mirror of
https://github.com/matrix-construct/construct
synced 2025-01-07 05:16:11 +01:00
ea53aab823
* librb is no longer a separately configured subproject. * charybdis is now a standalone directory with a binary. * Include path layout now requires a directory ircd/ rb/ etc.
2310 lines
66 KiB
C
2310 lines
66 KiB
C
/*
|
|
* crypt.c: Implements unix style crypt() for platforms that don't have it
|
|
* This version has MD5, DES, and SHA256/SHA512 crypt.
|
|
* DES taken from uClibc, MD5 taken from BSD, SHA256/SHA512 taken from
|
|
* Drepper's public domain implementation.
|
|
*/
|
|
|
|
/*
|
|
* crypt() for uClibc
|
|
*
|
|
* Copyright (C) 2000 by Lineo, inc. and Erik Andersen
|
|
* Copyright (C) 2000,2001 by Erik Andersen <andersen@uclibc.org>
|
|
* Written by Erik Andersen <andersen@uclibc.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU Library General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <rb/rb.h>
|
|
|
|
static char *rb_md5_crypt(const char *pw, const char *salt);
|
|
static char *rb_des_crypt(const char *pw, const char *salt);
|
|
static char *rb_sha256_crypt(const char *key, const char *salt);
|
|
static char *rb_sha512_crypt(const char *key, const char *salt);
|
|
|
|
char *
|
|
rb_crypt(const char *key, const char *salt)
|
|
{
|
|
/* First, check if we are supposed to be using a replacement
|
|
* hash instead of DES... */
|
|
if(salt[0] == '$' && (salt[2] == '$' || salt[3] == '$'))
|
|
{
|
|
switch(salt[1])
|
|
{
|
|
case '1':
|
|
return rb_md5_crypt(key, salt);
|
|
case '5':
|
|
return rb_sha256_crypt(key, salt);
|
|
case '6':
|
|
return rb_sha512_crypt(key, salt);
|
|
default:
|
|
return NULL;
|
|
};
|
|
}
|
|
else
|
|
return rb_des_crypt(key, salt);
|
|
}
|
|
|
|
#define b64_from_24bit(B2, B1, B0, N) \
|
|
do \
|
|
{ \
|
|
unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
|
|
int n = (N); \
|
|
while (n-- > 0 && buflen > 0) \
|
|
{ \
|
|
*cp++ = ascii64[w & 0x3f]; \
|
|
--buflen; \
|
|
w >>= 6; \
|
|
} \
|
|
} while (0)
|
|
|
|
#ifndef MAX
|
|
# define MAX(a,b) (((a) > (b)) ? (a) : (b))
|
|
#endif
|
|
#ifndef MIN
|
|
# define MIN(a,b) (((a) < (b)) ? (a) : (b))
|
|
#endif
|
|
|
|
/* Here is the des crypt() stuff */
|
|
|
|
/*
|
|
* FreeSec: libcrypt for NetBSD
|
|
*
|
|
* Copyright (c) 1994 David Burren
|
|
* All rights reserved.
|
|
*
|
|
* Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
|
|
* this file should now *only* export crypt(), in order to make
|
|
* binaries of libcrypt exportable from the USA
|
|
*
|
|
* Adapted for FreeBSD-4.0 by Mark R V Murray
|
|
* this file should now *only* export crypt_des(), in order to make
|
|
* a module that can be optionally included in libcrypt.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the author nor the names of other contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* This is an original implementation of the DES and the crypt(3) interfaces
|
|
* by David Burren <davidb@werj.com.au>.
|
|
*
|
|
* An excellent reference on the underlying algorithm (and related
|
|
* algorithms) is:
|
|
*
|
|
* B. Schneier, Applied Cryptography: protocols, algorithms,
|
|
* and source code in C, John Wiley & Sons, 1994.
|
|
*
|
|
* Note that in that book's description of DES the lookups for the initial,
|
|
* pbox, and final permutations are inverted (this has been brought to the
|
|
* attention of the author). A list of errata for this book has been
|
|
* posted to the sci.crypt newsgroup by the author and is available for FTP.
|
|
*
|
|
* ARCHITECTURE ASSUMPTIONS:
|
|
* It is assumed that the 8-byte arrays passed by reference can be
|
|
* addressed as arrays of uint32_t's (ie. the CPU is not picky about
|
|
* alignment).
|
|
*/
|
|
|
|
|
|
/* Re-entrantify me -- all this junk needs to be in
|
|
* struct crypt_data to make this really reentrant... */
|
|
static uint8_t inv_key_perm[64];
|
|
static uint8_t inv_comp_perm[56];
|
|
static uint8_t u_sbox[8][64];
|
|
static uint8_t un_pbox[32];
|
|
static uint32_t en_keysl[16], en_keysr[16];
|
|
static uint32_t de_keysl[16], de_keysr[16];
|
|
static uint32_t ip_maskl[8][256], ip_maskr[8][256];
|
|
static uint32_t fp_maskl[8][256], fp_maskr[8][256];
|
|
static uint32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
|
|
static uint32_t comp_maskl[8][128], comp_maskr[8][128];
|
|
static uint32_t saltbits;
|
|
static uint32_t old_salt;
|
|
static uint32_t old_rawkey0, old_rawkey1;
|
|
|
|
|
|
/* Static stuff that stays resident and doesn't change after
|
|
* being initialized, and therefore doesn't need to be made
|
|
* reentrant. */
|
|
static uint8_t init_perm[64], final_perm[64];
|
|
static uint8_t m_sbox[4][4096];
|
|
static uint32_t psbox[4][256];
|
|
|
|
/* A pile of data */
|
|
static const uint8_t ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
|
|
|
static const uint8_t IP[64] = {
|
|
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
|
|
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
|
|
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
|
|
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
|
|
};
|
|
|
|
static const uint8_t key_perm[56] = {
|
|
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
|
|
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
|
|
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
|
|
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
|
|
};
|
|
|
|
static const uint8_t key_shifts[16] = {
|
|
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
|
|
};
|
|
|
|
static const uint8_t comp_perm[48] = {
|
|
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
|
|
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
|
|
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
|
|
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
|
|
};
|
|
|
|
/*
|
|
* No E box is used, as it's replaced by some ANDs, shifts, and ORs.
|
|
*/
|
|
|
|
static const uint8_t sbox[8][64] = {
|
|
{
|
|
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
|
|
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
|
|
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
|
|
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13},
|
|
{
|
|
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
|
|
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
|
|
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
|
|
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9},
|
|
{
|
|
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
|
|
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
|
|
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
|
|
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12},
|
|
{
|
|
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
|
|
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
|
|
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
|
|
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14},
|
|
{
|
|
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
|
|
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
|
|
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
|
|
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3},
|
|
{
|
|
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
|
|
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
|
|
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
|
|
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13},
|
|
{
|
|
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
|
|
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
|
|
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
|
|
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12},
|
|
{
|
|
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
|
|
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
|
|
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
|
|
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}
|
|
};
|
|
|
|
static const uint8_t pbox[32] = {
|
|
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
|
|
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
|
|
};
|
|
|
|
static const uint32_t bits32[32] = {
|
|
0x80000000, 0x40000000, 0x20000000, 0x10000000,
|
|
0x08000000, 0x04000000, 0x02000000, 0x01000000,
|
|
0x00800000, 0x00400000, 0x00200000, 0x00100000,
|
|
0x00080000, 0x00040000, 0x00020000, 0x00010000,
|
|
0x00008000, 0x00004000, 0x00002000, 0x00001000,
|
|
0x00000800, 0x00000400, 0x00000200, 0x00000100,
|
|
0x00000080, 0x00000040, 0x00000020, 0x00000010,
|
|
0x00000008, 0x00000004, 0x00000002, 0x00000001
|
|
};
|
|
|
|
static const uint8_t bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
|
|
|
|
static const uint32_t *bits28, *bits24;
|
|
|
|
|
|
static int
|
|
rb_ascii_to_bin(char ch)
|
|
{
|
|
if(ch > 'z')
|
|
return (0);
|
|
if(ch >= 'a')
|
|
return (ch - 'a' + 38);
|
|
if(ch > 'Z')
|
|
return (0);
|
|
if(ch >= 'A')
|
|
return (ch - 'A' + 12);
|
|
if(ch > '9')
|
|
return (0);
|
|
if(ch >= '.')
|
|
return (ch - '.');
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
rb_des_init(void)
|
|
{
|
|
int i, j, b, k, inbit, obit;
|
|
uint32_t *p, *il, *ir, *fl, *fr;
|
|
static int rb_des_initialised = 0;
|
|
|
|
if(rb_des_initialised == 1)
|
|
return;
|
|
|
|
old_rawkey0 = old_rawkey1 = 0L;
|
|
saltbits = 0L;
|
|
old_salt = 0L;
|
|
bits24 = (bits28 = bits32 + 4) + 4;
|
|
|
|
/*
|
|
* Invert the S-boxes, reordering the input bits.
|
|
*/
|
|
for(i = 0; i < 8; i++)
|
|
for(j = 0; j < 64; j++)
|
|
{
|
|
b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
|
|
u_sbox[i][j] = sbox[i][b];
|
|
}
|
|
|
|
/*
|
|
* Convert the inverted S-boxes into 4 arrays of 8 bits.
|
|
* Each will handle 12 bits of the S-box input.
|
|
*/
|
|
for(b = 0; b < 4; b++)
|
|
for(i = 0; i < 64; i++)
|
|
for(j = 0; j < 64; j++)
|
|
m_sbox[b][(i << 6) | j] =
|
|
(uint8_t)((u_sbox[(b << 1)][i] << 4) |
|
|
u_sbox[(b << 1) + 1][j]);
|
|
|
|
/*
|
|
* Set up the initial & final permutations into a useful form, and
|
|
* initialise the inverted key permutation.
|
|
*/
|
|
for(i = 0; i < 64; i++)
|
|
{
|
|
init_perm[final_perm[i] = IP[i] - 1] = (uint8_t)i;
|
|
inv_key_perm[i] = 255;
|
|
}
|
|
|
|
/*
|
|
* Invert the key permutation and initialise the inverted key
|
|
* compression permutation.
|
|
*/
|
|
for(i = 0; i < 56; i++)
|
|
{
|
|
inv_key_perm[key_perm[i] - 1] = (uint8_t)i;
|
|
inv_comp_perm[i] = 255;
|
|
}
|
|
|
|
/*
|
|
* Invert the key compression permutation.
|
|
*/
|
|
for(i = 0; i < 48; i++)
|
|
{
|
|
inv_comp_perm[comp_perm[i] - 1] = (uint8_t)i;
|
|
}
|
|
|
|
/*
|
|
* Set up the OR-mask arrays for the initial and final permutations,
|
|
* and for the key initial and compression permutations.
