mirror of
https://github.com/matrix-construct/construct
synced 2025-01-05 04:14:30 +01:00
729 lines
18 KiB
C++
729 lines
18 KiB
C++
// Tensor Construct
|
|
//
|
|
// Copyright (C) Matrix Construct Developers, Authors & Contributors
|
|
// Copyright (C) 2016-2021 Jason Volk <jason@zemos.net>
|
|
//
|
|
// Permission to use, copy, modify, and/or distribute this software for any
|
|
// purpose with or without fee is hereby granted, provided that the above
|
|
// copyright notice and this permission notice is present in all copies. The
|
|
// full license for this software is available in the LICENSE file.
|
|
|
|
namespace ircd::gpt::model
|
|
{
|
|
using init_func = void (*)(decoder &, const string_view &, const size_t &, const json::array &);
|
|
using init_handler = std::pair<string_view, init_func>;
|
|
|
|
static void
|
|
init_f_weight(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_f_bias(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_wpe_weight(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_wte_weight(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_h_ffnn_fc_weight(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_h_ffnn_fc_bias(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_h_ffnn_proj_weight(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_h_ffnn_proj_bias(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_h_ln_1_weight(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_h_ln_1_bias(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_h_ln_2_weight(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_h_ln_2_bias(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_h_attn_attn_weight(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_h_attn_attn_bias(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_h_attn_proj_weight(decoder &, const string_view &, const size_t &, const json::array &),
|
|
init_h_attn_proj_bias(decoder &, const string_view &, const size_t &, const json::array &);
|
|
|
|
static bool init_dataset(const string_view &);
|
|
static bool init_from_cache(const string_view &);
|
|
static void init_from_json_handle(decoder &, const init_handler &, const size_t &);
|
|
static void init_from_json(const string_view &, const string_view &);
|
|
static void init(), fini() noexcept;
|
|
|
|
extern const init_handler
|
|
manifest[],
|
|
manifest_h[];
|
|
|
|
extern conf::item<bool>
|
|
cache_locked,
|
|
cache_shared,
|
|
cache_hugepage;
|
|
|
|
extern conf::item<std::string>
|
|
path,
|
|
cache_path,
|
|
dataset_path;
|
|
|
|
static fs::map
|
|
default_model_shm,
|
|
default_dataset_shm;
|
|
}
|
|
|
|
constexpr const char
|
|
*const ircd::gpt::model::prop::ended,
|
|
*const ircd::gpt::model::prop::id,
|
|
*const ircd::gpt::model::prop::length,
|
|
*const ircd::gpt::model::prop::text;
|
|
|
|
decltype(ircd::gpt::model::manifest_h)
|
|
ircd::gpt::model::manifest_h
|
|
{
|
|
{ "h.%u.mlp.c_fc.weight.json", init_h_ffnn_fc_weight, },
|
|
{ "h.%u.mlp.c_fc.bias.json", init_h_ffnn_fc_bias, },
|
|
{ "h.%u.mlp.c_proj.weight.json", init_h_ffnn_proj_weight, },
|
|
{ "h.%u.mlp.c_proj.bias.json", init_h_ffnn_proj_bias, },
|
|
{ "h.%u.ln_1.weight.json", init_h_ln_1_weight, },
|
|
{ "h.%u.ln_1.bias.json", init_h_ln_1_bias, },
|
|
{ "h.%u.ln_2.weight.json", init_h_ln_2_weight, },
|
|
{ "h.%u.ln_2.bias.json", init_h_ln_2_bias, },
|
|
{ "h.%u.attn.c_attn.weight.json", init_h_attn_attn_weight, },
|
|
{ "h.%u.attn.c_attn.bias.json", init_h_attn_attn_bias, },
|
|
{ "h.%u.attn.c_proj.weight.json", init_h_attn_proj_weight, },
|
|
{ "h.%u.attn.c_proj.bias.json", init_h_attn_proj_bias },
|
|
};
|
|
|
|
decltype(ircd::gpt::model::manifest)
