0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-07 06:18:56 +01:00
construct/ircd/net.cc

2589 lines
57 KiB
C++

/*
* Copyright (C) 2017 Charybdis Development Team
* Copyright (C) 2017 Jason Volk <jason@zemos.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice is present in all copies.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <ircd/asio.h>
/// Internal pimpl wrapping an instance of boost's resolver service. This
/// class is a singleton with the instance as a static member of
/// ircd::net::resolve. This service requires a valid ircd::ios which is not
/// available during static initialization; instead it is tied to net::init.
struct ircd::net::resolver
:std::unique_ptr<ip::tcp::resolver>
{
resolver() = default;
~resolver() noexcept = default;
};
///////////////////////////////////////////////////////////////////////////////
//
// net/net.h
//
/// Network subsystem log facility with dedicated SNOMASK.
struct ircd::log::log
ircd::net::log
{
"net", 'N'
};
/// Network subsystem initialization
ircd::net::init::init()
{
assert(ircd::ios);
resolve::resolver.reset(new ip::tcp::resolver{*ircd::ios});
sslv23_client.set_verify_mode(asio::ssl::verify_peer);
sslv23_client.set_default_verify_paths();
}
/// Network subsystem shutdown
ircd::net::init::~init()
{
resolve::resolver.reset(nullptr);
}
ircd::const_raw_buffer
ircd::net::peer_cert_der(const mutable_raw_buffer &buf,
const socket &socket)
{
const SSL &ssl(socket);
const X509 &cert{openssl::peer_cert(ssl)};
return openssl::i2d(buf, cert);
}
ircd::net::ipport
ircd::net::remote_ipport(const socket &socket)
noexcept try
{
const auto &ep(socket.remote());
return make_ipport(ep);
}
catch(...)
{
return {};
}
ircd::net::ipport
ircd::net::local_ipport(const socket &socket)
noexcept try
{
const auto &ep(socket.local());
return make_ipport(ep);
}
catch(...)
{
return {};
}
size_t
ircd::net::available(const socket &socket)
noexcept
{
const ip::tcp::socket &sd(socket);
boost::system::error_code ec;
return sd.available(ec);
}
size_t
ircd::net::readable(const socket &socket)
{
ip::tcp::socket &sd(const_cast<net::socket &>(socket));
ip::tcp::socket::bytes_readable command{true};
sd.io_control(command);
return command.get();
}
bool
ircd::net::connected(const socket &socket)
noexcept try
{
const ip::tcp::socket &sd(socket);
return sd.is_open();
}
catch(...)
{
return false;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/write.h
//
void
ircd::net::flush(socket &socket)
{
if(nodelay(socket))
return;
nodelay(socket, true);
nodelay(socket, false);
}
/// Yields ircd::ctx until all buffers are sent.
///
/// This is blocking behavior; use this if the following are true:
///
/// * You put a timer on the socket so if the remote slows us down the data
/// will not occupy the daemon's memory for a long time. Remember, *all* of
/// the data will be sitting in memory even after some of it was ack'ed by
/// the remote.
///
/// * You are willing to dedicate the ircd::ctx to sending all the data to
/// the remote. The ircd::ctx will be yielding until everything is sent.
///
size_t
ircd::net::write_all(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_all(buffers);
}
/// Writes as much as possible until one of the following is true:
///
/// * The kernel buffer for the socket is full.
/// * The user buffer is exhausted.
///
/// This is non-blocking behavior. No yielding will take place; no timer is
/// needed. Multiple syscalls will be composed to fulfill the above points.
///
size_t
ircd::net::write_any(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_any(buffers);
}
/// Writes one "unit" of data or less; never more. The size of that unit
/// is determined by the system. Less may be written if one of the following
/// is true:
///
/// * The kernel buffer for the socket is full.
/// * The user buffer is exhausted.
///
/// If neither are true, more can be written using additional calls;
/// alternatively, use other variants of write_ for that.
///
/// This is non-blocking behavior. No yielding will take place; no timer is
/// needed. Only one syscall will occur.
///
size_t
ircd::net::write_one(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_one(buffers);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/read.h
//
/// Yields ircd::ctx until len bytes have been received and discarded from the
/// socket.
///
size_t
ircd::net::discard_all(socket &socket,
const size_t &len)
{
static char buffer[512] alignas(16);
size_t remain{len}; while(remain)
{
const mutable_buffer mb
{
buffer, std::min(remain, sizeof(buffer))
};
__builtin_prefetch(data(mb), 1, 0); // 1 = write, 0 = no cache
read_all(socket, mb);
}
return len;
}
/// Yields ircd::ctx until buffers are full.
///
/// Use this only if the following are true:
///
/// * You know the remote has made a guarantee to send you a specific amount
/// of data.
///
/// * You put a timer on the socket so that if the remote runs short this
/// call doesn't hang the ircd::ctx forever, otherwise it will until cancel.
///
/// * You are willing to dedicate the ircd::ctx to just this operation for
/// that amount of time.
///
size_t
ircd::net::read_all(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_all(buffers);
}
/// Yields ircd::ctx until remote has sent at least one frame. The buffers may
/// be filled with any amount of data depending on what has accumulated.
///
/// Use this if the following are true:
///
/// * You know there is data to be read; you can do this asynchronously with
/// other features of the socket. Otherwise this will hang the ircd::ctx.
///
/// * You are willing to dedicate the ircd::ctx to just this operation,
/// which is non-blocking if data is known to be available, but may be
/// blocking if this call is made in the blind.
///
size_t
ircd::net::read_any(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_any(buffers);
}
/// Reads one message or less in a single syscall. Non-blocking behavior.
///
/// This is intended for lowest-level/custom control and not preferred by
/// default.
///
size_t
ircd::net::read_one(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_one(buffers);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/wait.h
//
ircd::net::wait_opts
const ircd::net::wait_opts_default
{
};
/// Wait for socket to become "ready" using a ctx::future.
ircd::ctx::future<void>
ircd::net::wait(use_future_t,
socket &socket,
const wait_opts &wait_opts)
{
ctx::promise<void> p;
ctx::future<void> f{p};
wait(socket, wait_opts, [p(std::move(p))]
(std::exception_ptr eptr)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value();
});
return f;
}
/// Wait for socket to become "ready"; yields ircd::ctx returning code.
ircd::error_code
ircd::net::wait(nothrow_t,
socket &socket,
const wait_opts &wait_opts)
try
{
wait(socket, wait_opts);
return {};
}
catch(const boost::system::system_error &e)
{
return e.code();
}
/// Wait for socket to become "ready"; yields ircd::ctx; throws errors.