|
|
*/
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
for(i = 0; i < 256; i++)
|
|
{
|
|
*(il = &ip_maskl[k][i]) = 0L;
|
|
*(ir = &ip_maskr[k][i]) = 0L;
|
|
*(fl = &fp_maskl[k][i]) = 0L;
|
|
*(fr = &fp_maskr[k][i]) = 0L;
|
|
for(j = 0; j < 8; j++)
|
|
{
|
|
inbit = 8 * k + j;
|
|
if(i & bits8[j])
|
|
{
|
|
if((obit = init_perm[inbit]) < 32)
|
|
*il |= bits32[obit];
|
|
else
|
|
*ir |= bits32[obit - 32];
|
|
if((obit = final_perm[inbit]) < 32)
|
|
*fl |= bits32[obit];
|
|
else
|
|
*fr |= bits32[obit - 32];
|
|
}
|
|
}
|
|
}
|
|
for(i = 0; i < 128; i++)
|
|
{
|
|
*(il = &key_perm_maskl[k][i]) = 0L;
|
|
*(ir = &key_perm_maskr[k][i]) = 0L;
|
|
for(j = 0; j < 7; j++)
|
|
{
|
|
inbit = 8 * k + j;
|
|
if(i & bits8[j + 1])
|
|
{
|
|
if((obit = inv_key_perm[inbit]) == 255)
|
|
continue;
|
|
if(obit < 28)
|
|
*il |= bits28[obit];
|
|
else
|
|
*ir |= bits28[obit - 28];
|
|
}
|
|
}
|
|
*(il = &comp_maskl[k][i]) = 0L;
|
|
*(ir = &comp_maskr[k][i]) = 0L;
|
|
for(j = 0; j < 7; j++)
|
|
{
|
|
inbit = 7 * k + j;
|
|
if(i & bits8[j + 1])
|
|
{
|
|
if((obit = inv_comp_perm[inbit]) == 255)
|
|
continue;
|
|
if(obit < 24)
|
|
*il |= bits24[obit];
|
|
else
|
|
*ir |= bits24[obit - 24];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invert the P-box permutation, and convert into OR-masks for
|
|
* handling the output of the S-box arrays setup above.
|
|
*/
|
|
for(i = 0; i < 32; i++)
|
|
un_pbox[pbox[i] - 1] = (uint8_t)i;
|
|
|
|
for(b = 0; b < 4; b++)
|
|
for(i = 0; i < 256; i++)
|
|
{
|
|
*(p = &psbox[b][i]) = 0L;
|
|
for(j = 0; j < 8; j++)
|
|
{
|
|
if(i & bits8[j])
|
|
*p |= bits32[un_pbox[8 * b + j]];
|
|
}
|
|
}
|
|
|
|
rb_des_initialised = 1;
|
|
}
|
|
|
|
|
|
static void
|
|
rb_setup_salt(long salt)
|
|
{
|
|
uint32_t obit, saltbit;
|
|
int i;
|
|
|
|
if(salt == (long)old_salt)
|
|
return;
|
|
old_salt = salt;
|
|
|
|
saltbits = 0L;
|
|
saltbit = 1;
|
|
obit = 0x800000;
|
|
for(i = 0; i < 24; i++)
|
|
{
|
|
if(salt & saltbit)
|
|
saltbits |= obit;
|
|
saltbit <<= 1;
|
|
obit >>= 1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
rb_des_setkey(const char *key)
|
|
{
|
|
uint32_t k0, k1, rawkey0, rawkey1;
|
|
int shifts, round;
|
|
|
|
rb_des_init();
|
|
|
|
rawkey0 = ntohl(*(const uint32_t *)key);
|
|
rawkey1 = ntohl(*(const uint32_t *)(key + 4));
|
|
|
|
if((rawkey0 | rawkey1) && rawkey0 == old_rawkey0 && rawkey1 == old_rawkey1)
|
|
{
|
|
/*
|
|
* Already setup for this key.
|
|
* This optimisation fails on a zero key (which is weak and
|
|
* has bad parity anyway) in order to simplify the starting
|
|
* conditions.
|
|
*/
|
|
return (0);
|
|
}
|
|
old_rawkey0 = rawkey0;
|
|
old_rawkey1 = rawkey1;
|
|
|
|
/*
|
|
* Do key permutation and split into two 28-bit subkeys.
|
|
*/
|
|
k0 = key_perm_maskl[0][rawkey0 >> 25]
|
|
| key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
|
|
| key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
|
|
| key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
|
|
| key_perm_maskl[4][rawkey1 >> 25]
|
|
| key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
|
|
| key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
|
|
| key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
|
|
k1 = key_perm_maskr[0][rawkey0 >> 25]
|
|
| key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
|
|
| key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
|
|
| key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
|
|
| key_perm_maskr[4][rawkey1 >> 25]
|
|
| key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
|
|
| key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
|
|
| key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
|
|
/*
|
|
* Rotate subkeys and do compression permutation.
|
|
*/
|
|
shifts = 0;
|
|
for(round = 0; round < 16; round++)
|
|
{
|
|
uint32_t t0, t1;
|
|
|
|
shifts += key_shifts[round];
|
|
|
|
t0 = (k0 << shifts) | (k0 >> (28 - shifts));
|
|
t1 = (k1 << shifts) | (k1 >> (28 - shifts));
|
|
|
|
de_keysl[15 - round] =
|
|
en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
|
|
| comp_maskl[1][(t0 >> 14) & 0x7f]
|
|
| comp_maskl[2][(t0 >> 7) & 0x7f]
|
|
| comp_maskl[3][t0 & 0x7f]
|
|
| comp_maskl[4][(t1 >> 21) & 0x7f]
|
|
| comp_maskl[5][(t1 >> 14) & 0x7f]
|
|
| comp_maskl[6][(t1 >> 7) & 0x7f] | comp_maskl[7][t1 & 0x7f];
|
|
|
|
de_keysr[15 - round] =
|
|
en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
|
|
| comp_maskr[1][(t0 >> 14) & 0x7f]
|
|
| comp_maskr[2][(t0 >> 7) & 0x7f]
|
|
| comp_maskr[3][t0 & 0x7f]
|
|
| comp_maskr[4][(t1 >> 21) & 0x7f]
|
|
| comp_maskr[5][(t1 >> 14) & 0x7f]
|
|
| comp_maskr[6][(t1 >> 7) & 0x7f] | comp_maskr[7][t1 & 0x7f];
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
rb_do_des(uint32_t l_in, uint32_t r_in, uint32_t *l_out, uint32_t *r_out, int count)
|
|
{
|
|
/*
|
|
* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
|
|
*/
|
|
uint32_t l, r, *kl, *kr, *kl1, *kr1;
|
|
uint32_t f = 0, r48l, r48r;
|
|
int round;
|
|
|
|
if(count == 0)
|
|
{
|
|
return (1);
|
|
}
|
|
else if(count > 0)
|
|
{
|
|
/*
|
|
* Encrypting
|
|
*/
|
|
kl1 = en_keysl;
|
|
kr1 = en_keysr;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Decrypting
|
|
*/
|
|
count = -count;
|
|
kl1 = de_keysl;
|
|
kr1 = de_keysr;
|
|
}
|
|
|
|
/*
|
|
* Do initial permutation (IP).
|
|
*/
|
|
l = ip_maskl[0][l_in >> 24]
|
|
| ip_maskl[1][(l_in >> 16) & 0xff]
|
|
| ip_maskl[2][(l_in >> 8) & 0xff]
|
|
| ip_maskl[3][l_in & 0xff]
|
|
| ip_maskl[4][r_in >> 24]
|
|
| ip_maskl[5][(r_in >> 16) & 0xff]
|
|
| ip_maskl[6][(r_in >> 8) & 0xff] | ip_maskl[7][r_in & 0xff];
|
|
r = ip_maskr[0][l_in >> 24]
|
|
| ip_maskr[1][(l_in >> 16) & 0xff]
|
|
| ip_maskr[2][(l_in >> 8) & 0xff]
|
|
| ip_maskr[3][l_in & 0xff]
|
|
| ip_maskr[4][r_in >> 24]
|
|
| ip_maskr[5][(r_in >> 16) & 0xff]
|
|
| ip_maskr[6][(r_in >> 8) & 0xff] | ip_maskr[7][r_in & 0xff];
|
|
|
|
while(count--)
|
|
{
|
|
/*
|
|
* Do each round.
|
|
*/
|
|
kl = kl1;
|
|
kr = kr1;
|
|
round = 16;
|
|
while(round--)
|
|
{
|
|
/*
|
|
* Expand R to 48 bits (simulate the E-box).
|
|
*/
|
|
r48l = ((r & 0x00000001) << 23)
|
|
| ((r & 0xf8000000) >> 9)
|
|
| ((r & 0x1f800000) >> 11)
|
|
| ((r & 0x01f80000) >> 13) | ((r & 0x001f8000) >> 15);
|
|
|
|
r48r = ((r & 0x0001f800) << 7)
|
|
| ((r & 0x00001f80) << 5)
|
|
| ((r & 0x000001f8) << 3)
|
|
| ((r & 0x0000001f) << 1) | ((r & 0x80000000) >> 31);
|
|
/*
|
|
* Do salting for crypt() and friends, and
|
|
* XOR with the permuted key.
|
|
*/
|
|
f = (r48l ^ r48r) & saltbits;
|
|
r48l ^= f ^ *kl++;
|
|
r48r ^= f ^ *kr++;
|
|
/*
|
|
* Do sbox lookups (which shrink it back to 32 bits)
|
|
* and do the pbox permutation at the same time.
|
|
*/
|
|
f = psbox[0][m_sbox[0][r48l >> 12]]
|
|
| psbox[1][m_sbox[1][r48l & 0xfff]]
|
|
| psbox[2][m_sbox[2][r48r >> 12]]
|
|
| psbox[3][m_sbox[3][r48r & 0xfff]];
|
|
/*
|
|
* Now that we've permuted things, complete f().
|
|
*/
|
|
f ^= l;
|
|
l = r;
|
|
r = f;
|
|
}
|
|
r = l;
|
|
l = f;
|
|
}
|
|
/*
|
|
* Do final permutation (inverse of IP).
