0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-04 21:08:57 +01:00
construct/rb/sigio.c
Jason Volk ea53aab823 Refactor repository layout.
* librb is no longer a separately configured subproject.
* charybdis is now a standalone directory with a binary.
* Include path layout now requires a directory ircd/ rb/ etc.
2016-07-21 20:51:02 -07:00

505 lines
10 KiB
C

/*
* ircd-ratbox: A slightly useful ircd.
* sigio.c: Linux Realtime SIGIO compatible network routines.
*
* Copyright (C) 1990 Jarkko Oikarinen and University of Oulu, Co Center
* Copyright (C) 1996-2002 Hybrid Development Team
* Copyright (C) 2001 Adrian Chadd <adrian@creative.net.au>
* Copyright (C) 2002 Aaron Sethman <androsyn@ratbox.org>
* Copyright (C) 2002 ircd-ratbox development team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
* USA
*
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE 1 /* Needed for F_SETSIG */
#endif
#include <rb/rb.h>
#include <rb/commio_int.h>
#include <rb/event_int.h>
#if defined(HAVE_SYS_POLL_H) && (HAVE_POLL) && (F_SETSIG)
#define USING_SIGIO
#endif
#ifdef USING_SIGIO
#include <sys/poll.h>
#if defined(USE_TIMER_CREATE)
#define SIGIO_SCHED_EVENT 1
#endif
#define RTSIGIO SIGRTMIN
#define RTSIGTIM (SIGRTMIN+1)
struct _pollfd_list
{
struct pollfd *pollfds;
int maxindex; /* highest FD number */
int allocated;
};
typedef struct _pollfd_list pollfd_list_t;
pollfd_list_t pollfd_list;
static int can_do_event = 0;
static int sigio_is_screwed = 0; /* We overflowed our sigio queue */
static sigset_t our_sigset;
/*
* rb_init_netio
*
* This is a needed exported function which will be called to initialise
* the network loop code.
*/
int
rb_init_netio_sigio(void)
{
int fd;
pollfd_list.pollfds = rb_malloc(rb_getmaxconnect() * (sizeof(struct pollfd)));
pollfd_list.allocated = rb_getmaxconnect();
for(fd = 0; fd < rb_getmaxconnect(); fd++)
{
pollfd_list.pollfds[fd].fd = -1;
}
pollfd_list.maxindex = 0;
sigio_is_screwed = 1; /* Start off with poll first.. */
sigemptyset(&our_sigset);
sigaddset(&our_sigset, RTSIGIO);
sigaddset(&our_sigset, SIGIO);
#ifdef SIGIO_SCHED_EVENT
sigaddset(&our_sigset, RTSIGTIM);
#endif
sigprocmask(SIG_BLOCK, &our_sigset, NULL);
return 0;
}
static inline void
resize_pollarray(int fd)
{
if(rb_unlikely(fd >= pollfd_list.allocated))
{
int x, old_value = pollfd_list.allocated;
pollfd_list.allocated += 1024;
pollfd_list.pollfds =
rb_realloc(pollfd_list.pollfds,
pollfd_list.allocated * (sizeof(struct pollfd)));
memset(&pollfd_list.pollfds[old_value + 1], 0, sizeof(struct pollfd) * 1024);
for(x = old_value + 1; x < pollfd_list.allocated; x++)
{
pollfd_list.pollfds[x].fd = -1;
}
}
}
/*
* void setup_sigio_fd(int fd)
*
* Input: File descriptor
* Output: None
* Side Effect: Sets the FD up for SIGIO
*/
int
rb_setup_fd_sigio(rb_fde_t *F)
{
int flags = 0;
int fd = F->fd;
flags = fcntl(fd, F_GETFL, 0);
if(flags == -1)
return 0;
/* if set async, clear it so we can reset it in the kernel :/ */
if(flags & O_ASYNC)
{
flags &= ~O_ASYNC;
fcntl(fd, F_SETFL, flags);
}
flags |= O_ASYNC | O_NONBLOCK;
if(fcntl(fd, F_SETFL, flags) == -1)
return 0;
if(fcntl(fd, F_SETSIG, RTSIGIO) == -1)
return 0;
if(fcntl(fd, F_SETOWN, getpid()) == -1)
return 0;
return 1;
}
/*
* rb_setselect
*
* This is a needed exported function which will be called to register
* and deregister interest in a pending IO state for a given FD.