void
ircd::net::wait(socket &socket,
const wait_opts &wait_opts)
{
socket.wait(wait_opts);
}
/// Wait for socket to become "ready"; callback with exception_ptr
void
ircd::net::wait(socket &socket,
const wait_opts &wait_opts,
wait_callback_eptr callback)
{
socket.wait(wait_opts, std::move(callback));
}
void
ircd::net::wait(socket &socket,
const wait_opts &wait_opts,
wait_callback_ec callback)
{
socket.wait(wait_opts, std::move(callback));
}
ircd::string_view
ircd::net::reflect(const ready &type)
{
switch(type)
{
case ready::ANY: return "ANY"_sv;
case ready::READ: return "READ"_sv;
case ready::WRITE: return "WRITE"_sv;
case ready::ERROR: return "ERROR"_sv;
}
return "????"_sv;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/close.h
//
/// Static instance of default close options.
ircd::net::close_opts
const ircd::net::close_opts_default
{
};
/// Static helper callback which may be passed to the callback-based overload
/// of close(). This callback does nothing.
ircd::net::close_callback
const ircd::net::close_ignore{[]
(std::exception_ptr eptr)
{
return;
}};
ircd::ctx::future<void>
ircd::net::close(socket &socket,
const close_opts &opts)
{
ctx::promise<void> p;
ctx::future<void> f(p);
close(socket, opts, [p(std::move(p))]
(std::exception_ptr eptr)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value();
});
return f;
}
void
ircd::net::close(socket &socket,
const close_opts &opts,
close_callback callback)
{
socket.disconnect(opts, std::move(callback));
}
///////////////////////////////////////////////////////////////////////////////
//
// net/open.h
//
/// Open new socket with future-based report.
///
ircd::ctx::future<std::shared_ptr<ircd::net::socket>>
ircd::net::open(const open_opts &opts)
{
ctx::promise<std::shared_ptr<socket>> p;
ctx::future<std::shared_ptr<socket>> f(p);
auto s{std::make_shared<socket>()};
open(*s, opts, [s, p(std::move(p))]
(std::exception_ptr eptr)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value(s);
});
return f;
}
/// Open existing socket with callback-based report.
///
std::shared_ptr<ircd::net::socket>
ircd::net::open(const open_opts &opts,
open_callback handler)
{
auto s{std::make_shared<socket>()};
open(*s, opts, std::move(handler));
return s;
}
/// Open existing socket with callback-based report.
///
void
ircd::net::open(socket &socket,
const open_opts &opts,
open_callback handler)
{
auto complete{[s(shared_from(socket)), handler(std::move(handler))]
(std::exception_ptr eptr)
{
if(eptr)
close(*s, dc::RST);
handler(std::move(eptr));
}};
auto connector{[&socket, opts, complete(std::move(complete))]
(std::exception_ptr eptr, const ipport &ipport)
{
if(eptr)
return complete(std::move(eptr));
const auto ep{make_endpoint(ipport)};
socket.connect(ep, opts, std::move(complete));
}};
if(!opts.ipport)
resolve(opts.hostport, std::move(connector));
else
connector({}, opts.ipport);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/sopts.h
//
/// Construct sock_opts with the current options from socket argument
ircd::net::sock_opts::sock_opts(const socket &socket)
:blocking{net::blocking(socket)}
,nodelay{net::nodelay(socket)}
,keepalive{net::keepalive(socket)}
,linger{net::linger(socket)}
,read_bufsz{ssize_t(net::read_bufsz(socket))}
,write_bufsz{ssize_t(net::write_bufsz(socket))}
,read_lowat{ssize_t(net::read_lowat(socket))}
,write_lowat{ssize_t(net::write_lowat(socket))}
{
}
/// Updates the socket with provided options. Defaulted / -1'ed options are
/// ignored for updating.
void
ircd::net::set(socket &socket,
const sock_opts &opts)
{
if(opts.blocking != opts.IGN)
net::blocking(socket, opts.blocking);
if(opts.nodelay != opts.IGN)
net::nodelay(socket, opts.nodelay);
if(opts.keepalive != opts.IGN)
net::keepalive(socket, opts.keepalive);
if(opts.linger != opts.IGN)
net::linger(socket, opts.linger);
if(opts.read_bufsz != opts.IGN)
net::read_bufsz(socket, opts.read_bufsz);
if(opts.write_bufsz != opts.IGN)
net::write_bufsz(socket, opts.write_bufsz);
if(opts.read_lowat != opts.IGN)
net::read_lowat(socket, opts.read_lowat);
if(opts.write_lowat != opts.IGN)
net::write_lowat(socket, opts.write_lowat);
}
void
ircd::net::write_lowat(socket &socket,
const size_t &bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
ip::tcp::socket::send_low_watermark option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::read_lowat(socket &socket,
const size_t &bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
ip::tcp::socket::receive_low_watermark option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::write_bufsz(socket &socket,
const size_t &bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
ip::tcp::socket::send_buffer_size option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::read_bufsz(socket &socket,
const size_t &bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
ip::tcp::socket::receive_buffer_size option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::linger(socket &socket,
const time_t &t)
{
assert(t >= std::numeric_limits<int>::min());
assert(t <= std::numeric_limits<int>::max());
ip::tcp::socket::linger option
{
t >= 0, // ON / OFF boolean
t >= 0? int(t) : 0 // Uses 0 when OFF
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::keepalive(socket &socket,
const bool &b)
{
ip::tcp::socket::keep_alive option{b};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::nodelay(socket &socket,
const bool &b)
{
ip::tcp::no_delay option{b};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
/// Toggles the behavior of non-async asio calls.
///
/// This option affects very little in practice and only sets a flag in
/// userspace in asio, not an actual ioctl(). Specifically:
///
/// * All sockets are already set by asio to FIONBIO=1 no matter what, thus
/// nothing really blocks the event loop ever by default unless you try hard.
///
/// * All asio::async_ and sd.async_ and ssl.async_ calls will always do what
/// the synchronous/blocking alternative would have accomplished but using
/// the async methodology. i.e if a buffer is full you will always wait
/// asynchronously: async_write() will wait for everything, async_write_some()
/// will wait for something, etc -- but there will never be true non-blocking
/// _effective behavior_ from these calls.
///
/// * All asio non-async calls conduct blocking by (on linux) poll()'ing the
/// socket to get a real kernel-blocking operation out of it (this is the
/// try-hard part).
///
/// This flag only controls the behavior of the last bullet. In practice,
/// in this project there is never a reason to ever set this to true,
/// however, sockets do get constructed by asio in blocking mode by default
/// so we mostly use this function to set it to non-blocking.