|
|
*/
|
|
*l_out = fp_maskl[0][l >> 24]
|
|
| fp_maskl[1][(l >> 16) & 0xff]
|
|
| fp_maskl[2][(l >> 8) & 0xff]
|
|
| fp_maskl[3][l & 0xff]
|
|
| fp_maskl[4][r >> 24]
|
|
| fp_maskl[5][(r >> 16) & 0xff]
|
|
| fp_maskl[6][(r >> 8) & 0xff] | fp_maskl[7][r & 0xff];
|
|
*r_out = fp_maskr[0][l >> 24]
|
|
| fp_maskr[1][(l >> 16) & 0xff]
|
|
| fp_maskr[2][(l >> 8) & 0xff]
|
|
| fp_maskr[3][l & 0xff]
|
|
| fp_maskr[4][r >> 24]
|
|
| fp_maskr[5][(r >> 16) & 0xff]
|
|
| fp_maskr[6][(r >> 8) & 0xff] | fp_maskr[7][r & 0xff];
|
|
return (0);
|
|
}
|
|
|
|
static char *
|
|
rb_des_crypt(const char *key, const char *setting)
|
|
{
|
|
uint32_t count, salt, l, r0, r1, keybuf[2];
|
|
uint8_t *p, *q;
|
|
static char output[21];
|
|
|
|
rb_des_init();
|
|
|
|
/*
|
|
* Copy the key, shifting each character up by one bit
|
|
* and padding with zeros.
|
|
*/
|
|
q = (uint8_t *)keybuf;
|
|
while(q - (uint8_t *)keybuf - 8)
|
|
{
|
|
*q++ = *key << 1;
|
|
if(*(q - 1))
|
|
key++;
|
|
}
|
|
if(rb_des_setkey((char *)keybuf))
|
|
return (NULL);
|
|
{
|
|
/*
|
|
* "old"-style:
|
|
* setting - 2 bytes of salt
|
|
* key - up to 8 characters
|
|
*/
|
|
count = 25;
|
|
|
|
salt = (rb_ascii_to_bin(setting[1]) << 6) | rb_ascii_to_bin(setting[0]);
|
|
|
|
output[0] = setting[0];
|
|
/*
|
|
* If the encrypted password that the salt was extracted from
|
|
* is only 1 character long, the salt will be corrupted. We
|
|
* need to ensure that the output string doesn't have an extra
|
|
* NUL in it!
|
|
*/
|
|
output[1] = setting[1] ? setting[1] : output[0];
|
|
|
|
p = (uint8_t *)output + 2;
|
|
}
|
|
rb_setup_salt(salt);
|
|
/*
|
|
* Do it.
|
|
*/
|
|
if(rb_do_des(0L, 0L, &r0, &r1, (int)count))
|
|
return (NULL);
|
|
/*
|
|
* Now encode the result...
|
|
*/
|
|
l = (r0 >> 8);
|
|
*p++ = ascii64[(l >> 18) & 0x3f];
|
|
*p++ = ascii64[(l >> 12) & 0x3f];
|
|
*p++ = ascii64[(l >> 6) & 0x3f];
|
|
*p++ = ascii64[l & 0x3f];
|
|
|
|
l = (r0 << 16) | ((r1 >> 16) & 0xffff);
|
|
*p++ = ascii64[(l >> 18) & 0x3f];
|
|
*p++ = ascii64[(l >> 12) & 0x3f];
|
|
*p++ = ascii64[(l >> 6) & 0x3f];
|
|
*p++ = ascii64[l & 0x3f];
|
|
|
|
l = r1 << 2;
|
|
*p++ = ascii64[(l >> 12) & 0x3f];
|
|
*p++ = ascii64[(l >> 6) & 0x3f];
|
|
*p++ = ascii64[l & 0x3f];
|
|
*p = 0;
|
|
|
|
return (output);
|
|
}
|
|
|
|
/* Now md5 crypt */
|
|
/*
|
|
* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
|
|
*
|
|
* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
|
|
* rights reserved.
|
|
*
|
|
* License to copy and use this software is granted provided that it
|
|
* is identified as the "RSA Data Security, Inc. MD5 Message-Digest
|
|
* Algorithm" in all material mentioning or referencing this software
|
|
* or this function.
|
|
*
|
|
* License is also granted to make and use derivative works provided
|
|
* that such works are identified as "derived from the RSA Data
|
|
* Security, Inc. MD5 Message-Digest Algorithm" in all material
|
|
* mentioning or referencing the derived work.
|
|
*
|
|
* RSA Data Security, Inc. makes no representations concerning either
|
|
* the merchantability of this software or the suitability of this
|
|
* software for any particular purpose. It is provided "as is"
|
|
* without express or implied warranty of any kind.
|
|
*
|
|
* These notices must be retained in any copies of any part of this
|
|
* documentation and/or software.
|
|
*
|
|
* This code is the same as the code published by RSA Inc. It has been
|
|
* edited for clarity and style only.
|
|
*/
|
|
|
|
#define MD5_SIZE 16
|
|
|
|
static void
|
|
_crypt_to64(char *s, unsigned long v, int n)
|
|
{
|
|
while (--n >= 0) {
|
|
*s++ = ascii64[v&0x3f];
|
|
v >>= 6;
|
|
}
|
|
}
|
|
|
|
/* MD5 context. */
|
|
typedef struct MD5Context {
|
|
uint32_t state[4]; /* state (ABCD) */
|
|
uint32_t count[2]; /* number of bits, modulo 2^64 (lsb first) */
|
|
unsigned char buffer[64]; /* input buffer */
|
|
} MD5_CTX;
|
|
|
|
static void MD5Transform(uint32_t [4], const unsigned char [64]);
|
|
static void MD5Init (MD5_CTX *);
|
|
static void MD5Update (MD5_CTX *, const void *, unsigned int);
|
|
static void MD5Final (unsigned char [16], MD5_CTX *);
|
|
|
|
#ifndef WORDS_BIGENDIAN
|
|
#define Encode memcpy
|
|
#define Decode memcpy
|
|
#else
|
|
|
|
/*
|
|
* Encodes input (uint32_t) into output (unsigned char). Assumes len is
|
|
* a multiple of 4.
|
|
*/
|
|
|
|
static void
|
|
Encode (unsigned char *output, uint32_t *input, unsigned int len)
|
|
{
|
|
unsigned int i;
|
|
uint32_t *op = (uint32_t *)output;
|
|
|
|
for (i = 0; i < len / 4; i++)
|
|
op[i] = htole32(input[i]);
|
|
}
|
|
|
|
/*
|
|
* Decodes input (unsigned char) into output (uint32_t). Assumes len is
|
|
* a multiple of 4.
|
|
*/
|
|
|
|
static void
|
|
Decode (uint32_t *output, const unsigned char *input, unsigned int len)
|
|
{
|
|
unsigned int i;
|
|
const uint32_t *ip = (const uint32_t *)input;
|
|
|
|
for (i = 0; i < len / 4; i++)
|
|
output[i] = le32toh(ip[i]);
|
|
}
|
|
#endif
|
|
|
|
static unsigned char PADDING[64] = {
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
/* F, G, H and I are basic MD5 functions. */
|
|
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
|
|
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
|
|
#define H(x, y, z) ((x) ^ (y) ^ (z))
|
|
#define I(x, y, z) ((y) ^ ((x) | (~z)))
|
|
|
|
/* ROTATE_LEFT rotates x left n bits. */
|
|
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
|
|
|
|
/*
|
|
* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
|
|
* Rotation is separate from addition to prevent recomputation.
|
|
*/
|
|
#define FF(a, b, c, d, x, s, ac) { \
|
|
(a) += F ((b), (c), (d)) + (x) + (uint32_t)(ac); \
|
|
(a) = ROTATE_LEFT ((a), (s)); \
|
|
(a) += (b); \
|
|
}
|
|
#define GG(a, b, c, d, x, s, ac) { \
|
|
(a) += G ((b), (c), (d)) + (x) + (uint32_t)(ac); \
|
|
(a) = ROTATE_LEFT ((a), (s)); \
|
|
(a) += (b); \
|
|
}
|
|
#define HH(a, b, c, d, x, s, ac) { \
|
|
(a) += H ((b), (c), (d)) + (x) + (uint32_t)(ac); \
|
|
(a) = ROTATE_LEFT ((a), (s)); \
|
|
(a) += (b); \
|
|
}
|
|
#define II(a, b, c, d, x, s, ac) { \
|
|
(a) += I ((b), (c), (d)) + (x) + (uint32_t)(ac); \
|
|
(a) = ROTATE_LEFT ((a), (s)); \
|
|
(a) += (b); \
|
|
}
|
|
|
|
/* MD5 initialization. Begins an MD5 operation, writing a new context. */
|
|
|
|
static void
|
|
MD5Init (context)
|
|
MD5_CTX *context;
|
|
{
|
|
|
|
context->count[0] = context->count[1] = 0;
|
|
|
|
/* Load magic initialization constants. */
|
|
context->state[0] = 0x67452301;
|
|
context->state[1] = 0xefcdab89;
|
|
context->state[2] = 0x98badcfe;
|
|
context->state[3] = 0x10325476;
|
|
}
|
|
|
|
/*
|
|
* MD5 block update operation. Continues an MD5 message-digest
|
|
* operation, processing another message block, and updating the
|
|
* context.
|
|
*/
|
|
|
|
static void
|
|
MD5Update (context, in, inputLen)
|
|
MD5_CTX *context;
|
|
const void *in;
|
|
unsigned int inputLen;
|
|
{
|
|
unsigned int i, idx, partLen;
|
|
const unsigned char *input = in;
|
|
|
|
/* Compute number of bytes mod 64 */
|
|
idx = (unsigned int)((context->count[0] >> 3) & 0x3F);
|
|
|
|
/* Update number of bits */
|
|
if ((context->count[0] += ((uint32_t)inputLen << 3))
|
|
< ((uint32_t)inputLen << 3))
|
|
context->count[1]++;
|
|
context->count[1] += ((uint32_t)inputLen >> 29);
|
|
|
|
partLen = 64 - idx;
|
|
|
|
/* Transform as many times as possible. */
|
|
if (inputLen >= partLen) {
|
|
memcpy((void *)&context->buffer[idx], (const void *)input,
|
|
partLen);
|
|
MD5Transform (context->state, context->buffer);
|
|
|
|
for (i = partLen; i + 63 < inputLen; i += 64)
|
|
MD5Transform (context->state, &input[i]);
|
|
|
|
idx = 0;
|
|
}
|
|
else
|
|
i = 0;
|
|
|
|
/* Buffer remaining input */
|
|
memcpy ((void *)&context->buffer[idx], (const void *)&input[i],
|
|
inputLen-i);
|
|
}
|
|
|
|
/*
|
|
* MD5 padding. Adds padding followed by original length.
|
|
*/
|
|
|
|
static void
|
|
MD5Pad (context)
|
|
MD5_CTX *context;
|
|
{
|
|
unsigned char bits[8];
|
|
unsigned int idx, padLen;
|
|
|
|
/* Save number of bits */
|
|
Encode (bits, context->count, 8);
|
|
|
|
/* Pad out to 56 mod 64. */
|
|
idx = (unsigned int)((context->count[0] >> 3) & 0x3f);
|
|
padLen = (idx < 56) ? (56 - idx) : (120 - idx);
|
|
MD5Update (context, PADDING, padLen);
|
|
|
|
/* Append length (before padding) */
|
|
MD5Update (context, bits, 8);
|
|
}
|
|
|
|
/*
|
|
* MD5 finalization. Ends an MD5 message-digest operation, writing the
|
|
* the message digest and zeroizing the context.
