0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-27 01:02:46 +01:00
construct/ircd/net.cc
2019-07-23 17:31:16 -07:00

4944 lines
94 KiB
C++

// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2018 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#include <ircd/asio.h>
#include <RB_INC_IFADDRS_H
namespace ircd::net
{
ctx::dock dock;
static void init_ipv6();
static void wait_close_sockets();
}
void
ircd::net::wait_close_sockets()
{
while(socket::instances)
if(!dock.wait_for(seconds(2)))
log::warning
{
log, "Waiting for %zu sockets to destruct", socket::instances
};
}
void
ircd::net::init_ipv6()
{
if(!enable_ipv6)
{
log::warning
{
log, "IPv6 is disabled by the configuration."
" Not checking for usable interfaces."
};
return;
}
if(!addrs::has_usable_ipv6_interface())
{
log::dwarning
{
log, "No usable IPv6 interfaces detected."
};
enable_ipv6.set("false");
return;
}
log::info
{
log, "Detected usable IPv6 interfaces."
" Server will query AAAA records and attempt IPv6 connections. If this"
" is an error please set ircd.net.enable_ipv6 to false or start with -no6."
};
}
///////////////////////////////////////////////////////////////////////////////
//
// init
//
/// Network subsystem initialization
ircd::net::init::init()
{
//TODO: XXX this has to be instantiated in libircd before other loaded
//TODO: modules like s_dns.so; otherwise dynamic linker issues.
const asio::ip::udp::socket _dummy_udp_ {ios::get()};
init_ipv6();
sslv23_client.set_verify_mode(asio::ssl::verify_peer);
sslv23_client.set_default_verify_paths();
}
/// Network subsystem shutdown
ircd::net::init::~init()
noexcept
{
wait_close_sockets();
}
///////////////////////////////////////////////////////////////////////////////
//
// net/net.h
//
/// Network subsystem log facility with dedicated SNOMASK.
struct ircd::log::log
ircd::net::log
{
"net", 'N'
};
decltype(ircd::net::enable_ipv6)
ircd::net::enable_ipv6
{
{ "name", "ircd.net.enable_ipv6" },
{ "default", true },
{ "persist", false },
};
ircd::string_view
ircd::net::peer_cert_der_sha256_b64(const mutable_buffer &buf,
const socket &socket)
{
thread_local char shabuf[sha256::digest_size];
const auto hash
{
peer_cert_der_sha256(shabuf, socket)
};
return b64encode_unpadded(buf, hash);
}
ircd::const_buffer
ircd::net::peer_cert_der_sha256(const mutable_buffer &buf,
const socket &socket)
{
thread_local char derbuf[16384];
sha256
{
buf, peer_cert_der(derbuf, socket)
};
return
{
data(buf), sha256::digest_size
};
}
ircd::const_buffer
ircd::net::peer_cert_der(const mutable_buffer &buf,
const socket &socket)
{
const SSL &ssl(socket);
const X509 &cert
{
openssl::peer_cert(ssl)
};
return openssl::i2d(buf, cert);
}
std::pair<size_t, size_t>
ircd::net::calls(const socket &socket)
noexcept
{
return
{
socket.in.calls, socket.out.calls
};
}
std::pair<size_t, size_t>
ircd::net::bytes(const socket &socket)
noexcept
{
return
{
socket.in.bytes, socket.out.bytes
};
}
ircd::string_view
ircd::net::loghead(const socket &socket)
{
thread_local char buf[512];
return loghead(buf, socket);
}
ircd::string_view
ircd::net::loghead(const mutable_buffer &out,
const socket &socket)
{
thread_local char buf[2][128];
return fmt::sprintf
{
out, "socket:%lu local:%s remote:%s",
id(socket),
string(buf[0], local_ipport(socket)),
string(buf[1], remote_ipport(socket)),
};
}
ircd::net::ipport
ircd::net::remote_ipport(const socket &socket)
noexcept try
{
if(!opened(socket))
return {};
const auto &ep(socket.remote());
return make_ipport(ep);
}
catch(...)
{
return {};
}
ircd::net::ipport
ircd::net::local_ipport(const socket &socket)
noexcept try
{
if(!opened(socket))
return {};
const auto &ep(socket.local());
return make_ipport(ep);
}
catch(...)
{
return {};
}
size_t
ircd::net::available(const socket &socket)
noexcept
{
const ip::tcp::socket &sd(socket);
boost::system::error_code ec;
return sd.available(ec);
}
size_t
ircd::net::readable(const socket &socket)
{
ip::tcp::socket &sd(const_cast<net::socket &>(socket));
ip::tcp::socket::bytes_readable command{true};
sd.io_control(command);
return command.get();
}
bool
ircd::net::opened(const socket &socket)
noexcept try
{
const ip::tcp::socket &sd(socket);
return sd.is_open();
}
catch(...)
{
return false;
}
const uint64_t &
ircd::net::id(const socket &socket)
{
return socket.id;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/write.h
//
void
ircd::net::flush(socket &socket)
{
if(nodelay(socket))
return;
nodelay(socket, true);
nodelay(socket, false);
}
/// Yields ircd::ctx until all buffers are sent.
///
/// This is blocking behavior; use this if the following are true:
///
/// * You put a timer on the socket so if the remote slows us down the data
/// will not occupy the daemon's memory for a long time. Remember, *all* of
/// the data will be sitting in memory even after some of it was ack'ed by
/// the remote.