///
void
ircd::net::blocking(socket &socket,
const bool &b)
{
ip::tcp::socket &sd(socket);
sd.non_blocking(!b);
}
size_t
ircd::net::write_lowat(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::send_low_watermark option{};
sd.get_option(option);
return option.value();
}
size_t
ircd::net::read_lowat(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::receive_low_watermark option{};
sd.get_option(option);
return option.value();
}
size_t
ircd::net::write_bufsz(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::send_buffer_size option{};
sd.get_option(option);
return option.value();
}
size_t
ircd::net::read_bufsz(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::receive_buffer_size option{};
sd.get_option(option);
return option.value();
}
time_t
ircd::net::linger(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::linger option;
sd.get_option(option);
return option.enabled()? option.timeout() : -1;
}
bool
ircd::net::keepalive(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::keep_alive option;
sd.get_option(option);
return option.value();
}
bool
ircd::net::nodelay(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::no_delay option;
sd.get_option(option);
return option.value();
}
bool
ircd::net::blocking(const socket &socket)
{
const ip::tcp::socket &sd(socket);
return !sd.non_blocking();
}
///////////////////////////////////////////////////////////////////////////////
//
// net/listener.h
//
struct ircd::net::listener::acceptor
:std::enable_shared_from_this<struct ircd::net::listener::acceptor>
{
using error_code = boost::system::error_code;
static log::log log;
std::string name;
size_t backlog;
asio::ssl::context ssl;
ip::tcp::endpoint ep;
ip::tcp::acceptor a;
size_t accepting {0};
size_t handshaking {0};
bool interrupting {false};
ctx::dock joining;
explicit operator std::string() const;
void configure(const json::object &opts);
// Handshake stack
void check_handshake_error(const error_code &ec, socket &);
void handshake(const error_code &ec, std::shared_ptr<socket>, std::weak_ptr<acceptor>) noexcept;
// Acceptance stack
bool check_accept_error(const error_code &ec, socket &);
void accept(const error_code &ec, std::shared_ptr<socket>, std::weak_ptr<acceptor>) noexcept;
// Accept next
void next();
// Acceptor shutdown
bool interrupt() noexcept;
void join() noexcept;
acceptor(const json::object &opts);
~acceptor() noexcept;
};
//
// ircd::net::listener
//
ircd::net::listener::listener(const std::string &opts)
:listener{json::object{opts}}
{
}
ircd::net::listener::listener(const json::object &opts)
:acceptor{std::make_shared<struct acceptor>(opts)}
{
// Starts the first asynchronous accept. This has to be done out here after
// the acceptor's shared object is constructed.
acceptor->next();
}
/// Cancels all pending accepts and handshakes and waits (yields ircd::ctx)
/// until report.
///
ircd::net::listener::~listener()
noexcept
{
if(acceptor)
acceptor->join();
}
void
ircd::net::listener::acceptor::join()
noexcept try
{
interrupt();
joining.wait([this]
{
return !accepting && !handshaking;
});
}
catch(const std::exception &e)
{
log.error("acceptor(%p) join: %s",
this,
e.what());
}
bool
ircd::net::listener::acceptor::interrupt()
noexcept try
{
a.cancel();
interrupting = true;
return true;
}
catch(const boost::system::system_error &e)
{
log.error("acceptor(%p) interrupt: %s",
this,
string(e));
return false;
}
//
// ircd::net::listener::acceptor
//
ircd::log::log
ircd::net::listener::acceptor::log
{
"listener"
};
ircd::net::listener::acceptor::acceptor(const json::object &opts)
try
:name
{
unquote(opts.get("name", "IRCd (ssl)"s))
}
,backlog
{
//boost::asio::ip::tcp::socket::max_connections <-- linkage failed?
opts.get<size_t>("backlog", SOMAXCONN) //TODO: XXX
}
,ssl
{
asio::ssl::context::method::sslv23_server
}
,ep
{
ip::address::from_string(unquote(opts.get("host", "127.0.0.1"s))),
opts.at<uint16_t>("port")
}
,a
{
*ircd::ios
}
{
static const auto &max_connections
{
//boost::asio::ip::tcp::socket::max_connections <-- linkage failed?
SOMAXCONN //TODO: XXX
};
static const ip::tcp::acceptor::reuse_address reuse_address
{
true
};
configure(opts);
log.debug("%s configured listener SSL",
std::string(*this));
a.open(ep.protocol());
a.set_option(reuse_address);
log.debug("%s opened listener socket",
std::string(*this));
a.bind(ep);
log.debug("%s bound listener socket",
std::string(*this));
a.listen(backlog);
log.debug("%s listening (backlog: %lu, max connections: %zu)",
std::string(*this),
backlog,
max_connections);
}
catch(const boost::system::system_error &e)
{
throw error("listener: %s", e.what());
}
ircd::net::listener::acceptor::~acceptor()
noexcept
{
}
/// Sets the next asynchronous handler to start the next accept sequence.
/// Each call to next() sets one handler which handles the connect for one
/// socket. After the connect, an asynchronous SSL handshake handler is set
/// for the socket, and next() is called again to setup for the next socket
/// too.
void
ircd::net::listener::acceptor::next()
try
{
auto sock(std::make_shared<ircd::socket>(ssl));
/*
log.debug("%s: socket(%p) is the next socket to accept",
std::string(*this),
sock.get());
*/
++accepting;
ip::tcp::socket &sd(*sock);
a.async_accept(sd, std::bind(&acceptor::accept, this, ph::_1, sock, weak_from(*this)));
}
catch(const std::exception &e)
{
log.critical("%s: %s",
std::string(*this),
e.what());
if(ircd::debugmode)
throw;
}
/// Callback for a socket connected. This handler then invokes the
/// asynchronous SSL handshake sequence.
///
void
ircd::net::listener::acceptor::accept(const error_code &ec,
const std::shared_ptr<socket> sock,
const std::weak_ptr<acceptor> a)
noexcept try
{
if(unlikely(a.expired()))
return;
--accepting;
assert(bool(sock));
log.debug("%s: socket(%p) accepted(%zu) %s %s",
std::string(*this),
sock.get(),
accepting,
string(remote_ipport(*sock)),
string(ec));
if(!check_accept_error(ec, *sock))
return;
// Toggles the behavior of non-async functions; see func comment
blocking(*sock, false);
static const socket::handshake_type handshake_type
{
socket::handshake_type::server
};
auto handshake
{
std::bind(&acceptor::handshake, this, ph::_1, sock, a)
};
++handshaking;
sock->set_timeout(5000ms); //TODO: config
sock->ssl.async_handshake(handshake_type, std::move(handshake));
}
catch(const ctx::interrupted &e)
{
log.debug("%s: acceptor interrupted socket(%p) %s",
std::string(*this),
sock.get(),
string(ec));
joining.notify_all();
}
catch(const std::exception &e)
{
log.error("%s: socket(%p) in accept(): %s",
std::string(*this),
sock.get(),
e.what());
throw;
}
/// Error handler for the accept socket callback. This handler determines
/// whether or not the handler should return or continue processing the
/// result.