|
|
ircd::gpt::model::manifest
|
|
{
|
|
{ "ln_f.weight.json", init_f_weight, },
|
|
{ "ln_f.bias.json", init_f_bias, },
|
|
{ "wpe.weight.json", init_wpe_weight },
|
|
{ "wte.weight.json", init_wte_weight },
|
|
};
|
|
|
|
decltype(ircd::gpt::model::cache_locked)
|
|
ircd::gpt::model::cache_locked
|
|
{
|
|
{ "name", "ircd.gpt.model.cache.locked" },
|
|
{ "default", false },
|
|
};
|
|
|
|
decltype(ircd::gpt::model::cache_shared)
|
|
ircd::gpt::model::cache_shared
|
|
{
|
|
{ "name", "ircd.gpt.model.cache.shared" },
|
|
{ "default", false },
|
|
};
|
|
|
|
decltype(ircd::gpt::model::cache_hugepage)
|
|
ircd::gpt::model::cache_hugepage
|
|
{
|
|
{ "name", "ircd.gpt.model.cache.hugepage" },
|
|
{ "default", false },
|
|
};
|
|
|
|
decltype(ircd::gpt::model::cache_path)
|
|
ircd::gpt::model::cache_path
|
|
{
|
|
{ "name", "ircd.gpt.model.cache.path" },
|
|
{ "default", "model.cache.localhost" },
|
|
};
|
|
|
|
decltype(ircd::gpt::model::dataset_path)
|
|
ircd::gpt::model::dataset_path
|
|
{
|
|
{ "name", "ircd.gpt.model.dataset.path" },
|
|
{ "default", string_view{} },
|
|
};
|
|
|
|
decltype(ircd::gpt::model::path)
|
|
ircd::gpt::model::path
|
|
{
|
|
{
|
|
{ "name", "ircd.gpt.model.path" },
|
|
{ "default", string_view{} },
|
|
},
|
|
init
|
|
};
|
|
|
|
decltype(ircd::gpt::model::default_model)
|
|
ircd::gpt::model::default_model;
|
|
|
|
decltype(ircd::gpt::model::default_moment)
|
|
ircd::gpt::model::default_moment;
|
|
|
|
decltype(ircd::gpt::model::default_checkpoint)
|
|
ircd::gpt::model::default_checkpoint;
|
|
|
|
decltype(ircd::gpt::model::default_dataset)
|
|
ircd::gpt::model::default_dataset;
|
|
|
|
decltype(ircd::gpt::model::default_data)
|
|
ircd::gpt::model::default_data;
|
|
|
|
void
|
|
ircd::gpt::model::init()
|
|
{
|
|
if(!model::path)
|
|
return;
|
|
|
|
if(model::dataset_path)
|
|
init_dataset(model::dataset_path);
|
|
|
|
if(likely(init_from_cache(model::cache_path)))
|
|
return;
|
|
|
|
init_from_json(model::cache_path, model::path);
|
|
if(unlikely(!init_from_cache(model::cache_path)))
|
|
throw error
|
|
{
|
|
"Failed to find and/or initialize model."
|
|
};
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::fini()
|
|
noexcept
|
|
{
|
|
default_checkpoint[2] = nullptr;
|
|
default_checkpoint[1] = nullptr;
|
|
default_checkpoint[0] = nullptr;
|
|
|
|
default_moment[1] = nullptr;
|
|
default_moment[0] = nullptr;
|
|
|
|
default_model = nullptr;
|
|
default_model_shm = {};
|
|
|
|
default_dataset = nullptr;
|
|
default_data.clear();
|
|
default_dataset_shm = {};
|
|
}
|
|
|
|
bool
|
|
ircd::gpt::model::init_from_cache(const string_view &cache_path)
|
|
{
|
|
if(!fs::is_reg(cache_path))
|
|
return false;
|
|
|
|
const auto file_size
|
|
{
|
|
fs::size(cache_path)
|
|
};
|
|
|
|
const auto decoder_size
|
|
{
|
|
sizeof(model::decoder)
|
|
};
|
|
|
|
const bool has_params
|
|
{
|
|
file_size >= decoder_size
|
|
};
|
|
|
|
const bool has_moments
|
|
{
|
|
file_size >= decoder_size * 6
|
|
};
|
|
|
|
if(unlikely(!has_params))
|
|
throw error
|
|
{
|
|
"Cached model `%s' size %zu insufficient for decoder size %zu.",
|
|
cache_path,
|
|
file_size,
|
|
decoder_size,
|
|
};
|
|
|
|
const auto mode
|
|
{
|
|
cache_shared?
|
|
std::ios::in | std::ios::out:
|
|
std::ios::in
|
|
};
|
|
|
|
const fs::fd fd
|
|
{
|
|
cache_path, fs::fd::opts
|
|
{
|
|
.mode = mode,
|
|
},
|
|
};
|
|
|
|
const bool map_moments
|
|
{
|
|
has_moments || cache_shared
|
|
};
|
|
|
|
if(!has_moments && map_moments)
|
|
{
|
|
fs::truncate(fd, decoder_size * 6);
|
|
fs::allocate(fd, decoder_size * 5, decoder_size);
|
|
}
|
|
|
|
const auto map_size
|
|
{
|
|
map_moments?
