0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-27 01:02:46 +01:00
construct/include/ircd/timedate.h
2019-09-21 12:14:01 -07:00

186 lines
5.2 KiB
C++

// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2019 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_TIMEDATE_H
namespace ircd
{
using high_resolution_point = time_point<high_resolution_clock>;
using steady_point = time_point<steady_clock>;
using system_point = time_point<system_clock>;
using microtime_t = std::pair<time_t, int32_t>;
IRCD_OVERLOAD(localtime)
// Standard time_point samples
template<class unit = seconds> unit now(); // monotonic/steady_clock
template<> steady_point now(); // monotonic/steady_clock
template<> system_point now(); // system_clock
// system_clock
template<class unit = seconds> time_t &time(time_t &ref);
template<class unit = seconds> time_t time(time_t *const &ptr);
template<class unit = seconds> time_t time();
// System microtime suite
microtime_t microtime();
// System formatted time suite
extern const char *const rfc7231_fmt;
string_view timef(const mutable_buffer &out, const struct tm &tm, const char *const &fmt = rfc7231_fmt);
string_view timef(const mutable_buffer &out, const time_t &epoch, const char *const &fmt = rfc7231_fmt);
string_view timef(const mutable_buffer &out, const time_t &epoch, localtime_t, const char *const &fmt = rfc7231_fmt);
string_view timef(const mutable_buffer &out, const system_point &epoch, const char *const &fmt = rfc7231_fmt);
string_view timef(const mutable_buffer &out, const system_point &epoch, localtime_t, const char *const &fmt = rfc7231_fmt);
string_view timef(const mutable_buffer &out, localtime_t, const char *const &fmt = rfc7231_fmt);
string_view timef(const mutable_buffer &out, const char *const &fmt = rfc7231_fmt);
template<size_t max = 128, class... args> std::string timestr(args&&...);
// Other tools
auto tse(const steady_point &);
auto tse(const system_point &);
bool operator!(const steady_point &);
bool operator!(const system_point &);
string_view ago(const mutable_buffer &buf, const system_point &, const uint &fmt = 0);
string_view smalldate(const mutable_buffer &buf, const time_t &ltime);
string_view microdate(const mutable_buffer &buf);
string_view microtime(const mutable_buffer &);
// Interface conveniences.
std::ostream &operator<<(std::ostream &, const microtime_t &);
std::ostream &operator<<(std::ostream &, const system_point &);
template<class rep, class period> std::ostream &operator<<(std::ostream &, const duration<rep, period> &);
}
template<class rep,
class period>
std::ostream &
ircd::operator<<(std::ostream &s,
const duration<rep, period> &duration)
{
s << duration.count();
return s;
}
/// timestr() is a passthru to timef() where you don't give the first argument
/// (the mutable_buffer). Instead of supplying a buffer an allocated
/// std::string is returned with the result. By default this string's buffer
/// is sufficiently large, but may be further tuned in the template parameter.
template<size_t max,
class... args>
std::string
ircd::timestr(args&&... a)
{
return string(max, [&](const mutable_buffer &buf)
{
return timef(buf, std::forward<args>(a)...);
});
}
//
// inline tools
//
extern inline auto
__attribute__((always_inline, gnu_inline, artificial, flatten))
ircd::tse(const system_point &sp)
{
return sp.time_since_epoch();
}
extern inline auto
__attribute__((always_inline, gnu_inline, artificial, flatten))
ircd::tse(const steady_point &sp)
{
return sp.time_since_epoch();
}
extern inline bool
__attribute__((always_inline, gnu_inline, artificial, flatten))
ircd::operator!(const system_point &sp)
{
return !tse(sp).count();
}
extern inline bool
__attribute__((always_inline, gnu_inline, artificial, flatten))
ircd::operator!(const steady_point &sp)
{
return !tse(sp).count();
}
//
// system_clock
//
template<class unit>
extern inline time_t
__attribute__((always_inline, gnu_inline, artificial, flatten))
ircd::time()
{
time_t ret;
return time<unit>(ret);
}
template<class unit>
extern inline time_t
__attribute__((always_inline, gnu_inline, artificial, flatten))
ircd::time(time_t *const &ptr)
{
time_t buf, &ret{ptr? *ptr : buf};
return time<unit>(ret);
}
template<class unit>
extern inline time_t &
__attribute__((always_inline, gnu_inline, artificial, flatten))
ircd::time(time_t &ref)
{
const auto &now
{
tse(ircd::now<system_point>())
};
ref = duration_cast<unit>(now).count();
return ref;
}
template<>
inline ircd::system_point
__attribute__((always_inline, artificial, flatten))
ircd::now<ircd::system_point>()
{
return system_clock::now();
}
//
// steady_clock
//
template<class unit>
extern inline unit
__attribute__((always_inline, gnu_inline, artificial, flatten))
ircd::now()
{
const auto &now
{
tse(ircd::now<steady_point>())
};
return std::chrono::duration_cast<unit>(now);
}
template<>
inline ircd::steady_point
__attribute__((always_inline, artificial, flatten))
ircd::now<ircd::steady_point>()
{
return steady_clock::now();
}