///
bool
ircd::net::listener::acceptor::check_accept_error(const error_code &ec,
socket &sock)
{
using namespace boost::system::errc;
using boost::system::system_category;
if(unlikely(interrupting))
throw ctx::interrupted();
if(likely(ec == success))
{
this->next();
return true;
}
if(ec.category() == system_category()) switch(ec.value())
{
case operation_canceled:
return false;
default:
break;
}
throw boost::system::system_error(ec);
}
void
ircd::net::listener::acceptor::handshake(const error_code &ec,
const std::shared_ptr<socket> sock,
const std::weak_ptr<acceptor> a)
noexcept try
{
if(unlikely(a.expired()))
return;
--handshaking;
const unwind::exceptional drop{[&sock]
{
if(bool(sock))
close(*sock, dc::RST, close_ignore);
}};
assert(bool(sock));
log.debug("socket(%p) local[%s] remote[%s] handshook(%zu) %s",
sock.get(),
string(local_ipport(*sock)),
string(remote_ipport(*sock)),
handshaking,
string(ec));
check_handshake_error(ec, *sock);
sock->cancel_timeout();
add_client(sock);
}
catch(const ctx::interrupted &e)
{
log.debug("%s: SSL handshake interrupted socket(%p) %s",
std::string(*this),
sock.get(),
string(ec));
joining.notify_all();
}
catch(const std::exception &e)
{
log.error("%s: socket(%p) in handshake(): %s",
std::string(*this),
sock.get(),
e.what());
}
/// Error handler for the SSL handshake callback. This handler determines
/// whether or not the handler should return or continue processing the
/// result.
///
void
ircd::net::listener::acceptor::check_handshake_error(const error_code &ec,
socket &sock)
{
using boost::system::system_category;
using namespace boost::system::errc;
if(unlikely(interrupting))
throw ctx::interrupted();
if(likely(ec == success))
return;
if(ec.category() == system_category()) switch(ec.value())
{
case operation_canceled:
break;
default:
break;
}
throw boost::system::system_error(ec);
}
void
ircd::net::listener::acceptor::configure(const json::object &opts)
{
log.debug("%s preparing listener socket configuration...",
std::string(*this));
ssl.set_options
(
0
//| ssl.default_workarounds
//| ssl.no_tlsv1
//| ssl.no_tlsv1_1
//| ssl.no_tlsv1_2
//| ssl.no_sslv2
//| ssl.no_sslv3
//| ssl.single_dh_use
);
//TODO: XXX
ssl.set_password_callback([this]
(const auto &size, const auto &purpose)
{
log.debug("%s asking for password with purpose '%s' (size: %zu)",
std::string(*this),
purpose,
size);
//XXX: TODO
return "foobar";
});
if(opts.has("ssl_certificate_chain_file"))
{
const std::string filename
{
unquote(opts["ssl_certificate_chain_file"])
};
if(!fs::exists(filename))
throw error("%s: SSL certificate chain file @ `%s' not found",
std::string(*this),
filename);
ssl.use_certificate_chain_file(filename);
log.info("%s using certificate chain file '%s'",
std::string(*this),
filename);
}
if(opts.has("ssl_certificate_file_pem"))
{
const std::string filename
{
unquote(opts["ssl_certificate_file_pem"])
};
if(!fs::exists(filename))
throw error("%s: SSL certificate pem file @ `%s' not found",
std::string(*this),
filename);
ssl.use_certificate_file(filename, asio::ssl::context::pem);
log.info("%s using certificate file '%s'",
std::string(*this),
filename);
}
if(opts.has("ssl_private_key_file_pem"))
{
const std::string filename
{
unquote(opts["ssl_private_key_file_pem"])
};
if(!fs::exists(filename))
throw error("%s: SSL private key file @ `%s' not found",
std::string(*this),
filename);
ssl.use_private_key_file(filename, asio::ssl::context::pem);
log.info("%s using private key file '%s'",
std::string(*this),
filename);
}
if(opts.has("ssl_tmp_dh_file"))
{
const std::string filename
{
unquote(opts["ssl_tmp_dh_file"])
};
if(!fs::exists(filename))
throw error("%s: SSL tmp dh file @ `%s' not found",
std::string(*this),
filename);
ssl.use_tmp_dh_file(filename);
log.info("%s using tmp dh file '%s'",
std::string(*this),
filename);
}
}
ircd::net::listener::acceptor::operator std::string()
const
{
return fmt::snstringf
{
256, "'%s' @ [%s]:%u", name, string(ep.address()), ep.port()
};
}
///////////////////////////////////////////////////////////////////////////////
//
// net/socket.h
//
boost::asio::ssl::context
ircd::net::sslv23_client
{
boost::asio::ssl::context::method::sslv23_client
};
//
// socket
//
ircd::net::socket::socket(asio::ssl::context &ssl,
boost::asio::io_service *const &ios)
:sd
{
*ios
}
,ssl
{
this->sd, ssl
}
,timer
{
*ios
}
{
}
/// The dtor asserts that the socket is not open/connected requiring a
/// an SSL close_notify. There's no more room for async callbacks via
/// shared_ptr after this dtor.
ircd::net::socket::~socket()
noexcept try
{
if(unlikely(RB_DEBUG_LEVEL && connected(*this)))
log.critical("Failed to ensure socket(%p) is disconnected from %s before dtor.",
this,
string(remote()));
assert(!connected(*this));
}
catch(const std::exception &e)
{
log.critical("socket(%p) close: %s", this, e.what());
return;
}
void
ircd::net::socket::connect(const endpoint &ep,
const open_opts &opts,
eptr_handler callback)
{
log.debug("socket(%p) attempting connect remote[%s] to:%ld$ms",
this,
string(ep),
opts.connect_timeout.count());
auto connect_handler
{
std::bind(&socket::handle_connect, this, weak_from(*this), opts, std::move(callback), ph::_1)
};
set_timeout(opts.connect_timeout);
sd.async_connect(ep, std::move(connect_handler));
}
void
ircd::net::socket::handshake(const open_opts &opts,
eptr_handler callback)
{
log.debug("socket(%p) local[%s] remote[%s] handshaking for '%s' to:%ld$ms",
this,
string(local_ipport(*this)),
string(remote_ipport(*this)),
common_name(opts),
opts.handshake_timeout.count());
auto handshake_handler
{
std::bind(&socket::handle_handshake, this, weak_from(*this), std::move(callback), ph::_1)
};
auto verify_handler
{
std::bind(&socket::handle_verify, this, ph::_1, ph::_2, opts)
};
set_timeout(opts.handshake_timeout);
ssl.set_verify_callback(std::move(verify_handler));
ssl.async_handshake(handshake_type::client, std::move(handshake_handler));
}
void
ircd::net::socket::disconnect(const close_opts &opts,
eptr_handler callback)
try
{
if(!sd.is_open())
{
call_user(callback, {});
return;
}
log.debug("socket(%p) local[%s] remote[%s] disconnect type:%d user: in:%zu out:%zu",
(const void *)this,
string(local_ipport(*this)),
string(remote_ipport(*this)),
uint(opts.type),
in.bytes,
out.bytes);
if(opts.sopts)
set(*this, *opts.sopts);
switch(opts.type)
{
case dc::RST:
sd.close();
break;
case dc::FIN:
sd.shutdown(ip::tcp::socket::shutdown_both);
break;
case dc::FIN_SEND:
sd.shutdown(ip::tcp::socket::shutdown_send);
break;
case dc::FIN_RECV:
sd.shutdown(ip::tcp::socket::shutdown_receive);
break;
case dc::SSL_NOTIFY:
{
auto disconnect_handler
{
std::bind(&socket::handle_disconnect, this, shared_from(*this), std::move(callback), ph::_1)
};
cancel();
set_timeout(opts.timeout);
ssl.async_shutdown(std::move(disconnect_handler));
return;
}
}
call_user(callback, {});
}
catch(const boost::system::system_error &e)
{
call_user(callback, e.code());
}
catch(const std::exception &e)
{
log.critical("socket(%p) disconnect: type: %d: %s",
(const void *)this,
uint(opts.type),
e.what());
throw;
}
void
ircd::net::socket::cancel()
noexcept
{
boost::system::error_code ec;
sd.cancel(ec);
assert(!ec);
timer.cancel(ec);
assert(!ec);
}
void
ircd::net::socket::wait(const wait_opts &opts,
wait_callback_eptr callback)
{
wait(opts, [callback(std::move(callback))]
(const error_code &ec)
{
callback(make_eptr(ec));
});
}
/// Asynchronous callback when the socket is ready
///
/// This function calls back the handler when the socket is ready
/// for the operation of the specified type.
