0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-18 16:00:57 +01:00
construct/ircd/gpt.cc

1019 lines
21 KiB
C++

// Matrix Construct Is All You Need Is All You Need Is AllĊĊĊĊĊĊĊĊ
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2021 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
namespace ircd::gpt
{
static size_t adamw(f32x4 &, f32x4 &, f32x4 &, const f32, const f32, const f32, const f32, const u32, size_t);
static size_t adamw(task &, const f32, f32 *, const size_t, f32 *const (&)[2], const size_t);
static size_t backprop(task &, const f32, model::norm &, f32 *const (&)[2], size_t);
static size_t backprop(task &, const f32, model::attn &, f32 *const (&)[2], size_t);
static size_t backprop(task &, const f32, model::ffnn &, f32 *const (&)[2], size_t);
static size_t backprop(task &, const f32, model::block &, f32 *const (&)[2], size_t);
static size_t backprop(task &, const f32, model::embed &, f32 *const (&)[2], size_t);
static size_t backprop(task &, const f32, model::decoder &, f32 *const (&)[2], size_t = 0);
template<class T>
static void fmma(T *out, const T *in, const T *bias, const T *weight, const math::fmma_opts &);
static void gelu(f32x4 &, const f32x4 &);
static void gelu(f32x4 *, const f32x4 *);
static void norm(f32x4 *, const f32x4 *, const f32x4 *, const f32x4 *, const f32);
static void vals(float (&)[12][1024][64], const float (&)[12][1024][1024], const float (&)[3][1024][12][64], const size_t);
static void pare(float (&)[12][1024][1024], const float (&)[3][1024][12][64], const size_t);
static void mask(float (&)[12][1024][1024], const float (&)[12][1024][1024], const bool (&)[1024][1024], const size_t);
static void smax(float (&)[12][1024][1024], const float (&)[12][1024][1024], const size_t);
static void ctrl(float (&)[3][1024][12][64], const float *const, const size_t, const model::decoder &, const uint layer);
static void ffnn(float *, const float *, const model::decoder &, const uint layer);
static void coil(float *, const size_t, const model::decoder &);
static void logitsmax(float *, const float *, const size_t);
static void logits(float *, const float *, const model::decoder &);
static void tail(float *, const float *, const model::decoder &);
static u16 argmax(const float *, const opts &);
static void embed(float *, const u16 token, const u16 position, const opts &);
static void generate_debug(task &, const uint &, const uint &);
static f32
logit alignas(64) [65536],
embeds alignas(64) [1024 * 768],
scratch alignas(64) [1024 * 768];
}
decltype(ircd::gpt::log)
ircd::gpt::log
{
"gpt"
};
ircd::string_view
ircd::gpt::generate(const mutable_buffer &out,
const string_view &in,
task &task)
{
u16 buf[2][1024];
const auto input_tokens
{
vocab::tokenize(buf[0], in)
};
const auto output_tokens
{
generate(buf[1], input_tokens, task)
};
const auto output
{
vocab::detokenize(out, output_tokens)
};
return output;
}
ircd::vector_view<ircd::u16>
ircd::gpt::generate(const vector_view<u16> &out,
const vector_view<const u16> &in,
task &task)
{
assert(task.ctrl);
assert(task.opts);
uint ret(0);
bool halt(false);
const auto &opts(*task.opts);
auto &ctrl(*task.ctrl);
ctrl.tokens.count = 0;
ctrl.tokens.head = 0;
uint j(0);
for(uint i(0); i < opts.gates; ++i)
{
const auto &gate
{
opts.gate[i]
};
while(j < in.size() && j < gate.offset && ctrl.tokens.count < opts.buffer_tokens)
ctrl.token[ctrl.tokens.count++] = in[j++];
for(uint k(0); k < 7; ++k)
{
if(ctrl.tokens.count >= opts.buffer_tokens)
break;
if(gate.code[k] == 0)
break;
ctrl.token[ctrl.tokens.count++] = gate.code[k];