|
|
*/
|
|
|
|
static void
|
|
MD5Final (digest, context)
|
|
unsigned char digest[16];
|
|
MD5_CTX *context;
|
|
{
|
|
/* Do padding. */
|
|
MD5Pad (context);
|
|
|
|
/* Store state in digest */
|
|
Encode (digest, context->state, 16);
|
|
|
|
/* Zeroize sensitive information. */
|
|
memset ((void *)context, 0, sizeof (*context));
|
|
}
|
|
|
|
/* MD5 basic transformation. Transforms state based on block. */
|
|
|
|
static void
|
|
MD5Transform (state, block)
|
|
uint32_t state[4];
|
|
const unsigned char block[64];
|
|
{
|
|
uint32_t a = state[0], b = state[1], c = state[2], d = state[3], x[16];
|
|
|
|
Decode (x, block, 64);
|
|
|
|
/* Round 1 */
|
|
#define S11 7
|
|
#define S12 12
|
|
#define S13 17
|
|
#define S14 22
|
|
FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
|
|
FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
|
|
FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
|
|
FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
|
|
FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
|
|
FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
|
|
FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
|
|
FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
|
|
FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
|
|
FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
|
|
FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
|
|
FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
|
|
FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
|
|
FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
|
|
FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
|
|
FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
|
|
|
|
/* Round 2 */
|
|
#define S21 5
|
|
#define S22 9
|
|
#define S23 14
|
|
#define S24 20
|
|
GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
|
|
GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
|
|
GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
|
|
GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
|
|
GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
|
|
GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */
|
|
GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
|
|
GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
|
|
GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
|
|
GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
|
|
GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
|
|
GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
|
|
GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
|
|
GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
|
|
GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
|
|
GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
|
|
|
|
/* Round 3 */
|
|
#define S31 4
|
|
#define S32 11
|
|
#define S33 16
|
|
#define S34 23
|
|
HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
|
|
HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
|
|
HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
|
|
HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
|
|
HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
|
|
HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
|
|
HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
|
|
HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
|
|
HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
|
|
HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
|
|
HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
|
|
HH (b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */
|
|
HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
|
|
HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
|
|
HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
|
|
HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */
|
|
|
|
/* Round 4 */
|
|
#define S41 6
|
|
#define S42 10
|
|
#define S43 15
|
|
#define S44 21
|
|
II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
|
|
II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
|
|
II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
|
|
II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
|
|
II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
|
|
II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
|
|
II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
|
|
II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
|
|
II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
|
|
II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
|
|
II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
|
|
II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
|
|
II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
|
|
II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
|
|
II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
|
|
II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */
|
|
|
|
state[0] += a;
|
|
state[1] += b;
|
|
state[2] += c;
|
|
state[3] += d;
|
|
|
|
/* Zeroize sensitive information. */
|
|
memset ((void *)x, 0, sizeof (x));
|
|
}
|
|
|
|
/*
|
|
* UNIX password
|
|
*/
|
|
|
|
static char *
|
|
rb_md5_crypt(const char *pw, const char *salt)
|
|
{
|
|
MD5_CTX ctx,ctx1;
|
|
unsigned long l;
|
|
int sl, pl;
|
|
unsigned int i;
|
|
unsigned char final[MD5_SIZE];
|
|
static const char *sp, *ep;
|
|
static char passwd[120], *p;
|
|
static const char *magic = "$1$";
|
|
|
|
/* Refine the Salt first */
|
|
sp = salt;
|
|
|
|
/* If it starts with the magic string, then skip that */
|
|
if(!strncmp(sp, magic, strlen(magic)))
|
|
sp += strlen(magic);
|
|
|
|
/* It stops at the first '$', max 8 chars */
|
|
for(ep = sp; *ep && *ep != '$' && ep < (sp + 8); ep++)
|
|
continue;
|
|
|
|
/* get the length of the true salt */
|
|
sl = ep - sp;
|
|
|
|
MD5Init(&ctx);
|
|
|
|
/* The password first, since that is what is most unknown */
|
|
MD5Update(&ctx, (const unsigned char *)pw, strlen(pw));
|
|
|
|
/* Then our magic string */
|
|
MD5Update(&ctx, (const unsigned char *)magic, strlen(magic));
|
|
|
|
/* Then the raw salt */
|
|
MD5Update(&ctx, (const unsigned char *)sp, (unsigned int)sl);
|
|
|
|
/* Then just as many characters of the MD5(pw,salt,pw) */
|
|
MD5Init(&ctx1);
|
|
MD5Update(&ctx1, (const unsigned char *)pw, strlen(pw));
|
|
MD5Update(&ctx1, (const unsigned char *)sp, (unsigned int)sl);
|
|
MD5Update(&ctx1, (const unsigned char *)pw, strlen(pw));
|
|
MD5Final(final, &ctx1);
|
|
for(pl = (int)strlen(pw); pl > 0; pl -= MD5_SIZE)
|
|
MD5Update(&ctx, (const unsigned char *)final,
|
|
(unsigned int)(pl > MD5_SIZE ? MD5_SIZE : pl));
|
|
|
|
/* Don't leave anything around in vm they could use. */
|
|
memset(final, 0, sizeof(final));
|
|
|
|
/* Then something really weird... */
|
|
for (i = strlen(pw); i; i >>= 1)
|
|
if(i & 1)
|
|
MD5Update(&ctx, (const unsigned char *)final, 1);
|
|
else
|
|
MD5Update(&ctx, (const unsigned char *)pw, 1);
|
|
|
|
/* Now make the output string */
|
|
rb_strlcpy(passwd, magic, sizeof(passwd));
|
|
strncat(passwd, sp, (unsigned int)sl);
|
|
rb_strlcat(passwd, "$", sizeof(passwd));
|
|
|
|
MD5Final(final, &ctx);
|
|
|
|
/*
|
|
* and now, just to make sure things don't run too fast
|
|
* On a 60 Mhz Pentium this takes 34 msec, so you would
|
|
* need 30 seconds to build a 1000 entry dictionary...
|
|
*/
|
|
for(i = 0; i < 1000; i++) {
|
|
MD5Init(&ctx1);
|
|
if(i & 1)
|
|
MD5Update(&ctx1, (const unsigned char *)pw, strlen(pw));
|
|
else
|
|
MD5Update(&ctx1, (const unsigned char *)final, MD5_SIZE);
|
|
|
|
if(i % 3)
|
|
MD5Update(&ctx1, (const unsigned char *)sp, (unsigned int)sl);
|
|
|
|
if(i % 7)
|
|
MD5Update(&ctx1, (const unsigned char *)pw, strlen(pw));
|
|
|
|
if(i & 1)
|
|
MD5Update(&ctx1, (const unsigned char *)final, MD5_SIZE);
|
|
else
|
|
MD5Update(&ctx1, (const unsigned char *)pw, strlen(pw));
|
|
MD5Final(final, &ctx1);
|
|
}
|
|
|
|
p = passwd + strlen(passwd);
|
|
|
|
l = (final[ 0]<<16) | (final[ 6]<<8) | final[12];
|
|
_crypt_to64(p, l, 4); p += 4;
|
|
l = (final[ 1]<<16) | (final[ 7]<<8) | final[13];
|
|
_crypt_to64(p, l, 4); p += 4;
|
|
l = (final[ 2]<<16) | (final[ 8]<<8) | final[14];
|
|
_crypt_to64(p, l, 4); p += 4;
|
|
l = (final[ 3]<<16) | (final[ 9]<<8) | final[15];
|
|
_crypt_to64(p, l, 4); p += 4;
|
|
l = (final[ 4]<<16) | (final[10]<<8) | final[ 5];
|
|
_crypt_to64(p, l, 4); p += 4;
|
|
l = final[11];
|
|
_crypt_to64(p, l, 2); p += 2;
|
|
*p = '\0';
|
|
|
|
/* Don't leave anything around in vm they could use. */
|
|
memset(final, 0, sizeof(final));
|
|
|
|
return (passwd);
|
|
}
|
|
|
|
|
|
/* SHA256-based Unix crypt implementation.