*/
void
rb_setselect_sigio(rb_fde_t *F, unsigned int type, PF * handler, void *client_data)
{
if(F == NULL)
return;
if(type & RB_SELECT_READ)
{
F->read_handler = handler;
F->read_data = client_data;
if(handler != NULL)
F->pflags |= POLLRDNORM;
else
F->pflags &= ~POLLRDNORM;
}
if(type & RB_SELECT_WRITE)
{
F->write_handler = handler;
F->write_data = client_data;
if(handler != NULL)
F->pflags |= POLLWRNORM;
else
F->pflags &= ~POLLWRNORM;
}
resize_pollarray(F->fd);
if(F->pflags <= 0)
{
pollfd_list.pollfds[F->fd].events = 0;
pollfd_list.pollfds[F->fd].fd = -1;
if(F->fd == pollfd_list.maxindex)
{
while(pollfd_list.maxindex >= 0
&& pollfd_list.pollfds[pollfd_list.maxindex].fd == -1)
pollfd_list.maxindex--;
}
}
else
{
pollfd_list.pollfds[F->fd].events = F->pflags;
pollfd_list.pollfds[F->fd].fd = F->fd;
if(F->fd > pollfd_list.maxindex)
pollfd_list.maxindex = F->fd;
}
}
/* int rb_select(long delay)
* Input: The maximum time to delay.
* Output: Returns -1 on error, 0 on success.
* Side-effects: Deregisters future interest in IO and calls the handlers
* if an event occurs for an FD.
* Comments: Check all connections for new connections and input data
* that is to be processed. Also check for connections with data queued
* and whether we can write it out.
* Called to do the new-style IO, courtesy of squid (like most of this
* new IO code). This routine handles the stuff we've hidden in
* rb_setselect and fd_table[] and calls callbacks for IO ready
* events.
*/
int
rb_select_sigio(long delay)
{
int num = 0;
int revents = 0;
int sig;
int fd;
int ci;
PF *hdl;
rb_fde_t *F;
void *data;
siginfo_t si;
struct timespec timeout;
if(rb_sigio_supports_event() || delay >= 0)
{
timeout.tv_sec = (delay / 1000);
timeout.tv_nsec = (delay % 1000) * 1000000;
}
for(;;)
{
if(!sigio_is_screwed)
{
if(can_do_event || delay < 0)
{
sig = sigwaitinfo(&our_sigset, &si);
}
else
sig = sigtimedwait(&our_sigset, &si, &timeout);
if(sig > 0)
{
if(sig == SIGIO)
{
rb_lib_log
("Kernel RT Signal queue overflowed. Is ulimit -i too small(or perhaps /proc/sys/kernel/rtsig-max on old kernels)");
sigio_is_screwed = 1;
break;
}
#ifdef SIGIO_SCHED_EVENT
if(sig == RTSIGTIM && can_do_event)
{
struct ev_entry *ev = (struct ev_entry *)si.si_ptr;
if(ev == NULL)
continue;
rb_run_one_event(ev);
continue;
}
#endif
fd = si.si_fd;
pollfd_list.pollfds[fd].revents |= si.si_band;
revents = pollfd_list.pollfds[fd].revents;
num++;
F = rb_find_fd(fd);
if(F == NULL)
continue;
if(revents & (POLLRDNORM | POLLIN | POLLHUP | POLLERR))
{
hdl = F->read_handler;
data = F->read_data;
F->read_handler = NULL;
F->read_data = NULL;
if(hdl)
hdl(F, data);
}
if(revents & (POLLWRNORM | POLLOUT | POLLHUP | POLLERR))
{
hdl = F->write_handler;
data = F->write_data;
F->write_handler = NULL;
F->write_data = NULL;
if(hdl)
hdl(F, data);
}
}
else
break;
}
else
break;
}
if(!sigio_is_screwed) /* We don't need to proceed */
{
rb_set_time();
return 0;
}
signal(RTSIGIO, SIG_IGN);
signal(RTSIGIO, SIG_DFL);
sigio_is_screwed = 0;