|
|
decoder_size * 6:
|
|
decoder_size
|
|
};
|
|
|
|
fs::map::opts map_opts
|
|
{
|
|
.alignment = alignof(model::decoder),
|
|
.shared = bool(cache_shared),
|
|
.locked = bool(cache_locked),
|
|
.huge2mb = bool(cache_hugepage),
|
|
};
|
|
|
|
map_opts.mode = mode;
|
|
default_model_shm = fs::map
|
|
{
|
|
fd, map_size, map_opts,
|
|
};
|
|
|
|
default_model = reinterpret_cast<decoder *>
|
|
(
|
|
data(default_model_shm)
|
|
);
|
|
|
|
if(map_moments)
|
|
{
|
|
default_moment[0] = reinterpret_cast<float *>(default_model + 1);
|
|
default_moment[1] = reinterpret_cast<float *>(default_model + 2);
|
|
default_checkpoint[0] = reinterpret_cast<float *>(default_model + 3);
|
|
default_checkpoint[1] = reinterpret_cast<float *>(default_model + 4);
|
|
default_checkpoint[2] = reinterpret_cast<float *>(default_model + 5);
|
|
}
|
|
|
|
allocator::lock({(const char *)default_model, sizeof(decoder)});
|
|
fs::prefetch(default_model_shm, sizeof(decoder));
|
|
|
|
char pbuf[48];
|
|
log::info
|
|
{
|
|
log, "model(%p) mapped cached model `%s' params:%b moments:%b align:%u %s",
|
|
data(default_model_shm),
|
|
cache_path,
|
|
has_params,
|
|
has_moments,
|
|
map_opts.alignment,
|
|
pretty(pbuf, iec(map_size)),
|
|
};
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_from_json(const string_view &cache_path,
|
|
const string_view &model_path)
|
|
{
|
|
util::timer stopwatch;
|
|
|
|
auto decoder(std::make_unique<model::decoder>());
|
|
memset(decoder.get(), 0x0, sizeof(model::decoder));
|
|
|
|
// Load the top level files, vocab etc
|
|
for(size_t i(0); i < 4; ++i)
|
|
init_from_json_handle(*decoder, manifest[i], 0);
|
|
|
|
// Load the transformer files by layer
|
|
const size_t layers {12};
|
|
for(size_t i(0); i < layers; ++i)
|
|
for(size_t j(0); j < 12; ++j)
|
|
init_from_json_handle(*decoder, manifest_h[j], i);
|
|
|
|
const const_buffer src
|
|
{
|
|
reinterpret_cast<char *>(decoder.get()), sizeof(model::decoder)
|
|
};
|
|
|
|
const auto wrote
|
|
{
|
|
fs::write(cache_path, src)
|
|
};
|
|
|
|
char pbuf[2][48];
|
|
log::info
|
|
{
|
|
log, "model(%p) parsed `%s' cached %s to `%s' in %s",
|
|
decoder.get(),
|
|
model_path,
|
|
pretty(pbuf[0], iec(size(wrote))),
|
|
cache_path,
|
|
stopwatch.pretty(pbuf[1]),
|
|
};
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_from_json_handle(decoder &d,
|
|
const init_handler &handler,
|
|
const size_t &layer)
|
|
{
|
|
const auto &[fmt, func]
|
|
{
|
|
handler
|
|
};
|
|
|
|
char namebuf[128];
|
|
const string_view path_part[2]
|
|
{
|
|
model::path, fmt::sprintf
|
|
{
|
|
namebuf, fmt, layer
|
|
}
|
|
};
|
|
|
|
const auto path
|
|
{
|
|
fs::path(fs::path_scratch, path_part)
|
|
};
|
|
|
|
const fs::fd::opts fd_opts
|
|
{
|
|
.mode = std::ios::in,
|
|
.sequential = true,
|
|
};
|
|
|
|
const fs::fd fd
|
|
{
|
|
path, fd_opts
|
|
};
|
|
|
|
// mmap of the file
|
|
const fs::map map
|
|
{
|
|
fd, size(fd), fs::map::opts{fd_opts},
|
|
};
|
|
|
|
// Each file is a JSON array at the top level.