}
}
while(j < in.size() && ctrl.tokens.count < opts.buffer_tokens)
ctrl.token[ctrl.tokens.count++] = in[j++];
const size_t in_size
{
ctrl.tokens.count
};
generate(task);
for(uint i(0); i < ctrl.tokens.count && ret < out.size() && !halt; ++i)
{
const auto j
{
(i + ctrl.tokens.head) % opts.buffer_tokens
};
const auto tok
{
ctrl.token[j]
};
if(j >= in_size)
out[ret++] = tok;
if(likely(~opts.debug & 0x01))
continue;
if(likely(~opts.debug & 0x02))
if(j < in_size)
continue;
generate_debug(task, j, in_size);
}
ctx::interruption_point();
return vector_view<u16>
{
out, ret
};
}
void
ircd::gpt::generate(task &task)
{
const auto &opts(*task.opts);
auto &ctrl(*task.ctrl);
const size_t in_size
{
ctrl.tokens.count
};
uint64_t cycles(0);
if(ctrl.prop)
{
static f32 *_momentum[2];
if(!_momentum[0])
{
_momentum[0] = new f32[sizeof(model::decoder) / 4] {0.0f};
_momentum[1] = new f32[sizeof(model::decoder) / 4] {0.0f};
}
f32 *const momentum[2]
{
_momentum[0], _momentum[1],
};
const prof::scope_cycles task_cycles
{
cycles
};
backprop(task, ctrl.loss.mean, *model::default_model, momentum);
}
if(ctrl.prop)
{
log::debug
{
log, "Backpropagation of %2.6f in %lu cycles.",
ctrl.loss.mean,
cycles,
};
ctrl.epic.epoch = 0;
ctrl.loss.mean = 0;
ctrl.loss.last = ctrl.loss.mean;
ctrl.perp.mean = 0;
ctrl.perp.last = ctrl.perp.mean;
ctrl.cert.mean = 0;
ctrl.cert.last = ctrl.cert.mean;
ctrl.prop = false;
pipe::default_model->invalid = true;
return;
}
cycles = 0;
util::timer stopwatch;
{
const prof::scope_cycles task_cycles
{
cycles
};
pipe::generate(task);
}
const milliseconds last_time
{
stopwatch.at<milliseconds>()
};
ctrl.epic.elapsed += last_time.count();
}
void
ircd::gpt::generate_debug(task &task,
const uint &i,
const uint &in_size)
{
const auto &opts(*task.opts);
auto &ctrl(*task.ctrl);
const auto j
{
(i + ctrl.tokens.head) % opts.buffer_tokens
};
const auto tok
{
ctrl.token[j]
};
static char dbuf[512];
static char report[1536];
static char tmbuf[4][64];
const size_t bsz(ctrl.tokens.count - in_size);
const size_t report_size = snprintf
(
report, sizeof(report),
"%-3u %-4u %4lu:%-4lu %6.1f%% %5.1fP %6.3fL [%c%c%c] %5u %6.3fL %6.2fP %5.1f%% %s %04x %8s %8s | %8s",
j,
ctrl.tokens.count,
ctrl.epic.epoch,
ctrl.epic.cycle,
std::clamp(ctrl.cert.mean * 100.0f, 0.0f, 100.0f),
std::clamp(ctrl.perp.mean, 0.0f, 100.0f),
std::clamp(ctrl.loss.mean, 0.0f, 99.99f),
opts.label == tok? '+': ' ',
' ', // flag place
' ', // flag place
opts.label,
std::clamp(ctrl.loss.last, 0.0f, 99.99f),
std::clamp(ctrl.perp.last, 0.0f, 100.0f),
std::clamp(ctrl.cert.last * 100.0f, 0.0f, 100.0f),
vocab::debug(dbuf, tok).c_str(),
tok,
pretty(tmbuf[0], milliseconds(0ms / bsz), 1).c_str(),
pretty(tmbuf[1], si(0UL / bsz), 1).c_str(),
pretty(tmbuf[2], milliseconds(ctrl.epic.elapsed), 1).c_str()
);
log::logf
{
log, log::level::DEBUG,
"%s",
string_view{report, report_size}
};
}
void
ircd::gpt::embed(float *const out,
const u16 token,
const u16 position,
const opts &opts)
{
assert(opts.model);
const auto &wpe
{
opts.model->word.pos[position]
};
const auto &wte
{
opts.model->word.token[token]
};
for(uint j(0); j < 768; ++j)
out[j] = wte[j] + wpe[j];
}
uint16_t
ircd::gpt::argmax(const float *const __restrict__ logit,
const opts &opts)
{
static const auto max
{
32U
};
const auto top
{
std::clamp(opts.top_k, 1U, max - 1)
};
u16 best[max] {0};
for(uint j(0); j < vocab::tokens; ++j)
{
best[top] = j;
std::sort(begin(best), begin(best) + top + 1, [&logit]
(const auto &a, const auto &b)
{
return logit[a] > logit[b];
});
}
const auto x
{
top > 1?