num = poll(pollfd_list.pollfds, pollfd_list.maxindex + 1, delay);
rb_set_time();
if(num < 0)
{
if(!rb_ignore_errno(errno))
return RB_OK;
else
return RB_ERROR;
}
if(num == 0)
return RB_OK;
/* XXX we *could* optimise by falling out after doing num fds ... */
for(ci = 0; ci < pollfd_list.maxindex + 1; ci++)
{
if(((revents = pollfd_list.pollfds[ci].revents) == 0)
|| (pollfd_list.pollfds[ci].fd) == -1)
continue;
fd = pollfd_list.pollfds[ci].fd;
F = rb_find_fd(fd);
if(F == NULL)
continue;
if(revents & (POLLRDNORM | POLLIN | POLLHUP | POLLERR))
{
hdl = F->read_handler;
data = F->read_data;
F->read_handler = NULL;
F->read_data = NULL;
if(hdl)
hdl(F, data);
}
if(IsFDOpen(F) && (revents & (POLLWRNORM | POLLOUT | POLLHUP | POLLERR)))
{
hdl = F->write_handler;
data = F->write_data;
F->write_handler = NULL;
F->write_data = NULL;
if(hdl)
hdl(F, data);
}
if(F->read_handler == NULL)
rb_setselect_sigio(F, RB_SELECT_READ, NULL, NULL);
if(F->write_handler == NULL)
rb_setselect_sigio(F, RB_SELECT_WRITE, NULL, NULL);
}
return 0;
}
#if defined(SIGIO_SCHED_EVENT)
void
rb_sigio_init_event(void)
{
rb_sigio_supports_event();
}
int
rb_sigio_supports_event(void)
{
timer_t timer;
struct sigevent ev;
if(can_do_event == 1)
return 1;
if(can_do_event == -1)
return 0;
ev.sigev_signo = SIGVTALRM;
ev.sigev_notify = SIGEV_SIGNAL;
if(timer_create(CLOCK_REALTIME, &ev, &timer) != 0)
{
can_do_event = -1;
return 0;
}
timer_delete(timer);
can_do_event = 1;
return 1;
}
int
rb_sigio_sched_event(struct ev_entry *event, int when)
{
timer_t *id;
struct sigevent ev;
struct itimerspec ts;
if(can_do_event <= 0)
return 0;
memset(&ev, 0, sizeof(ev));
event->comm_ptr = rb_malloc(sizeof(timer_t));
id = event->comm_ptr;
ev.sigev_notify = SIGEV_SIGNAL;
ev.sigev_signo = RTSIGTIM;
ev.sigev_value.sival_ptr = event;
if(timer_create(CLOCK_REALTIME, &ev, id) < 0)
{
rb_lib_log("timer_create: %s\n", strerror(errno));
return 0;
}
memset(&ts, 0, sizeof(ts));
ts.it_value.tv_sec = when;
ts.it_value.tv_nsec = 0;
if(event->frequency != 0)
ts.it_interval = ts.it_value;
if(timer_settime(*id, 0, &ts, NULL) < 0)
{
rb_lib_log("timer_settime: %s\n", strerror(errno));
return 0;
}
return 1;
}
void
rb_sigio_unsched_event(struct ev_entry *event)
{
if(can_do_event <= 0)
return;
timer_delete(*((timer_t *) event->comm_ptr));
rb_free(event->comm_ptr);
event->comm_ptr = NULL;
}
#endif /* SIGIO_SCHED_EVENT */
#else
int
rb_init_netio_sigio(void)
{
return ENOSYS;
}
void
rb_setselect_sigio(rb_fde_t *F, unsigned int type, PF * handler, void *client_data)
{
errno = ENOSYS;
return;
}
int
rb_select_sigio(long delay)
{
errno = ENOSYS;
return -1;
}
int
rb_setup_fd_sigio(rb_fde_t *F)
{
errno = ENOSYS;
return -1;
}
#endif
#if !defined(USING_SIGIO) || !defined(SIGIO_SCHED_EVENT)
void
rb_sigio_init_event(void)
{
return;
}
int
rb_sigio_sched_event(struct ev_entry *event, int when)
{
errno = ENOSYS;
return -1;
}
void
rb_sigio_unsched_event(struct ev_entry *event)
{
return;
}
int
rb_sigio_supports_event(void)
{
errno = ENOSYS;
return 0;
}
#endif /* !USING_SIGIO || !SIGIO_SCHED_EVENT */