|
|
const json::array matrix
|
|
{
|
|
map
|
|
};
|
|
|
|
// Readable name for logging
|
|
const auto &name
|
|
{
|
|
path_part[1]
|
|
};
|
|
|
|
if(likely(func))
|
|
func(d, name, layer, matrix);
|
|
|
|
// Check for interrupt after long operation
|
|
ctx::interruption_point();
|
|
|
|
log::info
|
|
{
|
|
log, "model(%p) loaded layer:%zu :%s",
|
|
&d,
|
|
layer,
|
|
name,
|
|
};
|
|
}
|
|
|
|
bool
|
|
ircd::gpt::model::init_dataset(const string_view &path)
|
|
{
|
|
if(!fs::is_reg(path))
|
|
return false;
|
|
|
|
const auto size
|
|
{
|
|
fs::size(path)
|
|
};
|
|
|
|
const fs::fd::opts fd_opts
|
|
{
|
|
.mode = std::ios::in,
|
|
};
|
|
|
|
const fs::fd fd
|
|
{
|
|
path, fd_opts,
|
|
};
|
|
|
|
fs::map::opts map_opts{fd_opts};
|
|
map_opts.huge2mb = bool(cache_hugepage);
|
|
default_dataset_shm = fs::map
|
|
{
|
|
fd, size, map_opts
|
|
};
|
|
|
|
default_dataset = string_view
|
|
(
|
|
default_dataset_shm
|
|
);
|
|
|
|
size_t checkpoint(0);
|
|
default_data.resize(260000); //TODO: XXX
|
|
fs::prefetch(default_dataset_shm, size);
|
|
ircd::tokens(default_dataset, '\n', [&checkpoint]
|
|
(const string_view &line)
|
|
{
|
|
default_data.at(checkpoint++) = line;
|
|
});
|
|
|
|
char pbuf[48];
|
|
log::info
|
|
{
|
|
log, "dataset(%p) mapped `%s' %s @%lu",
|
|
data(default_dataset_shm),
|
|
path,
|
|
pretty(pbuf, iec(size)),
|
|
checkpoint,
|
|
};
|
|
|
|
fs::evict(default_dataset_shm, size);
|
|
return true;
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_wpe_weight(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &mat)
|
|
{
|
|
size_t i(0);
|
|
for(const json::array vec : mat)
|
|
{
|
|
size_t j(0);
|
|
for(const auto &elem : vec)
|
|
d.embed.pos[i].elem[j++] = lex_cast<float>(elem);
|
|
|
|
always_assert(j == sizeof(d.embed.pos[i]) / sizeof(float));
|
|
++i;
|
|
}
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_wte_weight(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &mat)
|
|
{
|
|
size_t i(0);
|
|
for(const json::array vec : mat)
|
|
{
|
|
size_t j(0);
|
|
for(const auto &elem : vec)
|
|
d.embed.token[i].elem[j++] = lex_cast<float>(elem);
|
|
|
|
always_assert(j == sizeof(d.embed.token[i]) / sizeof(float));
|
|
++i;
|
|
}
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_f_weight(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &vec)
|
|
{
|
|
size_t i(0);
|
|
for(const auto &elem : vec)
|
|
d.embed.norm.weight.elem[i++] = lex_cast<float>(elem);
|
|
|
|
always_assert(i == sizeof(d.embed.norm.weight) / sizeof(float));
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_f_bias(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &vec)
|
|
{
|
|
size_t i(0);
|
|
for(const auto &elem : vec)
|
|
d.embed.norm.bias.elem[i++] = lex_cast<float>(elem);
|
|
|
|
always_assert(i == sizeof(d.embed.norm.bias) / sizeof(float));
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_h_ffnn_fc_weight(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &mat)
|
|
{
|
|
size_t i(0);
|
|
for(const json::array vec : mat)
|
|
{
|
|
size_t j(0);
|
|
for(const auto &elem : vec)
|
|
d.layer[layer].ffnn.fcon_weight[i].fcon[j++] = lex_cast<float>(elem);
|
|
|
|
always_assert(j == sizeof(d.layer[layer].ffnn.fcon_weight[i]) / sizeof(float));
|
|
++i;
|
|
}
|
|
|
|
always_assert
|
|
(
|
|
i == sizeof(d.layer[layer].ffnn.fcon_weight)
|
|
/ sizeof(d.layer[layer].ffnn.fcon_weight[0])
|
|
);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_h_ffnn_fc_bias(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &vec)
|
|
{
|
|
size_t i(0);
|
|
for(const auto &elem : vec)
|
|
d.layer[layer].ffnn.fcon_bias.fcon[i++] = lex_cast<float>(elem);
|
|
|
|
always_assert(i == sizeof(d.layer[layer].ffnn.fcon_bias) / sizeof(float));
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_h_ffnn_proj_weight(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &mat)
|
|
{
|
|
size_t i(0);
|
|
for(const json::array vec : mat)