///
void
ircd::net::socket::wait(const wait_opts &opts,
wait_callback_ec callback)
{
auto handle
{
std::bind(&socket::handle_ready, this, weak_from(*this), opts.type, std::move(callback), ph::_1)
};
switch(opts.type)
{
case ready::ERROR:
set_timeout(opts.timeout);
sd.async_wait(wait_type::wait_error, std::move(handle));
break;
case ready::WRITE:
set_timeout(opts.timeout);
sd.async_wait(wait_type::wait_write, std::move(handle));
break;
case ready::READ:
set_timeout(opts.timeout);
sd.async_wait(wait_type::wait_read, std::move(handle));
break;
default:
throw ircd::not_implemented{};
}
}
/// Asynchronous callback when the socket is ready
///
/// Overload for operator() without a timeout. see: operator()
///
void
ircd::net::socket::wait(const wait_opts &opts)
{
const scope_timeout timeout
{
*this, opts.timeout
};
switch(opts.type)
{
case ready::ERROR:
sd.async_wait(wait_type::wait_error, yield_context{to_asio{}});
break;
case ready::WRITE:
sd.async_wait(wait_type::wait_write, yield_context{to_asio{}});
break;
case ready::READ:
sd.async_wait(wait_type::wait_read, yield_context{to_asio{}});
default:
throw ircd::not_implemented{};
}
}
void
ircd::net::socket::handle_ready(const std::weak_ptr<socket> wp,
const net::ready type,
const ec_handler callback,
error_code ec)
noexcept try
{
using namespace boost::system::errc;
using boost::system::system_category;
// After life_guard is constructed it is safe to use *this in this frame.
const life_guard<socket> s{wp};
// The problem here is that the wait operation gives ec=success on both a
// socket error and when data is actually available. This could be giving
// the error in ec.
if(ec == success && type == ready::READ)
{
static char buf[16] alignas(16);
static const std::array<mutable_buffer, 1> bufs{{buf}};
sd.receive(bufs, sd.message_peek, ec);
}
log.debug("socket(%p) local[%s] remote[%s] ready %s %s available:%zu",
this,
string(local_ipport(*this)),
string(remote_ipport(*this)),
reflect(type),
string(ec),
available(*this));
if(!timedout)
cancel_timeout();
if(ec.category() == system_category()) switch(ec.value())
{
// We expose a timeout condition to the user, but hide
// other cancellations from invoking the callback.
case operation_canceled:
if(timedout)
break;
return;
// This is a condition which we hide from the user.
case bad_file_descriptor:
return;
// Everything else is passed up to the user.
default:
break;
}
call_user(callback, ec);
}
catch(const boost::system::system_error &e)
{
log.error("socket(%p) handle: %s",
this,
e.what());
assert(0);
call_user(callback, e.code());
}
catch(const std::bad_weak_ptr &e)
{
// This handler may still be registered with asio after the socket destructs, so
// the weak_ptr will indicate that fact. However, this is never intended and is
// a debug assertion which should be corrected.
log.warning("socket(%p) belated callback to handler... (%s)",
this,
e.what());
assert(0);
call_user(callback, ec);
}
catch(const std::exception &e)
{
log.critical("socket(%p) handle: %s",
this,
e.what());
assert(0);
call_user(callback, ec);
}
void
ircd::net::socket::handle_timeout(const std::weak_ptr<socket> wp,
ec_handler callback,
const error_code &ec)
noexcept try
{
using namespace boost::system::errc;
switch(ec.value())
{
// A 'success' for this handler means there was a timeout on the socket
case success: if(likely(!wp.expired()))
{
assert(timedout == false);
timedout = true;
sd.cancel();
break;
}
else break;
// A cancelation means there was no timeout.
case operation_canceled: if(likely(!wp.expired()))
{
assert(ec.category() == boost::system::system_category());
assert(timedout == false);
timedout = false;
break;
}
else break;
// All other errors are unexpected, logged and ignored here.
default:
{
log.critical("socket(%p) handle_timeout: unexpected: %s\n",
(const void *)this,
string(ec));
assert(0);
break;
}
}
if(callback)
call_user(callback, ec);
}
catch(const std::exception &e)
{
log.critical("socket(%p) handle timeout: %s",
(const void *)this,
e.what());
assert(0);
if(callback)
call_user(callback, ec);
}
void
ircd::net::socket::handle_connect(std::weak_ptr<socket> wp,
const open_opts opts,
eptr_handler callback,
const error_code &ec)
noexcept try
{
const life_guard<socket> s{wp};
assert(!timedout || ec == boost::system::errc::operation_canceled);
log.debug("socket(%p) local[%s] remote[%s] connect %s",
this,
string(local_ipport(*this)),
string(remote_ipport(*this)),
string(ec));
// The timer was set by socket::connect() and may need to be canceled.
if(!timedout)
cancel_timeout();
// A connect error; abort here by calling the user back with error.
if(ec)
return call_user(callback, ec);
// Toggles the behavior of non-async functions; see func comment
blocking(*this, false);
// Try to set the user's socket options now; if something fails we can
// invoke their callback with the error from the exception handler.