|
|
Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. */
|
|
|
|
/* Structure to save state of computation between the single steps. */
|
|
struct sha256_ctx
|
|
{
|
|
uint32_t H[8];
|
|
|
|
uint32_t total[2];
|
|
uint32_t buflen;
|
|
char buffer[128]; /* NB: always correctly aligned for uint32_t. */
|
|
};
|
|
|
|
#ifndef WORDS_BIGENDIAN
|
|
# define SHA256_SWAP(n) \
|
|
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
|
|
#else
|
|
# define SHA256_SWAP(n) (n)
|
|
#endif
|
|
|
|
/* This array contains the bytes used to pad the buffer to the next
|
|
64-byte boundary. (FIPS 180-2:5.1.1) */
|
|
static const unsigned char SHA256_fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
|
|
|
|
|
|
/* Constants for SHA256 from FIPS 180-2:4.2.2. */
|
|
static const uint32_t SHA256_K[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
|
|
|
|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
It is assumed that LEN % 64 == 0. */
|
|
static void rb_sha256_process_block(const void *buffer, size_t len, struct sha256_ctx *ctx)
|
|
{
|
|
const uint32_t *words = buffer;
|
|
size_t nwords = len / sizeof(uint32_t);
|
|
uint32_t a = ctx->H[0];
|
|
uint32_t b = ctx->H[1];
|
|
uint32_t c = ctx->H[2];
|
|
uint32_t d = ctx->H[3];
|
|
uint32_t e = ctx->H[4];
|
|
uint32_t f = ctx->H[5];
|
|
uint32_t g = ctx->H[6];
|
|
uint32_t h = ctx->H[7];
|
|
|
|
/* First increment the byte count. FIPS 180-2 specifies the possible
|
|
length of the file up to 2^64 bits. Here we only compute the
|
|
number of bytes. Do a double word increment. */
|
|
ctx->total[0] += len;
|
|
if (ctx->total[0] < len)
|
|
++ctx->total[1];
|
|
|
|
/* Process all bytes in the buffer with 64 bytes in each round of
|
|
the loop. */
|
|
while (nwords > 0)
|
|
{
|
|
uint32_t W[64];
|
|
uint32_t a_save = a;
|
|
uint32_t b_save = b;
|
|
uint32_t c_save = c;
|
|
uint32_t d_save = d;
|
|
uint32_t e_save = e;
|
|
uint32_t f_save = f;
|
|
uint32_t g_save = g;
|
|
uint32_t h_save = h;
|
|
unsigned int t;
|
|
|
|
/* Operators defined in FIPS 180-2:4.1.2. */
|
|
#define SHA256_Ch(x, y, z) ((x & y) ^ (~x & z))
|
|
#define SHA256_Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
|
|
#define SHA256_S0(x) (SHA256_CYCLIC (x, 2) ^ SHA256_CYCLIC (x, 13) ^ SHA256_CYCLIC (x, 22))
|
|
#define SHA256_S1(x) (SHA256_CYCLIC (x, 6) ^ SHA256_CYCLIC (x, 11) ^ SHA256_CYCLIC (x, 25))
|
|
#define SHA256_R0(x) (SHA256_CYCLIC (x, 7) ^ SHA256_CYCLIC (x, 18) ^ (x >> 3))
|
|
#define SHA256_R1(x) (SHA256_CYCLIC (x, 17) ^ SHA256_CYCLIC (x, 19) ^ (x >> 10))
|
|
|
|
/* It is unfortunate that C does not provide an operator for
|
|
cyclic rotation. Hope the C compiler is smart enough. */
|
|
#define SHA256_CYCLIC(w, s) ((w >> s) | (w << (32 - s)))
|
|
|
|
/* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
|
|
for (t = 0; t < 16; ++t)
|
|
{
|
|
W[t] = SHA256_SWAP(*words);
|
|
++words;
|
|
}
|
|
for (t = 16; t < 64; ++t)
|
|
W[t] = SHA256_R1(W[t - 2]) + W[t - 7] + SHA256_R0(W[t - 15]) + W[t - 16];
|
|
|
|
/* The actual computation according to FIPS 180-2:6.2.2 step 3. */
|
|
for (t = 0; t < 64; ++t)
|
|
{
|
|
uint32_t T1 = h + SHA256_S1(e) + SHA256_Ch(e, f, g) + SHA256_K[t] + W[t];
|
|
uint32_t T2 = SHA256_S0(a) + SHA256_Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
}
|
|
|
|
/* Add the starting values of the context according to FIPS 180-2:6.2.2
|
|
step 4. */
|
|
a += a_save;
|
|
b += b_save;
|
|
c += c_save;
|
|
d += d_save;
|
|
e += e_save;
|
|
f += f_save;
|
|
g += g_save;
|
|
h += h_save;
|
|
|
|
/* Prepare for the next round. */
|
|
nwords -= 16;
|
|
}
|
|
|
|
/* Put checksum in context given as argument. */
|
|
ctx->H[0] = a;
|
|
ctx->H[1] = b;
|
|
ctx->H[2] = c;
|
|
ctx->H[3] = d;
|
|
ctx->H[4] = e;
|
|
ctx->H[5] = f;
|
|
ctx->H[6] = g;
|
|
ctx->H[7] = h;
|
|
}
|
|
|
|
|
|
/* Initialize structure containing state of computation.
|
|
(FIPS 180-2:5.3.2) */
|
|
static void rb_sha256_init_ctx(struct sha256_ctx *ctx)
|
|
{
|
|
ctx->H[0] = 0x6a09e667;
|
|
ctx->H[1] = 0xbb67ae85;
|
|
ctx->H[2] = 0x3c6ef372;
|
|
ctx->H[3] = 0xa54ff53a;
|
|
ctx->H[4] = 0x510e527f;
|
|
ctx->H[5] = 0x9b05688c;
|
|
ctx->H[6] = 0x1f83d9ab;
|
|
ctx->H[7] = 0x5be0cd19;
|
|
|
|
ctx->total[0] = ctx->total[1] = 0;
|
|
ctx->buflen = 0;
|
|
}
|
|
|
|
|
|
/* Process the remaining bytes in the internal buffer and the usual
|
|
prolog according to the standard and write the result to RESBUF.
|
|
|
|
IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
aligned for a 32 bits value. */
|
|
static void *rb_sha256_finish_ctx(struct sha256_ctx *ctx, void *resbuf)
|
|
{
|
|
/* Take yet unprocessed bytes into account. */
|
|
uint32_t bytes = ctx->buflen, *ptr;
|
|
size_t pad;
|
|
unsigned int i;
|
|
|
|
/* Now count remaining bytes. */
|
|
ctx->total[0] += bytes;
|
|
if (ctx->total[0] < bytes)
|
|
++ctx->total[1];
|
|
|
|
pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
|
|
memcpy(&ctx->buffer[bytes], SHA256_fillbuf, pad);
|
|
|
|
/* Put the 64-bit file length in *bits* at the end of the buffer. */
|
|
ptr = (uint32_t *)&ctx->buffer[bytes + pad + 4]; /* Avoid warnings about strict aliasing */
|
|
*ptr = SHA256_SWAP(ctx->total[0] << 3);
|
|
|
|
ptr = (uint32_t *)&ctx->buffer[bytes + pad];
|
|
*ptr = SHA256_SWAP((ctx->total[1] << 3) | (ctx->total[0] >> 29));
|
|
|
|
/* Process last bytes. */
|
|
rb_sha256_process_block(ctx->buffer, bytes + pad + 8, ctx);
|
|
|
|
/* Put result from CTX in first 32 bytes following RESBUF. */
|
|
for (i = 0; i < 8; ++i)
|
|
((uint32_t *) resbuf)[i] = SHA256_SWAP(ctx->H[i]);
|
|
|
|
return resbuf;
|
|
}
|
|
|
|
|
|
static void rb_sha256_process_bytes(const void *buffer, size_t len, struct sha256_ctx *ctx)
|
|
{
|
|
/* When we already have some bits in our internal buffer concatenate
|
|
both inputs first. */
|
|
if (ctx->buflen != 0)
|
|
{
|
|
size_t left_over = ctx->buflen;
|
|
size_t add = 128 - left_over > len ? len : 128 - left_over;
|
|
|
|
memcpy(&ctx->buffer[left_over], buffer, add);
|
|
ctx->buflen += add;
|
|
|
|
if (ctx->buflen > 64)
|
|
{
|
|
rb_sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx);
|
|
|
|
ctx->buflen &= 63;
|
|
/* The regions in the following copy operation cannot overlap. */
|
|
memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63], ctx->buflen);
|
|
}
|
|
|
|
buffer = (const char *)buffer + add;
|
|
len -= add;
|
|
}
|
|
|
|
/* Process available complete blocks. */
|
|
if (len >= 64)
|
|
{
|
|
/* To check alignment gcc has an appropriate operator. Other
|
|
compilers don't. */
|
|
#if __GNUC__ >= 2
|
|
# define SHA256_UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)
|
|
#else
|
|
# define SHA256_UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0)
|
|
#endif
|
|
if (SHA256_UNALIGNED_P(buffer))
|
|
while (len > 64)
|
|
{
|
|
rb_sha256_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx);
|
|
buffer = (const char *)buffer + 64;
|
|
len -= 64;
|
|
}
|
|
else
|
|
{
|
|
rb_sha256_process_block(buffer, len & ~63, ctx);
|
|
buffer = (const char *)buffer + (len & ~63);
|
|
len &= 63;
|
|
}
|
|
}
|
|
|
|
/* Move remaining bytes into internal buffer. */
|
|
if (len > 0)
|
|
{
|
|
size_t left_over = ctx->buflen;
|
|
|
|
memcpy(&ctx->buffer[left_over], buffer, len);
|
|
left_over += len;
|
|
if (left_over >= 64)
|
|
{
|
|
rb_sha256_process_block(ctx->buffer, 64, ctx);
|
|
left_over -= 64;
|
|
memcpy(ctx->buffer, &ctx->buffer[64], left_over);
|
|
}
|
|
ctx->buflen = left_over;
|
|
}
|
|
}
|
|
|
|
|
|
/* Define our magic string to mark salt for SHA256 "encryption"
|
|
replacement. */
|
|
static const char sha256_salt_prefix[] = "$5$";
|
|
|
|
/* Prefix for optional rounds specification. */
|
|
static const char sha256_rounds_prefix[] = "rounds=";
|
|
|
|
/* Maximum salt string length. */
|
|
#define SHA256_SALT_LEN_MAX 16
|
|
/* Default number of rounds if not explicitly specified. */
|
|
#define SHA256_ROUNDS_DEFAULT 5000
|
|
/* Minimum number of rounds. */
|
|
#define SHA256_ROUNDS_MIN 1000
|
|
/* Maximum number of rounds. */
|
|
#define SHA256_ROUNDS_MAX 999999999
|
|
|
|
static char *rb_sha256_crypt_r(const char *key, const char *salt, char *buffer, int buflen)
|
|
{
|
|
unsigned char alt_result[32] __attribute__ ((__aligned__(__alignof__(uint32_t))));
|
|
unsigned char temp_result[32] __attribute__ ((__aligned__(__alignof__(uint32_t))));
|
|
struct sha256_ctx ctx;
|
|
struct sha256_ctx alt_ctx;
|
|
size_t salt_len;
|
|
size_t key_len;
|
|
size_t cnt;
|
|
char *cp;
|
|
char *copied_key = NULL;
|
|
char *copied_salt = NULL;
|
|
char *p_bytes;
|
|
char *s_bytes;
|
|
/* Default number of rounds. */
|
|
size_t rounds = SHA256_ROUNDS_DEFAULT;
|
|
int rounds_custom = 0;
|
|
|
|
/* Find beginning of salt string. The prefix should normally always
|
|
be present. Just in case it is not. */
|
|
if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0)
|
|
/* Skip salt prefix. */
|
|
salt += sizeof(sha256_salt_prefix) - 1;
|
|
|
|
if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1) == 0)
|
|
{
|
|
const char *num = salt + sizeof(sha256_rounds_prefix) - 1;
|
|
char *endp;
|
|
unsigned long int srounds = strtoul(num, &endp, 10);