|
|
{
|
|
size_t j(0);
|
|
for(const auto &elem : vec)
|
|
d.layer[layer].ffnn.proj_weight[i].elem[j++] = lex_cast<float>(elem);
|
|
|
|
always_assert(j == sizeof(d.layer[layer].ffnn.proj_weight[i]) / sizeof(float));
|
|
++i;
|
|
}
|
|
|
|
always_assert
|
|
(
|
|
i == sizeof(d.layer[layer].ffnn.proj_weight)
|
|
/ sizeof(d.layer[layer].ffnn.proj_weight[0])
|
|
);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_h_ffnn_proj_bias(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &vec)
|
|
{
|
|
size_t i(0);
|
|
for(const auto &elem : vec)
|
|
d.layer[layer].ffnn.proj_bias.elem[i++] = lex_cast<float>(elem);
|
|
|
|
always_assert(i == sizeof(d.layer[layer].ffnn.proj_bias) / sizeof(float));
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_h_ln_1_weight(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &vec)
|
|
{
|
|
size_t i(0);
|
|
for(const auto &elem : vec)
|
|
d.layer[layer].attn.norm.weight.elem[i++] = lex_cast<float>(elem);
|
|
|
|
always_assert(i == sizeof(d.layer[layer].attn.norm.weight) / sizeof(float));
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_h_ln_1_bias(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &vec)
|
|
{
|
|
size_t i(0);
|
|
for(const auto &elem : vec)
|
|
d.layer[layer].attn.norm.bias.elem[i++] = lex_cast<float>(elem);
|
|
|
|
always_assert(i == sizeof(d.layer[layer].attn.norm.bias) / sizeof(float));
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_h_ln_2_weight(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &vec)
|
|
{
|
|
size_t i(0);
|
|
for(const auto &elem : vec)
|
|
d.layer[layer].ffnn.norm.weight.elem[i++] = lex_cast<float>(elem);
|
|
|
|
always_assert(i == sizeof(d.layer[layer].ffnn.norm.weight) / sizeof(float));
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_h_ln_2_bias(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &vec)
|
|
{
|
|
size_t i(0);
|
|
for(const auto &elem : vec)
|
|
d.layer[layer].ffnn.norm.bias.elem[i++] = lex_cast<float>(elem);
|
|
|
|
always_assert(i == sizeof(d.layer[layer].ffnn.norm.bias) / sizeof(float));
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_h_attn_attn_weight(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &mat)
|
|
{
|
|
size_t i(0);
|
|
for(const json::array vec : mat)
|
|
{
|
|
size_t j(0);
|
|
for(const auto &elem : vec)
|
|
d.layer[layer].attn.fcon_weight[i].fcon[j++] = lex_cast<float>(elem);
|
|
|
|
always_assert(j == sizeof(d.layer[layer].attn.fcon_weight[i]) / sizeof(float));
|
|
++i;
|
|
}
|
|
|
|
always_assert
|
|
(
|
|
i == sizeof(d.layer[layer].attn.fcon_weight)
|
|
/ sizeof(d.layer[layer].attn.fcon_weight[0])
|
|
);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_h_attn_attn_bias(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &vec)
|
|
{
|
|
size_t i(0);
|
|
for(const auto &elem : vec)
|
|
d.layer[layer].attn.fcon_bias.fcon[i++] = lex_cast<float>(elem);
|
|
|
|
always_assert(i == sizeof(d.layer[layer].attn.fcon_bias) / sizeof(float));
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_h_attn_proj_weight(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &mat)
|
|
{
|
|
size_t i(0);
|
|
for(const json::array vec : mat)
|
|
{
|
|
size_t j(0);
|
|
for(const auto &elem : vec)
|
|
d.layer[layer].attn.proj_weight[i].elem[j++] = lex_cast<float>(elem);
|
|
|
|
always_assert(j == sizeof(d.layer[layer].attn.proj_weight[i]) / sizeof(float));
|
|
++i;
|
|
}
|
|
|
|
always_assert
|
|
(
|
|
i == sizeof(d.layer[layer].attn.proj_weight)
|
|
/ sizeof(d.layer[layer].attn.proj_weight[0])
|
|
);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::model::init_h_attn_proj_bias(decoder &d,
|
|
const string_view &name,
|
|
const size_t &layer,
|
|
const json::array &vec)
|
|
{
|
|
size_t i(0);
|
|
for(const auto &elem : vec)
|
|
d.layer[layer].attn.proj_bias.elem[i++] = lex_cast<float>(elem);
|
|
|
|
always_assert(i == sizeof(d.layer[layer].attn.proj_bias) / sizeof(float));
|
|
}
|