elem_find(dtree, key, 1);
/* make STATE_CUR point to selected item and STATE_NEXT point to
* next item in the tree */
rb_radixtree_foreach_next(dtree, state);
}
else
rb_radixtree_foreach_start(dtree, state);
}
/*
* rb_radixtree_add(rb_radixtree *dtree, const char *key, void *data)
*
* Creates a new DTree node and binds data to it.
*
* Inputs:
* - patricia tree object
* - name for new DTree node
* - data to bind to the new DTree node
*
* Outputs:
* - on success, TRUE
* - on failure, FALSE
*
* Side Effects:
* - data is inserted into the DTree.
*/
rb_radixtree_leaf *
rb_radixtree_elem_add(rb_radixtree *dict, const char *key, void *data)
{
char *ckey;
rb_radixtree_elem *delem, *prev, *newnode;
rb_radixtree_elem **place1;
int val, keylen;
int i, j;
lrb_assert(dict != NULL);
lrb_assert(key != NULL);
lrb_assert(data != NULL);
keylen = strlen(key);
ckey = rb_strdup(key);
if (ckey == NULL)
return NULL;
if (dict->canonize_cb != NULL)
dict->canonize_cb(ckey);
prev = NULL;
val = POINTERS_PER_NODE + 2; /* trap value */
delem = dict->root;
while (delem != NULL && !IS_LEAF(delem))
{
prev = delem;
if (delem->nibnum / 2 < keylen)
val = NIBBLE_VAL(ckey, delem->nibnum);
else
val = 0;
delem = delem->node.down[val];
}
/* Now, if the key is in the tree, delem contains it. */
if ((delem != NULL) && !strcmp(delem->leaf.key, ckey))
{
rb_free(ckey);
return NULL;
}
if ((delem == NULL) && (prev != NULL))
/* Get a leaf to compare with. */
delem = first_leaf(prev);
if (delem == NULL)
{
lrb_assert(prev == NULL);
lrb_assert(dict->count == 0);
place1 = &dict->root;
*place1 = rb_malloc(sizeof(rb_radixtree_leaf));
lrb_assert(*place1 != NULL);
(*place1)->nibnum = -1;
(*place1)->leaf.data = data;
(*place1)->leaf.key = ckey;
(*place1)->leaf.parent = prev;
(*place1)->leaf.parent_val = val;
dict->count++;
return &(*place1)->leaf;
}
/* Find the first nibble where they differ. */
for (i = 0; NIBBLE_VAL(ckey, i) == NIBBLE_VAL(delem->leaf.key, i); i++)
;
/* Find where to insert the new node. */
while (prev != NULL && prev->nibnum > i)
{
val = prev->node.parent_val;
prev = prev->node.parent;
}
if ((prev == NULL) || (prev->nibnum < i))
{
/* Insert new node below prev */
newnode = rb_malloc(sizeof(rb_radixtree_node));
lrb_assert(newnode != NULL);
newnode->nibnum = i;
newnode->node.parent = prev;
newnode->node.parent_val = val;
for (j = 0; j < POINTERS_PER_NODE; j++)
newnode->node.down[j] = NULL;
if (prev == NULL)
{
newnode->node.down[NIBBLE_VAL(delem->leaf.key, i)] = dict->root;
if (IS_LEAF(dict->root))
{
dict->root->leaf.parent = newnode;
dict->root->leaf.parent_val = NIBBLE_VAL(delem->leaf.key, i);
}
else
{
lrb_assert(dict->root->nibnum > i);
dict->root->node.parent = newnode;
dict->root->node.parent_val = NIBBLE_VAL(delem->leaf.key, i);
}
dict->root = newnode;
}
else
{
newnode->node.down[NIBBLE_VAL(delem->leaf.key, i)] = prev->node.down[val];
if (IS_LEAF(prev->node.down[val]))
{
prev->node.down[val]->leaf.parent = newnode;
prev->node.down[val]->leaf.parent_val = NIBBLE_VAL(delem->leaf.key, i);
}
else
{
prev->node.down[val]->node.parent = newnode;
prev->node.down[val]->node.parent_val = NIBBLE_VAL(delem->leaf.key, i);
}
prev->node.down[val] = newnode;
}
}
else
{
/* This nibble is already checked. */
lrb_assert(prev->nibnum == i);
newnode = prev;
}
val = NIBBLE_VAL(ckey, i);
place1 = &newnode->node.down[val];
lrb_assert(*place1 == NULL);
*place1 = rb_malloc(sizeof(rb_radixtree_leaf));
lrb_assert(*place1 != NULL);
(*place1)->nibnum = -1;
(*place1)->leaf.data = data;
(*place1)->leaf.key = ckey;
(*place1)->leaf.parent = newnode;
(*place1)->leaf.parent_val = val;
dict->count++;
return &(*place1)->leaf;
}
int
rb_radixtree_add(rb_radixtree *dict, const char *key, void *data)
{
return (rb_radixtree_elem_add(dict, key, data) != NULL);
}
/*
* rb_radixtree_delete(rb_radixtree *dtree, const char *key)
*
* Deletes data from a patricia tree.
*
* Inputs:
* - patricia tree object
* - name of DTree node to delete
*
* Outputs:
* - on success, the remaining data that needs to be rb_freed
* - on failure, NULL
*
* Side Effects:
* - data is removed from the DTree.
*
* Notes:
* - the returned data needs to be rb_freed/released manually!