|
|
if (*endp == '$')
|
|
{
|
|
salt = endp + 1;
|
|
rounds = MAX(SHA256_ROUNDS_MIN, MIN(srounds, SHA256_ROUNDS_MAX));
|
|
rounds_custom = 1;
|
|
}
|
|
}
|
|
|
|
salt_len = MIN(strcspn(salt, "$"), SHA256_SALT_LEN_MAX);
|
|
key_len = strlen(key);
|
|
|
|
if ((key - (char *)0) % __alignof__(uint32_t) != 0)
|
|
{
|
|
char *tmp = (char *)alloca(key_len + __alignof__(uint32_t));
|
|
key = copied_key =
|
|
memcpy(tmp + __alignof__(uint32_t)
|
|
- (tmp - (char *)0) % __alignof__(uint32_t), key, key_len);
|
|
}
|
|
|
|
if ((salt - (char *)0) % __alignof__(uint32_t) != 0)
|
|
{
|
|
char *tmp = (char *)alloca(salt_len + __alignof__(uint32_t));
|
|
salt = copied_salt =
|
|
memcpy(tmp + __alignof__(uint32_t)
|
|
- (tmp - (char *)0) % __alignof__(uint32_t), salt, salt_len);
|
|
}
|
|
|
|
/* Prepare for the real work. */
|
|
rb_sha256_init_ctx(&ctx);
|
|
|
|
/* Add the key string. */
|
|
rb_sha256_process_bytes(key, key_len, &ctx);
|
|
|
|
/* The last part is the salt string. This must be at most 16
|
|
characters and it ends at the first `$' character (for
|
|
compatibility with existing implementations). */
|
|
rb_sha256_process_bytes(salt, salt_len, &ctx);
|
|
|
|
|
|
/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
|
|
final result will be added to the first context. */
|
|
rb_sha256_init_ctx(&alt_ctx);
|
|
|
|
/* Add key. */
|
|
rb_sha256_process_bytes(key, key_len, &alt_ctx);
|
|
|
|
/* Add salt. */
|
|
rb_sha256_process_bytes(salt, salt_len, &alt_ctx);
|
|
|
|
/* Add key again. */
|
|
rb_sha256_process_bytes(key, key_len, &alt_ctx);
|
|
|
|
/* Now get result of this (32 bytes) and add it to the other
|
|
context. */
|
|
rb_sha256_finish_ctx(&alt_ctx, alt_result);
|
|
|
|
/* Add for any character in the key one byte of the alternate sum. */
|
|
for (cnt = key_len; cnt > 32; cnt -= 32)
|
|
rb_sha256_process_bytes(alt_result, 32, &ctx);
|
|
rb_sha256_process_bytes(alt_result, cnt, &ctx);
|
|
|
|
/* Take the binary representation of the length of the key and for every
|
|
1 add the alternate sum, for every 0 the key. */
|
|
for (cnt = key_len; cnt > 0; cnt >>= 1)
|
|
if ((cnt & 1) != 0)
|
|
rb_sha256_process_bytes(alt_result, 32, &ctx);
|
|
else
|
|
rb_sha256_process_bytes(key, key_len, &ctx);
|
|
|
|
/* Create intermediate result. */
|
|
rb_sha256_finish_ctx(&ctx, alt_result);
|
|
|
|
/* Start computation of P byte sequence. */
|
|
rb_sha256_init_ctx(&alt_ctx);
|
|
|
|
/* For every character in the password add the entire password. */
|
|
for (cnt = 0; cnt < key_len; ++cnt)
|
|
rb_sha256_process_bytes(key, key_len, &alt_ctx);
|
|
|
|
/* Finish the digest. */
|
|
rb_sha256_finish_ctx(&alt_ctx, temp_result);
|
|
|
|
/* Create byte sequence P. */
|
|
cp = p_bytes = alloca(key_len);
|
|
for (cnt = key_len; cnt >= 32; cnt -= 32)
|
|
{
|
|
memcpy(cp, temp_result, 32);
|
|
cp += 32;
|
|
}
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
/* Start computation of S byte sequence. */
|
|
rb_sha256_init_ctx(&alt_ctx);
|
|
|
|
/* For every character in the password add the entire password. */
|
|
for (cnt = 0; cnt < (size_t)(16 + alt_result[0]); ++cnt)
|
|
rb_sha256_process_bytes(salt, salt_len, &alt_ctx);
|
|
|
|
/* Finish the digest. */
|
|
rb_sha256_finish_ctx(&alt_ctx, temp_result);
|
|
|
|
/* Create byte sequence S. */
|
|
cp = s_bytes = alloca(salt_len);
|
|
for (cnt = salt_len; cnt >= 32; cnt -= 32)
|
|
{
|
|
memcpy(cp, temp_result, 32);
|
|
cp += 32;
|
|
}
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
/* Repeatedly run the collected hash value through SHA256 to burn
|
|
CPU cycles. */
|
|
for (cnt = 0; cnt < rounds; ++cnt)
|
|
{
|
|
/* New context. */
|
|
rb_sha256_init_ctx(&ctx);
|
|
|
|
/* Add key or last result. */
|
|
if ((cnt & 1) != 0)
|
|
rb_sha256_process_bytes(p_bytes, key_len, &ctx);
|
|
else
|
|
rb_sha256_process_bytes(alt_result, 32, &ctx);
|
|
|
|
/* Add salt for numbers not divisible by 3. */
|
|
if (cnt % 3 != 0)
|
|
rb_sha256_process_bytes(s_bytes, salt_len, &ctx);
|
|
|
|
/* Add key for numbers not divisible by 7. */
|
|
if (cnt % 7 != 0)
|
|
rb_sha256_process_bytes(p_bytes, key_len, &ctx);
|
|
|
|
/* Add key or last result. */
|
|
if ((cnt & 1) != 0)
|
|
rb_sha256_process_bytes(alt_result, 32, &ctx);
|
|
else
|
|
rb_sha256_process_bytes(p_bytes, key_len, &ctx);
|
|
|
|
/* Create intermediate result. */
|
|
rb_sha256_finish_ctx(&ctx, alt_result);
|
|
}
|
|
|
|
/* Now we can construct the result string. It consists of three
|
|
parts. */
|
|
memset(buffer, '\0', MAX(0, buflen));
|
|
strncpy(buffer, sha256_salt_prefix, MAX(0, buflen));
|
|
if((cp = strchr(buffer, '\0')) == NULL)
|
|
cp = buffer + MAX(0, buflen);
|
|
buflen -= sizeof(sha256_salt_prefix) - 1;
|
|
|
|
if (rounds_custom)
|
|
{
|
|
int n = snprintf(cp, MAX(0, buflen), "%s%zu$",
|
|
sha256_rounds_prefix, rounds);
|
|
cp += n;
|
|
buflen -= n;
|
|
}
|
|
|
|
memset(cp, '\0', salt_len);
|
|
strncpy(cp, salt, MIN((size_t) MAX(0, buflen), salt_len));
|
|
if((cp = strchr(buffer, '\0')) == NULL)
|
|
cp += salt_len;
|
|
buflen -= MIN((size_t) MAX(0, buflen), salt_len);
|
|
|
|
if (buflen > 0)
|
|
{
|
|
*cp++ = '$';
|
|
--buflen;
|
|
}
|
|
|
|
b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4);
|
|
b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4);
|
|
b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4);
|
|
b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4);
|
|
b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4);
|
|
b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4);
|
|
b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4);
|
|
b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4);
|
|
b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4);
|
|
b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4);
|
|
b64_from_24bit(0, alt_result[31], alt_result[30], 3);
|
|
if (buflen <= 0)
|
|
{
|
|
errno = ERANGE;
|
|
buffer = NULL;
|
|
}
|
|
else
|
|
*cp = '\0'; /* Terminate the string. */
|
|
|
|
/* Clear the buffer for the intermediate result so that people
|
|
attaching to processes or reading core dumps cannot get any
|
|
information. We do it in this way to clear correct_words[]
|
|
inside the SHA256 implementation as well. */
|
|
rb_sha256_init_ctx(&ctx);
|
|
rb_sha256_finish_ctx(&ctx, alt_result);
|
|
memset(temp_result, '\0', sizeof(temp_result));
|
|
memset(p_bytes, '\0', key_len);
|
|
memset(s_bytes, '\0', salt_len);
|
|
memset(&ctx, '\0', sizeof(ctx));
|
|
memset(&alt_ctx, '\0', sizeof(alt_ctx));
|
|
if (copied_key != NULL)
|
|
memset(copied_key, '\0', key_len);
|
|
if (copied_salt != NULL)
|
|
memset(copied_salt, '\0', salt_len);
|
|
|
|
return buffer;
|
|
}
|
|
|
|
|
|
/* This entry point is equivalent to the `crypt' function in Unix
|
|
libcs. */
|
|
static char *rb_sha256_crypt(const char *key, const char *salt)
|
|
{
|
|
/* We don't want to have an arbitrary limit in the size of the
|
|
password. We can compute an upper bound for the size of the
|
|
result in advance and so we can prepare the buffer we pass to
|
|
`rb_sha256_crypt_r'. */
|
|
static char *buffer;
|
|
static int buflen;
|
|
int needed = (sizeof(sha256_salt_prefix) - 1
|
|
+ sizeof(sha256_rounds_prefix) + 9 + 1 + strlen(salt) + 1 + 43 + 1);
|
|
|
|
char *new_buffer = (char *)malloc(needed);
|
|
if (new_buffer == NULL)
|
|
return NULL;
|
|
|
|
buffer = new_buffer;
|
|
buflen = needed;
|
|
|
|
return rb_sha256_crypt_r(key, salt, buffer, buflen);
|
|
}
|
|
|
|
/* Structure to save state of computation between the single steps. */
|
|
struct sha512_ctx
|
|
{
|
|
uint64_t H[8];
|
|
|
|
uint64_t total[2];
|
|
uint64_t buflen;
|
|
char buffer[256]; /* NB: always correctly aligned for uint64_t. */
|
|
};
|
|
|
|
|
|
#ifndef WORDS_BIGENDIAN
|
|
# define SHA512_SWAP(n) \
|
|
(((n) << 56) \
|
|
| (((n) & 0xff00) << 40) \
|
|
| (((n) & 0xff0000) << 24) \
|
|
| (((n) & 0xff000000) << 8) \
|
|
| (((n) >> 8) & 0xff000000) \
|
|
| (((n) >> 24) & 0xff0000) \
|
|
| (((n) >> 40) & 0xff00) \
|
|
| ((n) >> 56))
|
|
#else
|
|
# define SHA512_SWAP(n) (n)
|
|
#endif
|
|
|
|
|
|
/* This array contains the bytes used to pad the buffer to the next
|
|
64-byte boundary. (FIPS 180-2:5.1.2) */
|
|
static const unsigned char SHA512_fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ };
|
|
|
|
|
|
/* Constants for SHA512 from FIPS 180-2:4.2.3. */
|
|
static const uint64_t SHA512_K[80] = {
|
|
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
|
|
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
|
|
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
|
|
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
|
|
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
|
|
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
|
|
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
|
|
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
|
|
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
|
|
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
|
|
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
|
|
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
|
|
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