///
/// * You are willing to dedicate the ircd::ctx to sending all the data to
/// the remote. The ircd::ctx will be yielding until everything is sent.
///
size_t
ircd::net::write_all(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_all(buffers);
}
/// Yields ircd::ctx until at least some buffers are sent.
///
/// This is blocking behavior; use this if the following are true:
///
/// * You put a timer on the socket so if the remote slows us down the data
/// will not occupy the daemon's memory for a long time.
///
/// * You are willing to dedicate the ircd::ctx to sending the data to
/// the remote. The ircd::ctx will be yielding until the kernel has at least
/// some space to consume at least something from the supplied buffers.
///
size_t
ircd::net::write_few(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_few(buffers);
}
/// Writes as much as possible until one of the following is true:
///
/// * The kernel buffer for the socket is full.
/// * The user buffer is exhausted.
///
/// This is non-blocking behavior. No yielding will take place; no timer is
/// needed. Multiple syscalls will be composed to fulfill the above points.
///
size_t
ircd::net::write_any(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_any(buffers);
}
/// Writes one "unit" of data or less; never more. The size of that unit
/// is determined by the system. Less may be written if one of the following
/// is true:
///
/// * The kernel buffer for the socket is full.
/// * The user buffer is exhausted.
///
/// If neither are true, more can be written using additional calls;
/// alternatively, use other variants of write_ for that.
///
/// This is non-blocking behavior. No yielding will take place; no timer is
/// needed. Only one syscall will occur.
///
size_t
ircd::net::write_one(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_one(buffers);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/read.h
//
/// Yields ircd::ctx until len bytes have been received and discarded from the
/// socket.
///
size_t
ircd::net::discard_all(socket &socket,
const size_t &len)
{
static char buffer[512];
size_t remain{len}; while(remain)
{
const mutable_buffer mb
{
buffer, std::min(remain, sizeof(buffer))
};
remain -= read_all(socket, mb);
}
return len;
}
/// Non-blocking discard of up to len bytes. The amount of bytes discarded
/// is returned. Zero is only returned if len==0 because the EAGAIN is
/// thrown. If any bytes have been discarded any EAGAIN encountered in
/// this function's internal loop is not thrown, but used to exit the loop.
///
size_t
ircd::net::discard_any(socket &socket,
const size_t &len)
{
static char buffer[512];
size_t remain{len}; while(remain)
{
const mutable_buffer mb
{
buffer, std::min(remain, sizeof(buffer))
};
size_t read;
if(!(read = read_one(socket, mb)))
break;
remain -= read;
}
return len - remain;
}
/// Yields ircd::ctx until buffers are full.
///
/// Use this only if the following are true:
///
/// * You know the remote has made a guarantee to send you a specific amount
/// of data.
///
/// * You put a timer on the socket so that if the remote runs short this
/// call doesn't hang the ircd::ctx forever, otherwise it will until cancel.
///
/// * You are willing to dedicate the ircd::ctx to just this operation for
/// that amount of time.
///
size_t
ircd::net::read_all(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_all(buffers);
}
/// Yields ircd::ctx until remote has sent at least one frame. The buffers may
/// be filled with any amount of data depending on what has accumulated.
///
/// Use this if the following are true:
///
/// * You know there is data to be read; you can do this asynchronously with
/// other features of the socket. Otherwise this will hang the ircd::ctx.
///
/// * You are willing to dedicate the ircd::ctx to just this operation,
/// which is non-blocking if data is known to be available, but may be
/// blocking if this call is made in the blind.
///
size_t
ircd::net::read_few(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_few(buffers);
}
/// Reads as much as possible. Non-blocking behavior.
///
/// This is intended for lowest-level/custom control and not preferred by
/// default for most users on an ircd::ctx.
///
size_t
ircd::net::read_any(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_any(buffers);
}
/// Reads one message or less in a single syscall. Non-blocking behavior.
///
/// This is intended for lowest-level/custom control and not preferred by
/// default for most users on an ircd::ctx.
///
size_t
ircd::net::read_one(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_one(buffers);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/check.h
//
void
ircd::net::check(socket &socket,
const ready &type)
{
socket.check(type);
}
std::error_code
ircd::net::check(std::nothrow_t,
socket &socket,
const ready &type)
noexcept
{
return socket.check(std::nothrow, type);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/wait.h
//
decltype(ircd::net::wait_opts_default)
ircd::net::wait_opts_default;
/// Wait for socket to become "ready" using a ctx::future.
ircd::ctx::future<void>
ircd::net::wait(use_future_t,
socket &socket,
const wait_opts &wait_opts)
{
ctx::promise<void> p;
ctx::future<void> f{p};
wait(socket, wait_opts, [p(std::move(p))]
(std::exception_ptr eptr)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value();
});
return f;
}
/// Wait for socket to become "ready"; yields ircd::ctx returning code.
std::error_code
ircd::net::wait(nothrow_t,
socket &socket,
const wait_opts &wait_opts)
try
{
wait(socket, wait_opts);
return {};
}
catch(const std::system_error &e)
{
return e.code();
}
/// Wait for socket to become "ready"; yields ircd::ctx; throws errors.