if(opts.sopts)
set(*this, *opts.sopts);
// The user can opt out of performing the handshake here.
if(!opts.handshake)
return call_user(callback, ec);
handshake(opts, std::move(callback));
}
catch(const std::bad_weak_ptr &e)
{
log.warning("socket(%p) belated callback to handle_connect... (%s)",
this,
e.what());
assert(0);
call_user(callback, ec);
}
catch(const boost::system::system_error &e)
{
log.error("socket(%p) after connect: %s",
this,
e.what());
assert(0);
call_user(callback, e.code());
}
catch(const std::exception &e)
{
log.critical("socket(%p) handle_connect: %s",
this,
e.what());
assert(0);
call_user(callback, ec);
}
void
ircd::net::socket::handle_disconnect(std::shared_ptr<socket> s,
eptr_handler callback,
const error_code &ec)
noexcept try
{
assert(!timedout || ec == boost::system::errc::operation_canceled);
log.debug("socket(%p) local[%s] remote[%s] disconnect %s",
this,
string(local_ipport(*this)),
string(remote_ipport(*this)),
string(ec));
// The timer was set by socket::disconnect() and may need to be canceled.
if(!timedout)
cancel_timeout();
sd.close();
call_user(callback, ec);
}
catch(const boost::system::system_error &e)
{
log.error("socket(%p) disconnect: %s",
this,
e.what());
assert(0);
call_user(callback, e.code());
}
catch(const std::exception &e)
{
log.critical("socket(%p) disconnect: %s",
this,
e.what());
assert(0);
call_user(callback, ec);
}
void
ircd::net::socket::handle_handshake(std::weak_ptr<socket> wp,
eptr_handler callback,
const error_code &ec)
noexcept try
{
const life_guard<socket> s{wp};
assert(!timedout || ec == boost::system::errc::operation_canceled);
log.debug("socket(%p) local[%s] remote[%s] handshake %s",
this,
string(local_ipport(*this)),
string(remote_ipport(*this)),
string(ec));
// The timer was set by socket::handshake() and may need to be canceled.
if(!timedout)
cancel_timeout();
// This is the end of the asynchronous call chain; the user is called
// back with or without error here.
call_user(callback, ec);
}
catch(const boost::system::system_error &e)
{
log.error("socket(%p) after handshake: %s",
this,
e.what());
assert(0);
call_user(callback, e.code());
}
catch(const std::bad_weak_ptr &e)
{
log.warning("socket(%p) belated callback to handle_handshake... (%s)",
this,
e.what());
assert(0);
call_user(callback, ec);
}
catch(const std::exception &e)
{
log.critical("socket(%p) handle_handshake: %s",
this,
e.what());
assert(0);
call_user(callback, ec);
}
bool
ircd::net::socket::handle_verify(const bool valid,
asio::ssl::verify_context &vc,
const open_opts &opts)
noexcept try
{
// `valid` indicates whether or not there's an anomaly with the
// certificate; if so, it is usually enumerated by the `switch()`
// statement below. If `valid` is false, this function can return
// true to continue but it appears this function will be called a
// second time with `valid=true`.
//
// TODO: XXX: This behavior must be confirmed since we return true
// TODO: XXX: early on recoverable errors and skip other checks
// TODO: XXX: expecting a second call..
//
// The user can set this option to bypass verification.
if(!opts.verify_certificate)
return true;
// X509_STORE_CTX &
assert(vc.native_handle());
const auto &stctx{*vc.native_handle()};
const auto &cert{openssl::current_cert(stctx)};
const auto reject{[&stctx, &opts]
{
throw inauthentic
{
"%s #%ld: %s",
common_name(opts),
openssl::get_error(stctx),
openssl::get_error_string(stctx)
};
}};
if(!valid)
{
thread_local char buf[256];
const critical_assertion ca;
log.warning("verify: %s /CN=%s :%s",
common_name(opts),
openssl::subject_common_name(buf, cert),
openssl::get_error_string(stctx));
}
if(!valid) switch(openssl::get_error(stctx))
{
case X509_V_OK:
assert(0);
default:
reject();
break;
case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT:
assert(openssl::get_error_depth(stctx) == 0);
if(opts.allow_self_signed)
return true;
reject();
break;
case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN:
if(opts.allow_self_chain)
return true;
reject();
break;
}
if(opts.verify_common_name)
{
if(unlikely(empty(common_name(opts))))
throw inauthentic
{
"No common name specified in connection options"
};
//TODO: this object makes an std::string
boost::asio::ssl::rfc2818_verification verifier
{
std::string(common_name(opts))
};
if(!verifier(true, vc))
{
thread_local char buf[256];
const critical_assertion ca;
throw inauthentic
{
"/CN=%s does not match target host %s :%s",
openssl::subject_common_name(buf, cert),
common_name(opts),
openssl::get_error_string(stctx)
};
}
}
{
thread_local char buf[512];
const critical_assertion ca;
log.debug("verify[%s]: %s",
common_name(opts),
openssl::print(buf, cert));
}
return true;
}
catch(const inauthentic &e)
{
log.error("Certificate rejected: %s", e.what());
return false;
}
catch(const std::exception &e)
{
log.critical("Certificate error: %s", e.what());
return false;
}
void
ircd::net::socket::call_user(const ec_handler &callback,
const error_code &ec)
noexcept try
{
callback(ec);
}
catch(const std::exception &e)
{
log.critical("socket(%p) async handler: unhandled exception: %s",
this,
e.what());
}
void
ircd::net::socket::call_user(const eptr_handler &callback,
const error_code &ec)
noexcept try
{
callback(make_eptr(ec));
}
catch(const std::exception &e)
{
log.critical("socket(%p) async handler: unhandled exception: %s",
this,
e.what());
}
boost::asio::ip::tcp::endpoint
ircd::net::socket::local()
const
{
return sd.local_endpoint();
}
boost::asio::ip::tcp::endpoint
ircd::net::socket::remote()
const
{
return sd.remote_endpoint();
}
ircd::milliseconds
ircd::net::socket::cancel_timeout()
noexcept
{
const auto ret
{
timer.expires_from_now()
};
boost::system::error_code ec;
timer.cancel(ec);
assert(!ec);
return duration_cast<milliseconds>(ret);
}
void
ircd::net::socket::set_timeout(const milliseconds &t)
{
set_timeout(t, nullptr);
}
void
ircd::net::socket::set_timeout(const milliseconds &t,
ec_handler callback)
{
cancel_timeout();
timedout = false;
if(t < milliseconds(0))
return;
auto handler
{
std::bind(&socket::handle_timeout, this, weak_from(*this), std::move(callback), ph::_1)
};
timer.expires_from_now(t);
timer.async_wait(std::move(handler));
}
bool
ircd::net::socket::has_timeout()
const noexcept
{
return !timedout && timer.expires_from_now() != milliseconds{0};
}
ircd::net::socket::operator
SSL &()
{
assert(ssl.native_handle());