|
|
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
|
|
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
|
|
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
|
|
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
|
|
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
|
|
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
|
|
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
|
|
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
|
|
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
|
|
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
|
|
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
|
|
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
|
|
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
|
|
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
|
|
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
|
|
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
|
|
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
|
|
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
|
|
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
|
|
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
|
|
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
|
|
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
|
|
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
|
|
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
|
|
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
|
|
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
|
|
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
|
|
};
|
|
|
|
|
|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
It is assumed that LEN % 128 == 0. */
|
|
static void rb_sha512_process_block(const void *buffer, size_t len, struct sha512_ctx *ctx)
|
|
{
|
|
const uint64_t *words = buffer;
|
|
size_t nwords = len / sizeof(uint64_t);
|
|
uint64_t a = ctx->H[0];
|
|
uint64_t b = ctx->H[1];
|
|
uint64_t c = ctx->H[2];
|
|
uint64_t d = ctx->H[3];
|
|
uint64_t e = ctx->H[4];
|
|
uint64_t f = ctx->H[5];
|
|
uint64_t g = ctx->H[6];
|
|
uint64_t h = ctx->H[7];
|
|
|
|
/* First increment the byte count. FIPS 180-2 specifies the possible
|
|
length of the file up to 2^128 bits. Here we only compute the
|
|
number of bytes. Do a double word increment. */
|
|
ctx->total[0] += len;
|
|
if (ctx->total[0] < len)
|
|
++ctx->total[1];
|
|
|
|
/* Process all bytes in the buffer with 128 bytes in each round of
|
|
the loop. */
|
|
while (nwords > 0)
|
|
{
|
|
uint64_t W[80];
|
|
uint64_t a_save = a;
|
|
uint64_t b_save = b;
|
|
uint64_t c_save = c;
|
|
uint64_t d_save = d;
|
|
uint64_t e_save = e;
|
|
uint64_t f_save = f;
|
|
uint64_t g_save = g;
|
|
uint64_t h_save = h;
|
|
unsigned int t;
|
|
|
|
/* Operators defined in FIPS 180-2:4.1.2. */
|
|
#define SHA512_Ch(x, y, z) ((x & y) ^ (~x & z))
|
|
#define SHA512_Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
|
|
#define SHA512_S0(x) (SHA512_CYCLIC (x, 28) ^ SHA512_CYCLIC (x, 34) ^ SHA512_CYCLIC (x, 39))
|
|
#define SHA512_S1(x) (SHA512_CYCLIC (x, 14) ^ SHA512_CYCLIC (x, 18) ^ SHA512_CYCLIC (x, 41))
|
|
#define SHA512_R0(x) (SHA512_CYCLIC (x, 1) ^ SHA512_CYCLIC (x, 8) ^ (x >> 7))
|
|
#define SHA512_R1(x) (SHA512_CYCLIC (x, 19) ^ SHA512_CYCLIC (x, 61) ^ (x >> 6))
|
|
|
|
/* It is unfortunate that C does not provide an operator for
|
|
cyclic rotation. Hope the C compiler is smart enough. */
|
|
#define SHA512_CYCLIC(w, s) ((w >> s) | (w << (64 - s)))
|
|
|
|
/* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
|
|
for (t = 0; t < 16; ++t)
|
|
{
|
|
W[t] = SHA512_SWAP(*words);
|
|
++words;
|
|
}
|
|
for (t = 16; t < 80; ++t)
|
|
W[t] = SHA512_R1(W[t - 2]) + W[t - 7] + SHA512_R0(W[t - 15]) + W[t - 16];
|
|
|
|
/* The actual computation according to FIPS 180-2:6.3.2 step 3. */
|
|
for (t = 0; t < 80; ++t)
|
|
{
|
|
uint64_t T1 = h + SHA512_S1(e) + SHA512_Ch(e, f, g) + SHA512_K[t] + W[t];
|
|
uint64_t T2 = SHA512_S0(a) + SHA512_Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
}
|
|
|
|
/* Add the starting values of the context according to FIPS 180-2:6.3.2
|
|
step 4. */
|
|
a += a_save;
|
|
b += b_save;
|
|
c += c_save;
|
|
d += d_save;
|
|
e += e_save;
|
|
f += f_save;
|
|
g += g_save;
|
|
h += h_save;
|
|
|
|
/* Prepare for the next round. */
|
|
nwords -= 16;
|
|
}
|
|
|
|
/* Put checksum in context given as argument. */
|
|
ctx->H[0] = a;
|
|
ctx->H[1] = b;
|
|
ctx->H[2] = c;
|
|
ctx->H[3] = d;
|
|
ctx->H[4] = e;
|
|
ctx->H[5] = f;
|
|
ctx->H[6] = g;
|
|
ctx->H[7] = h;
|
|
}
|
|
|
|
|
|
/* Initialize structure containing state of computation.
|
|
(FIPS 180-2:5.3.3) */
|
|
static void rb_sha512_init_ctx(struct sha512_ctx *ctx)
|
|
{
|
|
ctx->H[0] = 0x6a09e667f3bcc908ULL;
|
|
ctx->H[1] = 0xbb67ae8584caa73bULL;
|
|
ctx->H[2] = 0x3c6ef372fe94f82bULL;
|
|
ctx->H[3] = 0xa54ff53a5f1d36f1ULL;
|
|
ctx->H[4] = 0x510e527fade682d1ULL;
|
|
ctx->H[5] = 0x9b05688c2b3e6c1fULL;
|
|
ctx->H[6] = 0x1f83d9abfb41bd6bULL;
|
|
ctx->H[7] = 0x5be0cd19137e2179ULL;
|
|
|
|
ctx->total[0] = ctx->total[1] = 0;
|
|
ctx->buflen = 0;
|
|
}
|
|
|
|
|
|
/* Process the remaining bytes in the internal buffer and the usual
|
|
prolog according to the standard and write the result to RESBUF.
|
|
|
|
IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
aligned for a 32 bits value. */
|
|
static void *rb_sha512_finish_ctx(struct sha512_ctx *ctx, void *resbuf)
|
|
{
|
|
/* Take yet unprocessed bytes into account. */
|
|
uint64_t bytes = ctx->buflen, *ptr;
|
|
size_t pad;
|
|
unsigned int i;
|
|
|
|
/* Now count remaining bytes. */
|
|
ctx->total[0] += bytes;
|
|
if (ctx->total[0] < bytes)
|
|
++ctx->total[1];
|
|
|
|
pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes;
|
|
memcpy(&ctx->buffer[bytes], SHA512_fillbuf, pad);
|
|
|
|
/* Put the 128-bit file length in *bits* at the end of the buffer. */
|
|
ptr = (uint64_t *)&ctx->buffer[bytes + pad + 8]; /* Avoid warnings about strict aliasing */
|
|
*ptr = SHA512_SWAP(ctx->total[0] << 3);
|
|
|
|
ptr = (uint64_t *)&ctx->buffer[bytes + pad];
|
|
*ptr = SHA512_SWAP((ctx->total[1] << 3) | (ctx->total[0] >> 61));
|
|
|
|
/* Process last bytes. */
|
|
rb_sha512_process_block(ctx->buffer, bytes + pad + 16, ctx);
|
|
|
|
/* Put result from CTX in first 64 bytes following RESBUF. */
|
|
for (i = 0; i < 8; ++i)
|
|
((uint64_t *) resbuf)[i] = SHA512_SWAP(ctx->H[i]);
|
|
|
|
return resbuf;
|
|
}
|
|
|
|
|
|
static void rb_sha512_process_bytes(const void *buffer, size_t len, struct sha512_ctx *ctx)
|
|
{
|
|
/* When we already have some bits in our internal buffer concatenate
|
|
both inputs first. */
|
|
if (ctx->buflen != 0)
|
|
{
|
|
size_t left_over = ctx->buflen;
|
|
size_t add = 256 - left_over > len ? len : 256 - left_over;
|
|
|
|
memcpy(&ctx->buffer[left_over], buffer, add);
|
|
ctx->buflen += add;
|
|
|
|
if (ctx->buflen > 128)
|
|
{
|
|
rb_sha512_process_block(ctx->buffer, ctx->buflen & ~127, ctx);
|
|
|
|
ctx->buflen &= 127;
|
|
/* The regions in the following copy operation cannot overlap. */
|
|
memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~127], ctx->buflen);
|
|
}
|
|
|
|
buffer = (const char *)buffer + add;
|
|
len -= add;
|
|
}
|
|
|
|
/* Process available complete blocks. */
|
|
if (len >= 128)
|
|
{
|
|
#if !_STRING_ARCH_unaligned
|
|
/* To check alignment gcc has an appropriate operator. Other
|
|
compilers don't. */
|
|
# if __GNUC__ >= 2
|
|
# define SHA512_UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0)
|
|
# else
|
|
# define SHA512_UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint64_t) != 0)
|
|
# endif
|
|
if (SHA512_UNALIGNED_P(buffer))
|
|
while (len > 128)
|
|
{
|
|
rb_sha512_process_block(memcpy(ctx->buffer, buffer, 128), 128, ctx);
|
|
buffer = (const char *)buffer + 128;
|
|
len -= 128;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
rb_sha512_process_block(buffer, len & ~127, ctx);
|
|
buffer = (const char *)buffer + (len & ~127);
|
|
len &= 127;
|
|
}
|
|
}
|
|
|
|
/* Move remaining bytes into internal buffer. */
|
|
if (len > 0)
|
|
{
|
|
size_t left_over = ctx->buflen;
|
|
|
|
memcpy(&ctx->buffer[left_over], buffer, len);
|
|
left_over += len;
|
|
if (left_over >= 128)
|
|
{
|
|
rb_sha512_process_block(ctx->buffer, 128, ctx);
|
|
left_over -= 128;
|
|
memcpy(ctx->buffer, &ctx->buffer[128], left_over);
|
|
}
|
|
ctx->buflen = left_over;
|
|
}
|
|
}
|
|
|
|
|
|
/* Define our magic string to mark salt for SHA512 "encryption"
|
|
replacement. */
|
|
static const char sha512_salt_prefix[] = "$6$";
|
|
|
|
/* Prefix for optional rounds specification. */
|
|
static const char sha512_rounds_prefix[] = "rounds=";
|
|
|
|
/* Maximum salt string length. */
|
|
#define SHA512_SALT_LEN_MAX 16
|
|
/* Default number of rounds if not explicitly specified. */
|
|
#define SHA512_ROUNDS_DEFAULT 5000
|
|
/* Minimum number of rounds. */
|
|
#define SHA512_ROUNDS_MIN 1000
|
|
/* Maximum number of rounds. */
|
|
#define SHA512_ROUNDS_MAX 999999999
|
|
|
|
static char *rb_sha512_crypt_r(const char *key, const char *salt, char *buffer, int buflen)
|
|
{
|
|
unsigned char alt_result[64] __attribute__ ((__aligned__(__alignof__(uint64_t))));