void
ircd::net::wait(socket &socket,
const wait_opts &wait_opts)
{
socket.wait(wait_opts);
}
/// Wait for socket to become "ready"; callback with exception_ptr
void
ircd::net::wait(socket &socket,
const wait_opts &wait_opts,
wait_callback_eptr callback)
{
socket.wait(wait_opts, std::move(callback));
}
void
ircd::net::wait(socket &socket,
const wait_opts &wait_opts,
wait_callback_ec callback)
{
socket.wait(wait_opts, std::move(callback));
}
ircd::string_view
ircd::net::reflect(const ready &type)
{
switch(type)
{
case ready::ANY: return "ANY"_sv;
case ready::READ: return "READ"_sv;
case ready::WRITE: return "WRITE"_sv;
case ready::ERROR: return "ERROR"_sv;
}
return "????"_sv;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/close.h
//
decltype(ircd::net::close_opts::default_timeout)
ircd::net::close_opts::default_timeout
{
{ "name", "ircd.net.close.timeout" },
{ "default", 7500L },
};
/// Static instance of default close options.
ircd::net::close_opts
const ircd::net::close_opts_default
{
};
/// Static helper callback which may be passed to the callback-based overload
/// of close(). This callback does nothing.
ircd::net::close_callback
const ircd::net::close_ignore{[]
(std::exception_ptr eptr)
{
return;
}};
ircd::ctx::future<void>
ircd::net::close(socket &socket,
const close_opts &opts)
{
ctx::promise<void> p;
ctx::future<void> f(p);
close(socket, opts, [p(std::move(p))]
(std::exception_ptr eptr)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value();
});
return f;
}
void
ircd::net::close(socket &socket,
const close_opts &opts,
close_callback callback)
{
socket.disconnect(opts, std::move(callback));
}
///////////////////////////////////////////////////////////////////////////////
//
// net/open.h
//
decltype(ircd::net::open_opts::default_connect_timeout)
ircd::net::open_opts::default_connect_timeout
{
{ "name", "ircd.net.open.connect_timeout" },
{ "default", 7500L },
};
decltype(ircd::net::open_opts::default_handshake_timeout)
ircd::net::open_opts::default_handshake_timeout
{
{ "name", "ircd.net.open.handshake_timeout" },
{ "default", 7500L },
};
decltype(ircd::net::open_opts::default_verify_certificate)
ircd::net::open_opts::default_verify_certificate
{
{ "name", "ircd.net.open.verify_certificate" },
{ "default", true },
};
decltype(ircd::net::open_opts::default_allow_self_signed)
ircd::net::open_opts::default_allow_self_signed
{
{ "name", "ircd.net.open.allow_self_signed" },
{ "default", false },
};
decltype(ircd::net::open_opts::default_allow_self_chain)
ircd::net::open_opts::default_allow_self_chain
{
{ "name", "ircd.net.open.allow_self_chain" },
{ "default", false },
};
decltype(ircd::net::open_opts::default_allow_expired)
ircd::net::open_opts::default_allow_expired
{
{ "name", "ircd.net.open.allow_expired" },
{ "default", false },
};
/// Open new socket with future-based report.
///
ircd::ctx::future<std::shared_ptr<ircd::net::socket>>
ircd::net::open(const open_opts &opts)
{
ctx::promise<std::shared_ptr<socket>> p;
ctx::future<std::shared_ptr<socket>> f(p);
auto s{std::make_shared<socket>()};
open(*s, opts, [s, p(std::move(p))]
(std::exception_ptr eptr)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value(s);
});
return f;
}
/// Open existing socket with callback-based report.
///
std::shared_ptr<ircd::net::socket>
ircd::net::open(const open_opts &opts,
open_callback handler)
{
auto s{std::make_shared<socket>()};
open(*s, opts, std::move(handler));
return s;
}
/// Open existing socket with callback-based report.
///
void
ircd::net::open(socket &socket,
const open_opts &opts,
open_callback handler)
{
auto complete{[s(shared_from(socket)), handler(std::move(handler))]
(std::exception_ptr eptr)
{
if(eptr && !s->fini)
close(*s, dc::RST);
handler(std::move(eptr));
}};
const dns::callback_ipport connector{[&socket, opts, complete(std::move(complete))]
(std::exception_ptr eptr, const hostport &hp, const ipport &ipport)
{
if(eptr)
return complete(std::move(eptr));
const auto ep{make_endpoint(ipport)};
socket.connect(ep, opts, std::move(complete));
}};
if(!opts.ipport)
dns::resolve(opts.hostport, dns::opts_default, std::move(connector));
else
connector({}, opts.hostport, opts.ipport);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/addrs.h
//
#ifdef HAVE_IFADDRS_H
bool
ircd::net::addrs::has_usable_ipv6_interface()
try
{
return !for_each([](const addr &a)
{
if(a.family != AF_INET6)
return true;
if(a.scope_id != 0) // global scope
return true;
if(~a.flags & IFF_UP) // not up
return true;
if(a.flags & IFF_LOOPBACK) // not usable
return true;
// return false to break
return false;
});
}
catch(const std::exception &e)
{
log::error
{
log, "Failed to check for usable IPv6 interfaces :%s",
e.what()
};
return false;
}
#else
bool
ircd::net::addrs::has_usable_ipv6_interface()
{
return false;
}
#endif
#ifdef HAVE_IFADDRS_H
bool
__attribute__((optimize(0))) //XXX: trouble
ircd::net::addrs::for_each(const closure &closure)
{
return for_each(raw_closure{[&closure]
(const struct ::ifaddrs *const &ifa)
{
addr a;
a.name = ifa->ifa_name;
a.flags = ifa->ifa_flags;