return *ssl.native_handle();
}
ircd::net::socket::operator
const SSL &()
const
{
using type = typename std::remove_const<decltype(socket::ssl)>::type;
auto &ssl(const_cast<type &>(this->ssl));
assert(ssl.native_handle());
return *ssl.native_handle();
}
//
// socket::scope_timeout
//
ircd::net::socket::scope_timeout::scope_timeout(socket &socket,
const milliseconds &timeout)
:s{&socket}
{
socket.set_timeout(timeout);
}
ircd::net::socket::scope_timeout::scope_timeout(socket &socket,
const milliseconds &timeout,
socket::ec_handler handler)
:s{&socket}
{
socket.set_timeout(timeout, std::move(handler));
}
ircd::net::socket::scope_timeout::scope_timeout(scope_timeout &&other)
noexcept
:s{std::move(other.s)}
{
other.s = nullptr;
}
ircd::net::socket::scope_timeout &
ircd::net::socket::scope_timeout::operator=(scope_timeout &&other)
noexcept
{
this->~scope_timeout();
s = std::move(other.s);
return *this;
}
ircd::net::socket::scope_timeout::~scope_timeout()
noexcept
{
cancel();
}
bool
ircd::net::socket::scope_timeout::cancel()
noexcept try
{
if(!this->s)
return false;
auto *const s{this->s};
this->s = nullptr;
s->cancel_timeout();
return true;
}
catch(const std::exception &e)
{
log.error("socket(%p) scope_timeout::cancel: %s",
(const void *)s,
e.what());
return false;
}
bool
ircd::net::socket::scope_timeout::release()
{
const auto s{this->s};
this->s = nullptr;
return s != nullptr;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/resolve.h
//
namespace ircd::net
{
// Internal resolve base (requires boost syms)
using resolve_callback = std::function<void (std::exception_ptr, ip::tcp::resolver::results_type)>;
void _resolve(const hostport &, ip::tcp::resolver::flags, resolve_callback);
void _resolve(const ipport &, resolve_callback);
}
/// Singleton instance of the public interface ircd::net::resolve
decltype(ircd::net::resolve)
ircd::net::resolve
{
};
/// Singleton instance of the internal boost resolver wrapper.
decltype(ircd::net::resolve::resolver)
ircd::net::resolve::resolver
{
};
/// Resolve a numerical address to a hostname string. This is a PTR record
/// query or 'reverse DNS' lookup.
ircd::ctx::future<std::string>
ircd::net::resolve::operator()(const ipport &ipport)
{
ctx::promise<std::string> p;
ctx::future<std::string> ret{p};
operator()(ipport, [p(std::move(p))]
(std::exception_ptr eptr, std::string ptr)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value(ptr);
});
return ret;
}
/// Resolve a hostname (with service name/portnum) to a numerical address. This
/// is an A or AAAA query (with automatic SRV query) returning a single result.
ircd::ctx::future<ircd::net::ipport>
ircd::net::resolve::operator()(const hostport &hostport)
{
ctx::promise<ipport> p;
ctx::future<ipport> ret{p};
operator()(hostport, [p(std::move(p))]
(std::exception_ptr eptr, const ipport &ip)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value(ip);
});
return ret;
}
/// Lower-level PTR query (i.e "reverse DNS") with asynchronous callback
/// interface.
void
ircd::net::resolve::operator()(const ipport &ipport,
callback_reverse callback)
{
_resolve(ipport, [callback(std::move(callback))]
(std::exception_ptr eptr, ip::tcp::resolver::results_type results)
{
if(eptr)
return callback(std::move(eptr), {});
if(results.empty())
return callback({}, {});
assert(results.size() <= 1);
const auto &result(*begin(results));
callback({}, result.host_name());
});
}
/// Lower-level A or AAAA query (with automatic SRV query) with asynchronous
/// callback interface. This returns only one result.
void
ircd::net::resolve::operator()(const hostport &hostport,
callback_one callback)
{
static const ip::tcp::resolver::flags flags{};
_resolve(hostport, flags, [callback(std::move(callback))]
(std::exception_ptr eptr, ip::tcp::resolver::results_type results)
{
if(eptr)
return callback(std::move(eptr), {});
if(results.empty())
return callback(std::make_exception_ptr(nxdomain{}), {});
const auto &result(*begin(results));
callback(std::move(eptr), make_ipport(result));
});
}
/// Lower-level A+AAAA query (with automatic SRV query). This returns a vector
/// of all results in the callback.
void
ircd::net::resolve::operator()(const hostport &hostport,
callback_many callback)
{
static const ip::tcp::resolver::flags flags{};
_resolve(hostport, flags, [callback(std::move(callback))]
(std::exception_ptr eptr, ip::tcp::resolver::results_type results)
{
if(eptr)
return callback(std::move(eptr), {});
std::vector<ipport> vector(results.size());
std::transform(begin(results), end(results), begin(vector), []
(const auto &entry)
{
return make_ipport(entry.endpoint());
});
callback(std::move(eptr), std::move(vector));
});
}
/// Internal A/AAAA record resolver function
void
ircd::net::_resolve(const hostport &hostport,
ip::tcp::resolver::flags flags,
resolve_callback callback)
{
// Trivial host string
const string_view &host
{
hostport.host
};
// Determine if the port is a string or requires a lex_cast to one.
char portbuf[8];
const string_view &port
{
hostport.portnum? lex_cast(hostport.portnum, portbuf) : hostport.port
};
// Determine if the port is numeric and hint to avoid name lookup if so.
if(hostport.portnum || ctype<std::isdigit>(hostport.port) == -1)
flags |= ip::tcp::resolver::numeric_service;
// This base handler will provide exception guarantees for the entire stack.
// It may invoke callback twice in the case when callback throws unhandled,
// but the latter invocation will always have an the eptr set.
assert(bool(ircd::net::resolve::resolver));
resolve::resolver->async_resolve(host, port, flags, [callback(std::move(callback))]
(const error_code &ec, ip::tcp::resolver::results_type results)
noexcept
{
if(ec)
{
callback(std::make_exception_ptr(boost::system::system_error{ec}), std::move(results));
}
else try
{
callback({}, std::move(results));
}
catch(...)
{
callback(std::make_exception_ptr(std::current_exception()), {});
}
});
}
/// Internal PTR record resolver function
void
ircd::net::_resolve(const ipport &ipport,
resolve_callback callback)
{
assert(bool(ircd::net::resolve::resolver));
resolve::resolver->async_resolve(make_endpoint(ipport), [callback(std::move(callback))]
(const error_code &ec, ip::tcp::resolver::results_type results)
noexcept
{
if(ec)
{
callback(std::make_exception_ptr(boost::system::system_error{ec}), std::move(results));
}
else try
{
callback({}, std::move(results));
}
catch(...)