rand::integer(0, top - 1):
0
};
return best[x];
}
[[gnu::noinline]]
void
ircd::gpt::tail(float *const __restrict__ logit,
const float *const __restrict__ state,
const model::decoder &d)
{
constexpr float lnf_epsilon
{
0.00001
};
static float
buf alignas(64) [1][768];
for(uint i(0); i < 768; ++i)
buf[0][i] = state[i];
norm((f32x4 *)buf[0], (const f32x4 *)state, (const f32x4 *)d.f.bias, (const f32x4 *)d.f.weight, lnf_epsilon);
logits(logit, buf[0], d);
//logitsmax(logit, logit, vocab::tokens);
}
void
ircd::gpt::logits(float *const __restrict__ out,
const float *const __restrict__ in,
const model::decoder &d)
{
for(uint j(0); j < vocab::tokens; ++j)
out[j] = 0;
for(uint j(0); j < vocab::tokens; ++j)
for(uint k(0); k < 768; ++k)
out[j] += in[k] * d.word.token[j][k];
}
[[gnu::noinline]]
void
ircd::gpt::logitsmax(float *const out,
const float *const in,
const size_t num)
{
static f64x4
exps alignas(4096) [2][65536 / 4];
math::smax<f32x4, f64x4>
(
{(f32x4 *)out, num / 4},
{(const f32x4 *)in, num / 4},
exps[0],
exps[1]
);
}
[[gnu::noinline]]
void
ircd::gpt::coil(float *__restrict__ accum,
const size_t tokens,
const model::decoder &decoder)
{
static float
qkv alignas(4096) [3][1024][12][64],
state alignas(4096) [12][1024][1024],
attns alignas(4096) [12][1024][64];
for(uint i(0); i < 12; ++i)
{
const auto &layer
{
decoder.layer[i]
};
ctrl(qkv, accum, tokens, decoder, i);
pare(state, qkv, tokens);
mask(state, state, layer.attn.bias, tokens);
smax(state, state, tokens);
vals(attns, state, qkv, tokens);
static f32 a alignas(64) [1024][768];
memset(a, 0x0, 768 * tokens * sizeof(float));
for(uint j(0); j < tokens; j++)
{
for(uint k(0); k < 12; k++)
for(uint l(0); l < 64; l++)
a[j][k * 64 + l] = attns[k][j][l];
}
static const math::fmma_opts fmma_opts
{
768, 768, 2U
};
for(uint j(0); j < tokens; ++j)
fmma((f32x4 *)(accum + j * 768), (const f32x4 *)(a[j]), (const f32x4 *)layer.attn.proj_bias, (const f32x4 *)layer.attn.proj_weight, fmma_opts);
for(uint j(0); j < tokens; ++j)
ffnn(accum + j * 768, accum + j * 768, decoder, i);
}
}
void
ircd::gpt::ctrl(float (&__restrict__ out)[3][1024][12][64],
const float *const __restrict__ in,
const size_t num,
const model::decoder &decoder,
const uint laynum)
{
constexpr float ln1_epsilon
{
0.00001
};
const auto &layer
{
decoder.layer[laynum]
};
float
(&__restrict__ qry)[1024][12][64] { out[0] },
(&__restrict__ key)[1024][12][64] { out[1] },
(&__restrict__ val)[1024][12][64] { out[2] };
for(uint i(0); i < num; ++i)
{
static float
buf alignas(64) [768],
proj alignas(64) [2304];
norm((f32x4 *)buf, (const f32x4 *)(in + i * 768), (const f32x4 *)layer.ln1.bias, (const f32x4 *)layer.ln1.weight, ln1_epsilon);
static const math::fmma_opts fmma_opts
{
768, 2304, 2U,
};
memset(proj, 0x0, sizeof(proj));
fmma((f32x4 *)proj, (const f32x4 *)buf, (const f32x4 *)layer.attn.attn_bias, (const f32x4 *)layer.attn.attn_weight, fmma_opts);
#pragma clang loop unroll (disable)
for(uint j(0); j < 12; ++j)