if(ifa->ifa_addr) switch(ifa->ifa_addr->sa_family)
{
case AF_INET6:
{
const auto sin(reinterpret_cast<const struct ::sockaddr_in6 *>(ifa->ifa_addr));
const auto ip(reinterpret_cast<const uint128_t *>(sin->sin6_addr.s6_addr));
a.family = sin->sin6_family;
a.scope_id = sin->sin6_scope_id;
a.flowinfo = sin->sin6_flowinfo;
a.address =
{
ntoh(*ip), sin->sin6_port
};
break;
}
case AF_INET:
{
const auto &sin(reinterpret_cast<const struct ::sockaddr_in *>(ifa->ifa_addr));
a.family = sin->sin_family;
a.address =
{
ntoh(sin->sin_addr.s_addr), sin->sin_port
};
break;
}
default:
return true;
}
return closure(a);
}});
}
#else
bool
ircd::net::addrs::for_each(const closure &closure)
{
return true;
}
#endif
#ifdef HAVE_IFADDRS_H
bool
ircd::net::addrs::for_each(const raw_closure &closure)
{
struct ::ifaddrs *ifap_;
syscall(::getifaddrs, &ifap_);
const custom_ptr<struct ::ifaddrs> ifap
{
ifap_, ::freeifaddrs
};
for(auto ifa(ifap.get()); ifa; ifa = ifa->ifa_next)
if(!closure(ifa))
return false;
return true;
}
#else
bool
ircd::net::addrs::for_each(const raw_closure &closure)
{
return true;
}
#endif
///////////////////////////////////////////////////////////////////////////////
//
// net/sopts.h
//
/// Construct sock_opts with the current options from socket argument
ircd::net::sock_opts::sock_opts(const socket &socket)
:v6only{net::v6only(socket)}
,blocking{net::blocking(socket)}
,nodelay{net::nodelay(socket)}
,keepalive{net::keepalive(socket)}
,linger{net::linger(socket)}
,read_bufsz{ssize_t(net::read_bufsz(socket))}
,write_bufsz{ssize_t(net::write_bufsz(socket))}
,read_lowat{ssize_t(net::read_lowat(socket))}
,write_lowat{ssize_t(net::write_lowat(socket))}
{
}
/// Updates the socket with provided options. Defaulted / -1'ed options are
/// ignored for updating.
void
ircd::net::set(socket &socket,
const sock_opts &opts)
{
if(opts.v6only != opts.IGN)
net::v6only(socket, opts.v6only);
if(opts.blocking != opts.IGN)
net::blocking(socket, opts.blocking);
if(opts.nodelay != opts.IGN)
net::nodelay(socket, opts.nodelay);
if(opts.keepalive != opts.IGN)
net::keepalive(socket, opts.keepalive);
if(opts.linger != opts.IGN)
net::linger(socket, opts.linger);
if(opts.read_bufsz != opts.IGN)
net::read_bufsz(socket, opts.read_bufsz);
if(opts.write_bufsz != opts.IGN)
net::write_bufsz(socket, opts.write_bufsz);
if(opts.read_lowat != opts.IGN)
net::read_lowat(socket, opts.read_lowat);
if(opts.write_lowat != opts.IGN)
net::write_lowat(socket, opts.write_lowat);
}
void
ircd::net::write_lowat(socket &socket,
const size_t &bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
const ip::tcp::socket::send_low_watermark option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::read_lowat(socket &socket,
const size_t &bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
const ip::tcp::socket::receive_low_watermark option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::write_bufsz(socket &socket,
const size_t &bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
const ip::tcp::socket::send_buffer_size option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::read_bufsz(socket &socket,
const size_t &bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
const ip::tcp::socket::receive_buffer_size option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::linger(socket &socket,
const time_t &t)
{
assert(t >= std::numeric_limits<int>::min());
assert(t <= std::numeric_limits<int>::max());
const ip::tcp::socket::linger option
{
t >= 0, // ON / OFF boolean
t >= 0? int(t) : 0 // Uses 0 when OFF
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::keepalive(socket &socket,
const bool &b)
{
const ip::tcp::socket::keep_alive option{b};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::nodelay(socket &socket,
const bool &b)
{
const ip::tcp::no_delay option{b};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
/// Toggles the behavior of non-async asio calls.
///
/// This option affects very little in practice and only sets a flag in
/// userspace in asio, not an actual ioctl(). Specifically:
///
/// * All sockets are already set by asio to FIONBIO=1 no matter what, thus
/// nothing really blocks the event loop ever by default unless you try hard.
///
/// * All asio::async_ and sd.async_ and ssl.async_ calls will always do what
/// the synchronous/blocking alternative would have accomplished but using
/// the async methodology. i.e if a buffer is full you will always wait
/// asynchronously: async_write() will wait for everything, async_write_some()
/// will wait for something, etc -- but there will never be true non-blocking
/// _effective behavior_ from these calls.
///
/// * All asio non-async calls conduct blocking by (on linux) poll()'ing the
/// socket to get a real kernel-blocking operation out of it (this is the
/// try-hard part).
///
/// This flag only controls the behavior of the last bullet. In practice,
/// in this project there is never a reason to ever set this to true,
/// however, sockets do get constructed by asio in blocking mode by default
/// so we mostly use this function to set it to non-blocking.