{
callback(std::make_exception_ptr(std::current_exception()), {});
}
});
}
///////////////////////////////////////////////////////////////////////////////
//
// net/remote.h
//
std::ostream &
ircd::net::operator<<(std::ostream &s, const remote &t)
{
thread_local char buf[256];
const critical_assertion ca;
s << string(buf, t);
return s;
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const remote &remote)
{
const auto &ipp
{
static_cast<const ipport &>(remote)
};
if(!ipp && !remote.hostname)
{
const auto len{strlcpy(data(buf), "0.0.0.0", size(buf))};
return { data(buf), size_t(len) };
}
else if(!ipp)
{
const auto len{strlcpy(data(buf), remote.hostname, size(buf))};
return { data(buf), size_t(len) };
}
else
{
const auto len{fmt::sprintf(buf, "%s => %s", remote.hostname, string(ipp))};
return { data(buf), size_t(len) };
}
}
///////////////////////////////////////////////////////////////////////////////
//
// net/ipport.h
//
std::ostream &
ircd::net::operator<<(std::ostream &s, const ipport &t)
{
thread_local char buf[256];
const critical_assertion ca;
s << string(buf, t);
return s;
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const uint32_t &ip)
{
const auto len
{
ip::address_v4{ip}.to_string().copy(data(buf), size(buf))
};
return { data(buf), size_t(len) };
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const uint128_t &ip)
{
const auto &pun
{
reinterpret_cast<const uint8_t (&)[16]>(ip)
};
const auto &punpun
{
reinterpret_cast<const std::array<uint8_t, 16> &>(pun)
};
const auto len
{
ip::address_v6{punpun}.to_string().copy(data(buf), size(buf))
};
return { data(buf), size_t(len) };
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const ipport &ipp)
{
const auto len
{
is_v4(ipp)?
fmt::sprintf(buf, "%s:%u",
ip::address_v4{host4(ipp)}.to_string(),
port(ipp)):
is_v6(ipp)?
fmt::sprintf(buf, "%s:%u",
ip::address_v6{std::get<ipp.IP>(ipp)}.to_string(),
port(ipp)):
0
};
return { data(buf), size_t(len) };
}
ircd::net::ipport
ircd::net::make_ipport(const boost::asio::ip::tcp::endpoint &ep)
{
return ipport
{
ep.address(), ep.port()
};
}
boost::asio::ip::tcp::endpoint
ircd::net::make_endpoint(const ipport &ipport)
{
return
{
is_v6(ipport)? ip::tcp::endpoint
{
asio::ip::address_v6 { std::get<ipport.IP>(ipport) }, port(ipport)
}
: ip::tcp::endpoint
{
asio::ip::address_v4 { host4(ipport) }, port(ipport)
},
};
}
//
// ipport
//
ircd::net::ipport::ipport(const string_view &ip,
const string_view &port)
:ipport
{
ip, lex_cast<uint16_t>(port)
}
{
}
ircd::net::ipport::ipport(const string_view &ip,
const uint16_t &port)
:ipport
{
asio::ip::make_address(ip), port
}
{
}
ircd::net::ipport::ipport(const boost::asio::ip::address &address,
const uint16_t &port)
{
std::get<TYPE>(*this) = address.is_v6();
std::get<PORT>(*this) = port;
if(is_v6(*this))
{
std::get<IP>(*this) = address.to_v6().to_bytes();
std::reverse(std::get<IP>(*this).begin(), std::get<IP>(*this).end());
}
else host4(*this) = address.to_v4().to_ulong();
}
///////////////////////////////////////////////////////////////////////////////
//
// net/hostport.h
//
std::ostream &
ircd::net::operator<<(std::ostream &s, const hostport &t)
{
thread_local char buf[256];
const critical_assertion ca;
s << string(buf, t);
return s;
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const hostport &hp)
{
const auto len
{
fmt::sprintf
{
buf, "%s:%u", host(hp), port(hp)
}
};
return { data(buf), size_t(len) };
}
///////////////////////////////////////////////////////////////////////////////
//
// net/asio.h
//
std::string
ircd::net::string(const ip::address &addr)
{
return addr.to_string();
}
std::string
ircd::net::string(const ip::tcp::endpoint &ep)
{
std::string ret(128, char{});
const auto addr{string(net::addr(ep))};
const auto data{const_cast<char *>(ret.data())};
ret.resize(snprintf(data, ret.size(), "%s:%u", addr.c_str(), port(ep)));
return ret;
}
std::string
ircd::net::host(const ip::tcp::endpoint &ep)
{
return string(addr(ep));
}
boost::asio::ip::address
ircd::net::addr(const ip::tcp::endpoint &ep)
{
return ep.address();
}
uint16_t
ircd::net::port(const ip::tcp::endpoint &ep)
{
return ep.port();
}
///////////////////////////////////////////////////////////////////////////////
//
// asio.h
//
std::exception_ptr
ircd::make_eptr(const boost::system::error_code &ec)
{
return bool(ec)? std::make_exception_ptr(boost::system::system_error(ec)):
std::exception_ptr{};
}
std::string
ircd::string(const boost::system::system_error &e)
{
return string(e.code());
}
std::string
ircd::string(const boost::system::error_code &ec)
{
std::string ret(128, char{});
ret.resize(string(mutable_buffer{ret}, ec).size());
return ret;
}
ircd::string_view
ircd::string(const mutable_buffer &buf,
const boost::system::system_error &e)
{
return string(buf, e.code());
}
ircd::string_view
ircd::string(const mutable_buffer &buf,
const boost::system::error_code &ec)
{
const auto len
{
fmt::sprintf
{
buf, "%s: %s", ec.category().name(), ec.message()
}
};
return { data(buf), size_t(len) };
}
///////////////////////////////////////////////////////////////////////////////
//
// buffer.h - provide definition for the null buffers and asio conversion
//
const ircd::buffer::mutable_buffer
ircd::buffer::null_buffer
{
nullptr, nullptr
};
const ircd::ilist<ircd::buffer::mutable_buffer>
ircd::buffer::null_buffers
{{
null_buffer
}};
ircd::buffer::mutable_buffer::operator
boost::asio::mutable_buffer()
const
{
return boost::asio::mutable_buffer
{
data(*this), size(*this)
};
}
ircd::buffer::const_buffer::operator
boost::asio::const_buffer()
const
{
return boost::asio::const_buffer
{
data(*this), size(*this)
};
}
ircd::buffer::mutable_raw_buffer::operator
boost::asio::mutable_buffer()
const
{
return boost::asio::mutable_buffer
{
data(*this), size(*this)
};
}
ircd::buffer::const_raw_buffer::operator
boost::asio::const_buffer()
const
{
return boost::asio::const_buffer
{
data(*this), size(*this)
};
}