for(uint k(0); k < 64; ++k)
qry[i][j][k] = proj[768 * 0 + j * 64 + k];
#pragma clang loop unroll (disable)
for(uint j(0); j < 12; ++j)
for(uint k(0); k < 64; ++k)
key[i][j][k] = proj[768 * 1 + j * 64 + k];
#pragma clang loop unroll (disable)
for(uint j(0); j < 12; ++j)
for(uint k(0); k < 64; ++k)
val[i][j][k] = proj[768 * 2 + j * 64 + k];
}
}
void
ircd::gpt::pare(float (&__restrict__ out)[12][1024][1024],
const float (&__restrict__ qkv)[3][1024][12][64],
const size_t num)
{
const float
(&__restrict__ qry)[1024][12][64] { qkv[0] },
(&__restrict__ key)[1024][12][64] { qkv[1] },
(&__restrict__ val)[1024][12][64] { qkv[2] };
#pragma clang loop unroll (disable)
for(uint j(0); j < 12; ++j)
for(uint k(0); k < num; ++k)
for(uint l(0); l < num; ++l)
out[j][k][l] = 0;
#pragma clang loop unroll (disable)
for(uint j(0); j < 12; ++j)
for(uint k(0); k < num; ++k)
for(uint l(0); l < num; ++l)
for(uint m(0); m < 64; ++m)
out[j][k][l] += qry[k][j][m] * key[l][j][m];
#pragma clang loop unroll (disable)
for(uint j(0); j < 12; ++j)
for(uint k(0); k < num; ++k)
for(uint l(0); l < num; ++l)
out[j][k][l] /= 8.0;
}
void
ircd::gpt::mask(float (&__restrict__ out)[12][1024][1024],
const float (&__restrict__ in)[12][1024][1024],
const bool (&__restrict__ bias)[1024][1024],
const size_t num)
{
static const float masked
{
-10000.0
};
#pragma clang loop unroll (disable)
for(uint j(0); j < 12; ++j)
for(uint k(0); k < num; ++k)
for(uint l(0); l < num; ++l)
out[j][k][l] = bias[k][l]? in[j][k][l]: masked;
}
void
ircd::gpt::smax(float (&__restrict__ out)[12][1024][1024],
const float (&__restrict__ in)[12][1024][1024],
const size_t num)
{
static f64
tmp alignas(4096) [2][1024];
#pragma clang loop unroll (disable)
for(uint j(0); j < 12; ++j)
for(uint k(0); k < num; ++k)
math::smax<f32, f64>
(
out[j][k], { in[j][k], num }, tmp[0], tmp[1]
);
}
void
ircd::gpt::vals(float (&__restrict__ out)[12][1024][64],
const float (&__restrict__ in)[12][1024][1024],
const float (&__restrict__ qkv)[3][1024][12][64],
const size_t num)
{
const float
(&__restrict__ val)[1024][12][64] { qkv[2] };
#pragma clang loop unroll (disable)
for(uint j(0); j < 12; ++j)
for(uint k(0); k < num; ++k)
for(uint l(0); l < 64; ++l)
out[j][k][l] = 0;
#pragma clang loop unroll (disable)
for(uint j(0); j < 12; ++j)
for(uint k(0); k < num; ++k)
for(uint l(0); l < num; ++l)
for(uint m(0); m < 64; ++m)
out[j][k][m] += in[j][k][l] * val[l][j][m];
}
void
ircd::gpt::ffnn(float *const out,
const float *const in,
const model::decoder &decoder,
const uint laynum)
{
static const math::fmma_opts fmma3_opts
{
768, 3072, 2U,
};
static const math::fmma_opts fmma4_opts
{
3072, 768, 2U,
};
constexpr float ln2_epsilon
{
0.00001
};
const auto &layer
{
decoder.layer[laynum]
};
static float
buf alignas(64) [768],
buf2 alignas(64) [3072];
memset(buf2, 0x0, sizeof(buf2));
norm((f32x4 *)buf, (const f32x4 *)in, (const f32x4 *)layer.ln2.bias, (const f32x4 *)layer.ln2.weight, ln2_epsilon);