///
void
ircd::net::blocking(socket &socket,
const bool &b)
{
ip::tcp::socket &sd(socket);
sd.non_blocking(!b);
}
void
ircd::net::v6only(socket &socket,
const bool &b)
{
const ip::v6_only option{b};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
size_t
ircd::net::write_lowat(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::send_low_watermark option{};
sd.get_option(option);
return option.value();
}
size_t
ircd::net::read_lowat(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::receive_low_watermark option{};
sd.get_option(option);
return option.value();
}
size_t
ircd::net::write_bufsz(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::send_buffer_size option{};
sd.get_option(option);
return option.value();
}
size_t
ircd::net::read_bufsz(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::receive_buffer_size option{};
sd.get_option(option);
return option.value();
}
time_t
ircd::net::linger(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::linger option;
sd.get_option(option);
return option.enabled()? option.timeout() : -1;
}
bool
ircd::net::keepalive(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::keep_alive option;
sd.get_option(option);
return option.value();
}
bool
ircd::net::nodelay(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::no_delay option;
sd.get_option(option);
return option.value();
}
bool
ircd::net::blocking(const socket &socket)
{
const ip::tcp::socket &sd(socket);
return !sd.non_blocking();
}
bool
ircd::net::v6only(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::v6_only option;
sd.get_option(option);
return option.value();
}
///////////////////////////////////////////////////////////////////////////////
//
// net/listener.h
//
/// Option to indicate if any listener sockets should be allowed to bind. If
/// false then no listeners should bind. This is only effective on startup
/// unless a conf item updated function is implemented here.
decltype(ircd::net::listen)
ircd::net::listen
{
{ "name", "ircd.net.listen" },
{ "default", true },
{ "persist", false },
};
//
// listener
//
std::string
ircd::net::cipher_list(const acceptor &a)
{
auto &ssl(const_cast<acceptor &>(a).ssl);
return openssl::cipher_list(*ssl.native_handle());
}
std::ostream &
ircd::net::operator<<(std::ostream &s, const listener &a)
{
s << *a.acceptor;
return s;
}
//
// listener::listener
//
ircd::net::listener::listener(const string_view &name,
const std::string &opts,
callback cb,
proffer pcb)
:listener
{
name, json::object{opts}, std::move(cb), std::move(pcb)
}
{
}
ircd::net::listener::listener(const string_view &name,
const json::object &opts,
callback cb,
proffer pcb)
:acceptor
{
std::make_shared<struct acceptor>(*this, name, opts, std::move(cb), std::move(pcb))
}
{
}
/// Cancels all pending accepts and handshakes and waits (yields ircd::ctx)
/// until report.
///
ircd::net::listener::~listener()
noexcept
{
if(acceptor)
acceptor->close();
}
ircd::string_view
ircd::net::listener::name()
const
{
const net::acceptor &a(*this);
return net::name(a);
}
ircd::net::listener::operator
ircd::json::object()
const
{
const net::acceptor &a(*this);
return net::config(a);
}
ircd::net::listener::operator
net::acceptor &()
{
assert(acceptor);
return *acceptor;
}
ircd::net::listener::operator
const net::acceptor &()
const
{
assert(acceptor);
return *acceptor;
}
//
// listener_udp
//
std::ostream &
ircd::net::operator<<(std::ostream &s, const listener_udp &a)
{
s << *a.acceptor;
return s;
}
//
// listener_udp::listener_udp
//
ircd::net::listener_udp::listener_udp(const string_view &name,
const std::string &opts)
:listener_udp
{
name, json::object{opts}
}
{
}
ircd::net::listener_udp::listener_udp(const string_view &name,
const json::object &opts)
:acceptor
{
std::make_unique<net::acceptor_udp>(name, opts)
}
{
}
ircd::net::listener_udp::~listener_udp()
noexcept
{
if(acceptor)
acceptor->join();
}
ircd::net::listener_udp::datagram &
ircd::net::listener_udp::operator()(datagram &datagram)
{
assert(acceptor);
return acceptor->operator()(datagram);
}
ircd::string_view
ircd::net::listener_udp::name()
const
{
assert(acceptor);
return acceptor->name;
}
ircd::net::listener_udp::operator
ircd::json::object()
const
{
assert(acceptor);
return acceptor->opts;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/acceptor.h
//
//
// acceptor
//
decltype(ircd::net::acceptor::log)
ircd::net::acceptor::log
{
"net.listen"
};
decltype(ircd::net::acceptor::timeout)
ircd::net::acceptor::timeout
{
{ "name", "ircd.net.acceptor.timeout" },
{ "default", 12000L },
};
/// The number of simultaneous handshakes we conduct across all clients.
decltype(ircd::net::acceptor::handshaking_max)
ircd::net::acceptor::handshaking_max
{
{ "name", "ircd.net.acceptor.handshaking.max" },
{ "default", 64L },
};
/// The number of simultaneous handshakes we conduct for a single peer (which
/// is an IP without a port in this context). This prevents a peer from
/// reaching the handshaking.max limit to DoS out other peers.