*/
void *
rb_radixtree_delete(rb_radixtree *dict, const char *key)
{
void *data;
rb_radixtree_leaf *leaf;
leaf = rb_radixtree_elem_find(dict, key, 0);
if (leaf == NULL)
return NULL;
data = leaf->data;
rb_radixtree_elem_delete(dict, leaf);
return data;
}
void
rb_radixtree_elem_delete(rb_radixtree *dict, rb_radixtree_leaf *leaf)
{
rb_radixtree_elem *delem, *prev, *next;
int val, i, used;
lrb_assert(dict != NULL);
lrb_assert(leaf != NULL);
delem = (rb_radixtree_elem *) leaf;
val = delem->leaf.parent_val;
prev = delem->leaf.parent;
rb_free(delem->leaf.key);
rb_free(delem);
if (prev != NULL)
{
prev->node.down[val] = NULL;
/* Leaf is gone, now consider the node it was in. */
delem = prev;
used = -1;
for (i = 0; i < POINTERS_PER_NODE; i++)
if (delem->node.down[i] != NULL)
used = used == -1 ? i : -2;
lrb_assert(used == -2 || used >= 0);
if (used >= 0)
{
/* Only one pointer in this node, remove it.
* Replace the pointer that pointed to it by
* the sole pointer in it.
*/
next = delem->node.down[used];
val = delem->node.parent_val;
prev = delem->node.parent;
if (prev != NULL)
prev->node.down[val] = next;
else
dict->root = next;
if (IS_LEAF(next))
next->leaf.parent = prev, next->leaf.parent_val = val;
else
next->node.parent = prev, next->node.parent_val = val;
rb_free(delem);
}
}
else
{
/* This was the last leaf. */
dict->root = NULL;
}
dict->count--;
if (dict->count == 0)
{
lrb_assert(dict->root == NULL);
dict->root = NULL;
}
}
/*
* rb_radixtree_retrieve(rb_radixtree *dtree, const char *key)
*
* Retrieves data from a patricia.
*
* Inputs:
* - patricia tree object
* - name of node to lookup
*
* Outputs:
* - on success, the data bound to the DTree node.
* - on failure, NULL
*
* Side Effects:
* - none
*/
void *
rb_radixtree_retrieve(rb_radixtree *dtree, const char *key)
{
rb_radixtree_leaf *delem = rb_radixtree_elem_find(dtree, key, 0);
if (delem != NULL)
return delem->data;
return NULL;
}
const char *
rb_radixtree_elem_get_key(rb_radixtree_leaf *leaf)
{
lrb_assert(leaf != NULL);
return leaf->key;
}
void
rb_radixtree_elem_set_data(rb_radixtree_leaf *leaf, void *data)
{
lrb_assert(leaf != NULL);
leaf->data = data;
}
void *
rb_radixtree_elem_get_data(rb_radixtree_leaf *leaf)
{
lrb_assert(leaf != NULL);
return leaf->data;
}
/*
* rb_radixtree_size(rb_radixtree *dict)
*
* Returns the size of a patricia.
*
* Inputs:
* - patricia tree object
*
* Outputs:
* - size of patricia
*
* Side Effects:
* - none
*/
unsigned int
rb_radixtree_size(rb_radixtree *dict)
{
lrb_assert(dict != NULL);
return dict->count;
}
/* returns the sum of the depths of the subtree rooted in delem at depth depth */
/* there is no need for this to be recursive, but it is easier... */
static int
stats_recurse(rb_radixtree_elem *delem, int depth, int *pmaxdepth)
{
int result = 0;
int val;
rb_radixtree_elem *next;
if (depth > *pmaxdepth)
*pmaxdepth = depth;
if (depth == 0)
{
if (IS_LEAF(delem))
lrb_assert(delem->leaf.parent == NULL);
else
lrb_assert(delem->node.parent == NULL);
}
if (IS_LEAF(delem))
return depth;
for (val = 0; val < POINTERS_PER_NODE; val++)
{
next = delem->node.down[val];
if (next == NULL)
continue;
result += stats_recurse(next, depth + 1, pmaxdepth);
if (IS_LEAF(next))
{
lrb_assert(next->leaf.parent == delem);
lrb_assert(next->leaf.parent_val == val);
}
else
{
lrb_assert(next->node.parent == delem);
lrb_assert(next->node.parent_val == val);
lrb_assert(next->node.nibnum > delem->node.nibnum);
}
}
return result;
}
/*
* rb_radixtree_stats(rb_radixtree *dict, void (*cb)(const char *line, void *privdata), void *privdata)
*
* Returns the size of a patricia.
*
* Inputs:
* - patricia tree object
* - callback
* - data for callback
*
* Outputs:
* - none
*
* Side Effects:
* - callback called with stats text
*/
void
rb_radixtree_stats(rb_radixtree *dict, void (*cb)(const char *line, void *privdata), void *privdata)
{
char str[256];
int sum, maxdepth;
lrb_assert(dict != NULL);
maxdepth = 0;
if (dict->count > 0)
{
sum = stats_recurse(dict->root, 0, &maxdepth);
snprintf(str, sizeof str, "%-30s %-15s %-10d %-10d %-10d %-10d", dict->id, "RADIX", dict->count, sum, sum / dict->count, maxdepth);
}
else
{
snprintf(str, sizeof str, "%-30s %-15s %-10s %-10s %-10s %-10s", dict->id, "RADIX", "0", "0", "0", "0");
}
cb(str, privdata);
return;
}
void
rb_radixtree_stats_walk(void (*cb)(const char *line, void *privdata), void *privdata)
{
rb_dlink_node *ptr;
RB_DLINK_FOREACH(ptr, radixtree_list.head)
{
rb_radixtree_stats(ptr->data, cb, privdata);
}
}