fmma((f32x4 *)buf2, (const f32x4 *)buf, (const f32x4 *)layer.ffnn.fc_bias, (const f32x4 *)layer.ffnn.fc_weight, fmma3_opts);
gelu((f32x4 *)buf2, (const f32x4 *)buf2);
fmma((f32x4 *)out, (const f32x4 *)buf2, (const f32x4 *)layer.ffnn.proj_bias, (const f32x4 *)layer.ffnn.proj_weight, fmma4_opts);
}
void
ircd::gpt::norm(f32x4 *const __restrict__ out,
const f32x4 *const __restrict__ in,
const f32x4 *const __restrict__ bias,
const f32x4 *const __restrict__ weight,
const float epsilon)
{
static f64x4
tmp alignas(64) [768 / 4];
math::norm<f32x4, f64x4>
(
{out, 192}, {in, 192}, epsilon, tmp
);
for(uint j(0); j < 768 / 4; ++j)
out[j] = out[j] * weight[j] + bias[j];
}
template<class T>
void
ircd::gpt::fmma(T *const __restrict__ out,
const T *const __restrict__ in,
const T *const __restrict__ bias,
const T *const __restrict__ weight,
const math::fmma_opts &opts)
{
for(uint i(0); i < opts.rows / simd::lanes<T>(); ++i)
out[i] += bias[i];
math::fmma(out, in, weight, opts);
}
void
ircd::gpt::gelu(f32x4 *const out,
const f32x4 *const in)
{
for(uint j(0); j < 3072 / 4; ++j)
gelu(out[j], in[j]);
}
void
ircd::gpt::gelu(f32x4 &out,
const f32x4 &in)
{
out = 0.5 * in * (1.0 + tanh(in * f32(0.7978845608) * (1.0 + f32(0.044715) * in * in)));
}
//
// backside
//
[[gnu::noinline]]
size_t
ircd::gpt::backprop(task &task,
const f32 grad,
model::decoder &param,
f32 *const (&moment)[2],
size_t off)
{
for(uint i(0); i < 12; ++i)
off = backprop(task, grad, param.layer[i], moment, off);
off = backprop(task, grad, param.f, moment, off);
off = backprop(task, grad, param.word, moment, off);
return off;
}
size_t
ircd::gpt::backprop(task &task,
const f32 grad,
model::embed &param,
f32 *const (&moment)[2],
size_t off)
{
assert(task.opts);
const auto &opts
{
*task.opts
};
for(uint i(0); i < opts.context_tokens; ++i)
off = adamw(task, grad, param.pos[i], 768, moment, off);
for(uint i(0); i < opts.logits; ++i)
off = adamw(task, grad, param.token[i], 768, moment, off);
return off;
}
size_t
ircd::gpt::backprop(task &task,
const f32 grad,
model::block &param,
f32 *const (&moment)[2],
size_t off)
{
off = backprop(task, grad, param.ln1, moment, off);
off = backprop(task, grad, param.attn, moment, off);
off = backprop(task, grad, param.ln2, moment, off);
off = backprop(task, grad, param.ffnn, moment, off);
return off;
}
size_t
ircd::gpt::backprop(task &task,
const f32 grad,
model::attn &param,
f32 *const (&moment)[2],
size_t off)
{
off = adamw(task, grad, param.attn_bias, 2304, moment, off);
for(uint i(0); i < 768; ++i)
off = adamw(task, grad, param.attn_weight[i], 2304, moment, off);
off = adamw(task, grad, param.proj_bias, 768, moment, off);
for(uint i(0); i < 768; ++i)
off = adamw(task, grad, param.proj_weight[i], 768, moment, off);
return off;
}
size_t
ircd::gpt::backprop(task &task,
const f32 grad,
model::ffnn &param,
f32 *const (&moment)[2],
size_t off)
{
off = adamw(task, grad, param.fc_bias, 3072, moment, off);
for(uint i(0); i < 768; ++i)
off = adamw(task, grad, param.fc_weight[i], 3072, moment, off);