decltype(ircd::net::acceptor::handshaking_max_per_peer)
ircd::net::acceptor::handshaking_max_per_peer
{
{ "name", "ircd.net.acceptor.handshaking.max_per_peer" },
{ "default", 16L },
};
decltype(ircd::net::acceptor::ssl_curve_list)
ircd::net::acceptor::ssl_curve_list
{
{ "name", "ircd.net.acceptor.ssl.curve.list" },
{ "default", string_view{ircd::net::ssl_curve_list} },
};
decltype(ircd::net::acceptor::ssl_cipher_list)
ircd::net::acceptor::ssl_cipher_list
{
{ "name", "ircd.net.acceptor.ssl.cipher.list" },
{ "default", string_view{ircd::net::ssl_cipher_list} },
};
decltype(ircd::net::acceptor::ssl_cipher_blacklist)
ircd::net::acceptor::ssl_cipher_blacklist
{
{ "name", "ircd.net.acceptor.ssl.cipher.blacklist" },
{ "default", string_view{ircd::net::ssl_cipher_blacklist} },
};
bool
ircd::net::stop(acceptor &a)
{
a.close();
return true;
}
bool
ircd::net::start(acceptor &a)
{
if(!a.a.is_open())
a.open();
allow(a);
return true;
}
bool
ircd::net::allow(acceptor &a)
{
if(unlikely(!a.a.is_open()))
return false;
if(a.accepting > 0)
return false;
a.set_handle();
return true;
}
std::ostream &
ircd::net::operator<<(std::ostream &s, const acceptor &a)
{
s << loghead(a);
return s;
}
ircd::string_view
ircd::net::loghead(const acceptor &a)
{
thread_local char buf[512];
return loghead(buf, a);
}
ircd::string_view
ircd::net::loghead(const mutable_buffer &out,
const acceptor &a)
{
thread_local char addrbuf[128];
return fmt::sprintf
{
out, "[%s] @ [%s]:%u",
name(a),
string(addrbuf, a.ep.address()),
a.ep.port(),
};
}
ircd::net::ipport
ircd::net::local(const acceptor &a)
{
return make_ipport(a.a.local_endpoint());
}
ircd::net::ipport
ircd::net::binder(const acceptor &a)
{
return make_ipport(a.ep);
}
ircd::string_view
ircd::net::name(const acceptor &a)
{
return a.name;
}
ircd::json::object
ircd::net::config(const acceptor &a)
{
return a.opts;
}
size_t
ircd::net::accepting_count(const acceptor &a)
{
return a.accepting;
}
size_t
ircd::net::handshaking_count(const acceptor &a)
{
return a.handshaking.size();
}
size_t
ircd::net::handshaking_count(const acceptor &a,
const ipaddr &ipaddr)
{
return std::count_if(begin(a.handshaking), end(a.handshaking), [&ipaddr]
(const auto &socket_p)
{
return remote_ipport(*socket_p) == ipaddr;
});
}
//
// acceptor::acceptor
//
ircd::net::acceptor::acceptor(net::listener &listener,
const string_view &name,
const json::object &opts,
listener::callback cb,
listener::proffer pcb)
try
:listener_
{
&listener
}
,name
{
name
}
,opts
{
opts
}
,backlog
{
//TODO: XXX
//boost::asio::ip::tcp::socket::max_connections <-- linkage failed?
std::min(opts.get<uint>("backlog", SOMAXCONN), uint(SOMAXCONN))
}
,cb
{
std::move(cb)
}
,pcb
{
std::move(pcb)
}
,ssl
{
asio::ssl::context::method::sslv23_server
}
,ep
{
make_address(unquote(opts.get("host", "*"_sv))),
opts.get<uint16_t>("port", 8448L)
}
,a
{
ios::get()
}
{
configure(opts);
log::debug
{
log, "%s configured listener SSL",
loghead(*this)
};
open();
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
ircd::net::acceptor::~acceptor()
noexcept
{
if(accepting || !handshaking.empty())
log::critical
{
"The acceptor must not have clients during destruction!"
" (accepting:%zu handshaking:%zu)",
accepting,
handshaking.size(),
};
}
void
ircd::net::acceptor::open()
{
static const auto &max_connections
{
//TODO: XXX
//boost::asio::ip::tcp::socket::max_connections <-- linkage failed?
std::min(json::object(opts).get<uint>("max_connections", SOMAXCONN), uint(SOMAXCONN))
};
static const ip::tcp::acceptor::reuse_address reuse_address
{
true
};
assert(!interrupting);
interrupting = false;
a.open(ep.protocol());
a.set_option(reuse_address);
a.non_blocking(true);
log::debug
{
log, "%s opened listener socket",
loghead(*this)
};
a.bind(ep);
log::debug
{
log, "%s bound listener socket",
loghead(*this)
};
a.listen(backlog);
log::debug
{
log, "%s listening (backlog: %lu, max connections: %zu)",
loghead(*this),
backlog,
max_connections
};
}
void
ircd::net::acceptor::close()
{
if(!interrupting)
interrupt();
if(a.is_open())
a.close();
for(const auto &sock : handshaking)
sock->cancel();
join();
log::debug
{
log, "%s listener finished",
loghead(*this)
};
}
void
ircd::net::acceptor::join()
noexcept try
{
if(!interrupting)
interrupt();
if(!ctx::current)
return;
joining.wait([this]
{
return !accepting && handshaking.empty();
});
interrupting = false;
}
catch(const std::exception &e)
{
log::error
{
log, "acceptor(%p) join: %s",
this,
e.what()
};
}
bool
ircd::net::acceptor::interrupt()
noexcept try
{
if(interrupting)
return false;
interrupting = true;
a.cancel();
return true;
}
catch(const boost::system::system_error &e)
{
log::error
{
log, "acceptor(%p) interrupt: %s",
this,
string(e)
};
return false;
}
/// Sets the next asynchronous handler to start the next accept sequence.