|
|
unsigned char temp_result[64] __attribute__ ((__aligned__(__alignof__(uint64_t))));
|
|
struct sha512_ctx ctx;
|
|
struct sha512_ctx alt_ctx;
|
|
size_t salt_len;
|
|
size_t key_len;
|
|
size_t cnt;
|
|
char *cp;
|
|
char *copied_key = NULL;
|
|
char *copied_salt = NULL;
|
|
char *p_bytes;
|
|
char *s_bytes;
|
|
/* Default number of rounds. */
|
|
size_t rounds = SHA512_ROUNDS_DEFAULT;
|
|
int rounds_custom = 0;
|
|
|
|
/* Find beginning of salt string. The prefix should normally always
|
|
be present. Just in case it is not. */
|
|
if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0)
|
|
/* Skip salt prefix. */
|
|
salt += sizeof(sha512_salt_prefix) - 1;
|
|
|
|
if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1) == 0)
|
|
{
|
|
const char *num = salt + sizeof(sha512_rounds_prefix) - 1;
|
|
char *endp;
|
|
unsigned long int srounds = strtoul(num, &endp, 10);
|
|
if (*endp == '$')
|
|
{
|
|
salt = endp + 1;
|
|
rounds = MAX(SHA512_ROUNDS_MIN, MIN(srounds, SHA512_ROUNDS_MAX));
|
|
rounds_custom = 1;
|
|
}
|
|
}
|
|
|
|
salt_len = MIN(strcspn(salt, "$"), SHA512_SALT_LEN_MAX);
|
|
key_len = strlen(key);
|
|
|
|
if ((key - (char *)0) % __alignof__(uint64_t) != 0)
|
|
{
|
|
char *tmp = (char *)alloca(key_len + __alignof__(uint64_t));
|
|
key = copied_key =
|
|
memcpy(tmp + __alignof__(uint64_t)
|
|
- (tmp - (char *)0) % __alignof__(uint64_t), key, key_len);
|
|
}
|
|
|
|
if ((salt - (char *)0) % __alignof__(uint64_t) != 0)
|
|
{
|
|
char *tmp = (char *)alloca(salt_len + __alignof__(uint64_t));
|
|
salt = copied_salt =
|
|
memcpy(tmp + __alignof__(uint64_t)
|
|
- (tmp - (char *)0) % __alignof__(uint64_t), salt, salt_len);
|
|
}
|
|
|
|
/* Prepare for the real work. */
|
|
rb_sha512_init_ctx(&ctx);
|
|
|
|
/* Add the key string. */
|
|
rb_sha512_process_bytes(key, key_len, &ctx);
|
|
|
|
/* The last part is the salt string. This must be at most 16
|
|
characters and it ends at the first `$' character (for
|
|
compatibility with existing implementations). */
|
|
rb_sha512_process_bytes(salt, salt_len, &ctx);
|
|
|
|
|
|
/* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The
|
|
final result will be added to the first context. */
|
|
rb_sha512_init_ctx(&alt_ctx);
|
|
|
|
/* Add key. */
|
|
rb_sha512_process_bytes(key, key_len, &alt_ctx);
|
|
|
|
/* Add salt. */
|
|
rb_sha512_process_bytes(salt, salt_len, &alt_ctx);
|
|
|
|
/* Add key again. */
|
|
rb_sha512_process_bytes(key, key_len, &alt_ctx);
|
|
|
|
/* Now get result of this (64 bytes) and add it to the other
|
|
context. */
|
|
rb_sha512_finish_ctx(&alt_ctx, alt_result);
|
|
|
|
/* Add for any character in the key one byte of the alternate sum. */
|
|
for (cnt = key_len; cnt > 64; cnt -= 64)
|
|
rb_sha512_process_bytes(alt_result, 64, &ctx);
|
|
rb_sha512_process_bytes(alt_result, cnt, &ctx);
|
|
|
|
/* Take the binary representation of the length of the key and for every
|
|
1 add the alternate sum, for every 0 the key. */
|
|
for (cnt = key_len; cnt > 0; cnt >>= 1)
|
|
if ((cnt & 1) != 0)
|
|
rb_sha512_process_bytes(alt_result, 64, &ctx);
|
|
else
|
|
rb_sha512_process_bytes(key, key_len, &ctx);
|
|
|
|
/* Create intermediate result. */
|
|
rb_sha512_finish_ctx(&ctx, alt_result);
|
|
|
|
/* Start computation of P byte sequence. */
|
|
rb_sha512_init_ctx(&alt_ctx);
|
|
|
|
/* For every character in the password add the entire password. */
|
|
for (cnt = 0; cnt < key_len; ++cnt)
|
|
rb_sha512_process_bytes(key, key_len, &alt_ctx);
|
|
|
|
/* Finish the digest. */
|
|
rb_sha512_finish_ctx(&alt_ctx, temp_result);
|
|
|
|
/* Create byte sequence P. */
|
|
cp = p_bytes = alloca(key_len);
|
|
for (cnt = key_len; cnt >= 64; cnt -= 64)
|
|
{
|
|
memcpy(cp, temp_result, 64);
|
|
cp += 64;
|
|
}
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
/* Start computation of S byte sequence. */
|
|
rb_sha512_init_ctx(&alt_ctx);
|
|
|
|
/* For every character in the password add the entire password. */
|
|
for (cnt = 0; cnt < (size_t)(16 + alt_result[0]); ++cnt)
|
|
rb_sha512_process_bytes(salt, salt_len, &alt_ctx);
|
|
|
|
/* Finish the digest. */
|
|
rb_sha512_finish_ctx(&alt_ctx, temp_result);
|
|
|
|
/* Create byte sequence S. */
|
|
cp = s_bytes = alloca(salt_len);
|
|
for (cnt = salt_len; cnt >= 64; cnt -= 64)
|
|
{
|
|
memcpy(cp, temp_result, 64);
|
|
cp += 64;
|
|
}
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
/* Repeatedly run the collected hash value through SHA512 to burn
|
|
CPU cycles. */
|
|
for (cnt = 0; cnt < rounds; ++cnt)
|
|
{
|
|
/* New context. */
|
|
rb_sha512_init_ctx(&ctx);
|
|
|
|
/* Add key or last result. */
|
|
if ((cnt & 1) != 0)
|
|
rb_sha512_process_bytes(p_bytes, key_len, &ctx);
|
|
else
|
|
rb_sha512_process_bytes(alt_result, 64, &ctx);
|
|
|
|
/* Add salt for numbers not divisible by 3. */
|
|
if (cnt % 3 != 0)
|
|
rb_sha512_process_bytes(s_bytes, salt_len, &ctx);
|
|
|
|
/* Add key for numbers not divisible by 7. */
|
|
if (cnt % 7 != 0)
|
|
rb_sha512_process_bytes(p_bytes, key_len, &ctx);
|
|
|
|
/* Add key or last result. */
|
|
if ((cnt & 1) != 0)
|
|
rb_sha512_process_bytes(alt_result, 64, &ctx);
|
|
else
|
|
rb_sha512_process_bytes(p_bytes, key_len, &ctx);
|
|
|
|
/* Create intermediate result. */
|
|
rb_sha512_finish_ctx(&ctx, alt_result);
|
|
}
|
|
|
|
/* Now we can construct the result string. It consists of three
|
|
parts. */
|
|
memset(buffer, '\0', MAX(0, buflen));
|
|
strncpy(buffer, sha512_salt_prefix, MAX(0, buflen));
|
|
if((cp = strchr(buffer, '\0')) == NULL)
|
|
cp = buffer + MAX(0, buflen);
|
|
buflen -= sizeof(sha512_salt_prefix) - 1;
|
|
|
|
if (rounds_custom)
|
|
{
|
|
int n = snprintf(cp, MAX(0, buflen), "%s%zu$",
|
|
sha512_rounds_prefix, rounds);
|
|
cp += n;
|
|
buflen -= n;
|
|
}
|
|
|
|
memset(cp, '\0', MIN((size_t) MAX(0, buflen), salt_len));
|
|
strncpy(cp, salt, MIN((size_t) MAX(0, buflen), salt_len));
|
|
if((cp = strchr(buffer, '\0')) == NULL)
|
|
cp = buffer + salt_len;
|
|
buflen -= MIN((size_t) MAX(0, buflen), salt_len);
|
|
|
|
if (buflen > 0)
|
|
{
|
|
*cp++ = '$';
|
|
--buflen;
|
|
}
|
|
|
|
b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4);
|
|
b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4);
|
|
b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4);
|
|
b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4);
|
|
b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4);
|
|
b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4);
|
|
b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4);
|
|
b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4);
|
|
b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4);
|
|
b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4);
|
|
b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4);
|
|
b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4);
|
|
b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4);
|
|
b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4);
|
|
b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4);
|
|
b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4);
|
|
b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4);
|
|
b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4);
|
|
b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4);
|
|
b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4);
|
|
b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4);
|
|
b64_from_24bit(0, 0, alt_result[63], 2);
|
|
|
|
if (buflen <= 0)
|
|
{
|
|
errno = ERANGE;
|
|
buffer = NULL;
|
|
}
|
|
else
|
|
*cp = '\0'; /* Terminate the string. */
|
|
|
|
/* Clear the buffer for the intermediate result so that people
|
|
attaching to processes or reading core dumps cannot get any
|
|
information. We do it in this way to clear correct_words[]
|
|
inside the SHA512 implementation as well. */
|
|
rb_sha512_init_ctx(&ctx);
|
|
rb_sha512_finish_ctx(&ctx, alt_result);
|
|
memset(temp_result, '\0', sizeof(temp_result));
|
|
memset(p_bytes, '\0', key_len);
|
|
memset(s_bytes, '\0', salt_len);
|
|
memset(&ctx, '\0', sizeof(ctx));
|
|
memset(&alt_ctx, '\0', sizeof(alt_ctx));
|
|
if (copied_key != NULL)
|
|
memset(copied_key, '\0', key_len);
|
|
if (copied_salt != NULL)
|
|
memset(copied_salt, '\0', salt_len);
|
|
|
|
return buffer;
|
|
}
|
|
|
|
|
|
/* This entry point is equivalent to the `crypt' function in Unix
|
|
libcs. */
|
|
static char *rb_sha512_crypt(const char *key, const char *salt)
|
|
{
|
|
/* We don't want to have an arbitrary limit in the size of the
|
|
password. We can compute an upper bound for the size of the
|
|
result in advance and so we can prepare the buffer we pass to
|
|
`rb_sha512_crypt_r'. */
|
|
static char *buffer;
|
|
static int buflen;
|
|
int needed = (sizeof(sha512_salt_prefix) - 1
|
|
+ sizeof(sha512_rounds_prefix) + 9 + 1 + strlen(salt) + 1 + 86 + 1);
|
|
|
|
if (buflen < needed)
|
|
{
|
|
char *new_buffer = (char *)realloc(buffer, needed);
|
|
if (new_buffer == NULL)
|
|
return NULL;
|
|
|
|
buffer = new_buffer;
|
|
buflen = needed;
|
|
}
|
|
|
|
return rb_sha512_crypt_r(key, salt, buffer, buflen);
|
|
}
|