off = adamw(task, grad, param.proj_bias, 768, moment, off);
for(uint i(0); i < 3072; ++i)
off = adamw(task, grad, param.proj_weight[i], 768, moment, off);
return off;
}
size_t
ircd::gpt::backprop(task &task,
const f32 grad,
model::norm &param,
f32 *const (&moment)[2],
size_t off)
{
off = adamw(task, grad, param.bias, 768, moment, off);
off = adamw(task, grad, param.weight, 768, moment, off);
return off;
}
[[gnu::noinline]]
size_t
ircd::gpt::adamw(task &task,
const f32 grad,
f32 *const p_,
const size_t num,
f32 *const (&__restrict__ m_)[2],
size_t off)
{
assert(task.opts);
const auto &opts
{
*task.opts
};
assert(task.ctrl);
auto &ctrl
{
*task.ctrl
};
f32x4 *const p[3]
{
reinterpret_cast<f32x4 *>(p_),
reinterpret_cast<f32x4 *>(m_[0]) + off,
reinterpret_cast<f32x4 *>(m_[1]) + off,
};
for(uint i(0); i < num / 4; ++i)
off = adamw(p[0][i], p[1][i], p[2][i], grad, opts.alpha, opts.beta[0], opts.beta[1], ctrl.epic.step, off);
return off;
}
size_t
ircd::gpt::adamw(f32x4 &__restrict__ param,
f32x4 &__restrict__ moment0,
f32x4 &__restrict__ moment1,
const f32 grad,
const f32 alpha,
const f32 beta0,
const f32 beta1,
const u32 step,
const size_t off)
{
const f32x4 one
{
1.0f, 1.0f, 1.0f, 1.0f,
};
const f32x4 a[2]
{
{ one - beta0 },
{ one - beta1 },
};
const f32x4 avg_mul[2]
{
{ moment0 * beta0 },
{ moment1 * beta1 },
};
const f32x4 avg_dot[2]
{
{ avg_mul[0] + a[0] * grad },
{ avg_mul[1] + a[1] * grad * grad },
};
const f32x4 bias[2]
{
{ avg_dot[0] / (one - powf(beta0, step + 1)) },
{ avg_dot[1] / (one - powf(beta1, step + 1)) },
};
const f32x4 denom
{
sqrtf(bias[1]) + 0.000001f // epsilon
};
const f32x4 delta
{
alpha * (bias[0] / denom)
};
const f32x4 update
{
param - delta
};
moment0 = avg_dot[0];
moment1 = avg_dot[1];
param = update;
return off + 1;
}
//
// gpt::task
//
ircd::gpt::task::task(const gpt::opts *const opts,
struct ircd_gpt_task *const ctrl)
:opts
{
opts
}
,ctrl
{
ctrl
}
{
memset(this->ctrl, 0x0, sizeof(ircd_gpt_task));
this->ctrl->rand[0] = this->opts->seed;
this->ctrl->rand[1] = this->opts->seed;
this->ctrl->rand[2] = -1UL;
this->ctrl->rand[3] = -1UL;
}
ircd::gpt::task::~task()
noexcept
{
}
//
// gpt::opts
//
ircd_gpt_opts::ircd_gpt_opts(const ircd::gpt::model::decoder *const model)
noexcept
:model
{
model?: ircd::gpt::model::default_model
}
,seed
{
1234567890UL
}
,limit
{
-1U
}
,top_k
{
2U
}
,context_tokens
{
1024U
}
,buffer_tokens
{
1024U
}
,embed_elems
{
768U
}
,attn_mult
{
3U
}
,ffnn_mult
{
4U
}
,attn_elems
{
embed_elems * attn_mult
}
,ffnn_elems
{
embed_elems * ffnn_mult
}
,lanes
{
4U
}
,embed_width
{
embed_elems / lanes
}
,attn_width
{
attn_elems / lanes
}
,attn_height
{
embed_elems / lanes
}
,ffnn_width
{
ffnn_elems / lanes
}
,ffnn_height
{
embed_elems / lanes
}
,logits
{
50257
}
,training_steps
{
250000
}
,validation_steps
{
5000
}
,testing_steps
{
5000
}
,label
{
198
}
,debug
{
0x01
}
,alpha
{
0.001f
}
,beta
{
0.9f,
0.999f,
}
,epsilon
{
0.000001
}
,gates
{
0
}
{
}