/// Each call to next() sets one handler which handles the connect for one
/// socket. After the connect, an asynchronous SSL handshake handler is set
/// for the socket.
bool
ircd::net::acceptor::set_handle()
try
{
static ios::descriptor desc
{
"ircd::net::acceptor accept"
};
const auto &sock
{
std::make_shared<ircd::socket>(ssl)
};
auto handler
{
std::bind(&acceptor::accept, this, ph::_1, sock)
};
ip::tcp::socket &sd(*sock);
a.async_accept(sd, ios::handle(desc, std::move(handler)));
++accepting;
return true;
}
catch(const std::exception &e)
{
throw panic
{
"%s :%s", loghead(*this), e.what()
};
}
/// Callback for a socket connected. This handler then invokes the
/// asynchronous SSL handshake sequence.
///
void
ircd::net::acceptor::accept(const error_code &ec,
const std::shared_ptr<socket> sock)
noexcept try
{
assert(bool(sock));
assert(accepting > 0);
assert(accepting == 1); // for now
thread_local char ecbuf[64];
log::debug
{
log, "%s %s accepted(%zu) %s",
loghead(*sock),
loghead(*this),
accepting,
string(ecbuf, ec)
};
--accepting;
if(!check_accept_error(ec, *sock))
return;
const auto &remote
{
remote_ipport(*sock)
};
// Call the proffer-callback if available. This allows the application
// to check whether to allow or deny this remote before the handshake.
if(pcb && !pcb(*listener_, remote))
{
net::close(*sock, dc::RST, close_ignore);
return;
}
if(unlikely(handshaking_count(*this) >= size_t(handshaking_max)))
{
log::dwarning
{
log, "%s refusing to handshake %s; exceeds maximum of %zu handshakes.",
loghead(*sock),
loghead(*this),
size_t(handshaking_max),
};
net::close(*sock, dc::RST, close_ignore);
return;
}
if(unlikely(handshaking_count(*this, remote) >= size_t(handshaking_max_per_peer)))
{
log::dwarning
{
log, "%s refusing to handshake %s; exceeds maximum of %zu handshakes to them.",
loghead(*sock),
loghead(*this),
size_t(handshaking_max_per_peer),
};
net::close(*sock, dc::RST, close_ignore);
return;
}
static const socket::handshake_type handshake_type
{
socket::handshake_type::server
};
static ios::descriptor desc
{
"ircd::net::acceptor async_handshake"
};
const auto it
{
handshaking.emplace(end(handshaking), sock)
};
auto handshake
{
std::bind(&acceptor::handshake, this, ph::_1, sock, it)
};
sock->set_timeout(milliseconds(timeout));
sock->ssl.async_handshake(handshake_type, ios::handle(desc, std::move(handshake)));
}
catch(const ctx::interrupted &e)
{
assert(bool(sock));
thread_local char ecbuf[64];
log::debug
{
log, "%s acceptor interrupted %s %s",
loghead(*sock),
loghead(*this),
string(ecbuf, ec)
};
error_code ec_;
sock->sd.close(ec_);
assert(!ec_);
joining.notify_all();
}
catch(const std::system_error &e)
{
assert(bool(sock));
log::derror
{
log, "%s %s in accept(): %s",
loghead(*sock),
loghead(*this),
e.what()
};
error_code ec_;
sock->sd.close(ec_);
assert(!ec_);
joining.notify_all();
}
catch(const std::exception &e)
{
assert(bool(sock));
log::error
{
log, "%s %s in accept(): %s",
loghead(*sock),
loghead(*this),
e.what()
};
error_code ec_;
sock->sd.close(ec_);
assert(!ec_);
joining.notify_all();
}
/// Error handler for the accept socket callback. This handler determines
/// whether or not the handler should return or continue processing the
/// result.
///
bool
ircd::net::acceptor::check_accept_error(const error_code &ec,
socket &sock)
{
using std::errc;
if(unlikely(interrupting))
throw ctx::interrupted();
if(likely(!ec))
return true;
if(system_category(ec)) switch(ec.value())
{
case int(errc::operation_canceled):
return false;
default:
break;
}
throw_system_error(ec);
__builtin_unreachable();
}
void
ircd::net::acceptor::handshake(const error_code &ec,
const std::shared_ptr<socket> sock,
const decltype(handshaking)::const_iterator it)
noexcept try
{
assert(bool(sock));
assert(!handshaking.empty());
assert(it != end(handshaking));
#ifdef RB_DEBUG
const auto *const current_cipher
{
!ec?
openssl::current_cipher(*sock):
nullptr
};
thread_local char ecbuf[64];
log::debug
{
log, "%s %s handshook(%zd:%zu) cipher:%s %s",
loghead(*sock),
loghead(*this),
std::distance(cbegin(handshaking), it),
handshaking.size(),
current_cipher?
openssl::name(*current_cipher):
"<NO CIPHER>"_sv,
string(ecbuf, ec)
};
#endif
handshaking.erase(it);
check_handshake_error(ec, *sock);
sock->cancel_timeout();
assert(bool(cb));
// Toggles the behavior of non-async functions; see func comment
blocking(*sock, false);
cb(*listener_, sock);
}
catch(const ctx::interrupted &e)
{
assert(bool(sock));
thread_local char ecbuf[64];
log::debug
{
log, "%s SSL handshake interrupted %s %s",
loghead(*sock),
loghead(*this),
string(ecbuf, ec)
};
net::close(*sock, dc::RST, close_ignore);
joining.notify_all();
}
catch(const std::system_error &e)
{
assert(bool(sock));
log::derror
{
log, "%s %s in handshake(): %s",
loghead(*sock),
loghead(*this),
e.what()
};
net::close(*sock, dc::RST, close_ignore);
joining.notify_all();
}
catch(const std::exception &e)
{
assert(bool(sock));
log::error
{
log, "%s %s in handshake(): %s",
loghead(*sock),
loghead(*this),
e.what()
};
net::close(*sock, dc::RST, close_ignore);
joining.notify_all();
}
/// Error handler for the SSL handshake callback. This handler determines
/// whether or not the handler should return or continue processing the
/// result.
///
void
ircd::net::acceptor::check_handshake_error(const error_code &ec,
socket &sock)
{
using std::errc;
if(unlikely(interrupting))
throw ctx::interrupted();
if(likely(system_category(ec))) switch(ec.value())
{
case 0:
return;
case int(errc::operation_canceled):
if(sock.timedout)
throw_system_error(errc::timed_out);
else
break;
default:
break;
}
throw_system_error(ec);
__builtin_unreachable();
}
ircd::string_view
ircd::net::acceptor::handle_alpn(SSL &ssl,
const vector_view<const string_view> &in)
{
if(empty(in))
return {};
log::debug
{
log, "%s offered %zu ALPN protocols",
loghead(*this),
size(in),
};
#ifdef IRCD_NET_ACCEPTOR_DEBUG_ALPN
for(size_t i(0); i < size(in); ++i)
{
log::debug
{
log, "%s ALPN protocol %zu of %zu: '%s'",
loghead(*this),
i,
size(in),
in[i],
};
}
#endif IRCD_NET_ACCEPTOR_DEBUG_ALPN
return {};
}
static int
ircd_net_acceptor_handle_alpn(SSL *const s,
const unsigned char **out,
unsigned char *const outlen,
const unsigned char *const in,
unsigned int inlen,
void *const arg)
noexcept try
{
static const size_t PROTOS_MAX
{
8
};
auto &acceptor
{
*reinterpret_cast<ircd::net::acceptor *>(arg)
};
size_t p(0), i(0);
ircd::string_view protos[PROTOS_MAX];
while(i < inlen && p < PROTOS_MAX)
{
const uint8_t &len(in[i++]);
if(unlikely(!len || i + len >= inlen))
break;
protos[p++] = ircd::string_view
{
reinterpret_cast<const char *>(in + i), len
};
i += len;
}
const ircd::vector_view<const ircd::string_view> vec
{
protos, p
};
const ircd::string_view sel
{
acceptor.handle_alpn(*s, vec)
};
if(!sel)
return SSL_TLSEXT_ERR_NOACK;
*out = reinterpret_cast<const unsigned char *>(data(sel));
*outlen = size(sel);
return SSL_TLSEXT_ERR_OK;
}
catch(const std::exception &)
{
return SSL_TLSEXT_ERR_ALERT_FATAL;
}
catch(...)
{
ircd::log::critical
{
ircd::net::acceptor::log,
"Acceptor ALPN callback unhandled."
};
throw;
}
bool
ircd::net::acceptor::handle_sni(SSL &ssl,
int &client_server)
try
{
const string_view &name
{
openssl::server_name(ssl)
};
if(!name)
return true;
//TODO: XXX
if(!m::my_host(name))
{
log::dwarning
{
log, "%s unrecognized SNI '%s' offered.",
loghead(*this),
name,
};
return false;
}
log::debug
{
log, "%s offered SNI '%s'",
loghead(*this),
name
};
return true;
}
catch(const sni_warning &e)
{
log::warning
{
log, "%s during SNI :%s",
loghead(*this),
e.what()
};
throw;
}
catch(const std::exception &e)
{
log::error
{
log, "%s during SNI :%s",
loghead(*this),
e.what()
};
throw;
}
static int
ircd_net_acceptor_handle_sni(SSL *const s,
int *const i,
void *const a)
noexcept try
{
if(unlikely(!s || !i || !a))
throw ircd::panic
{
"Missing arguments to callback s:%p i:%p a:%p", s, i, a
};
auto &acceptor
{
*reinterpret_cast<ircd::net::acceptor *>(a)
};
return acceptor.handle_sni(*s, *i)?
SSL_TLSEXT_ERR_OK:
SSL_TLSEXT_ERR_NOACK;
}
catch(const ircd::net::acceptor::sni_warning &)
{
return SSL_TLSEXT_ERR_ALERT_WARNING;
}
catch(const std::exception &)
{
return SSL_TLSEXT_ERR_ALERT_FATAL;
}
catch(...)
{
ircd::log::critical
{
ircd::net::acceptor::log,
"Acceptor SNI callback unhandled."
};
throw;
}
void
ircd::net::acceptor::configure(const json::object &opts)
{
log::debug
{
log, "%s preparing listener socket configuration...", loghead(*this)
};
ulong flags(0);
if(opts.get<bool>("ssl_default_workarounds", false))
flags |= ssl.default_workarounds;
if(opts.get<bool>("ssl_single_dh_use", false))
flags |= ssl.single_dh_use;
if(opts.get<bool>("ssl_no_sslv2", false))
flags |= ssl.no_sslv2;
if(opts.get<bool>("ssl_no_sslv3", false))
flags |= ssl.no_sslv3;
if(opts.get<bool>("ssl_no_tlsv1", false))
flags |= ssl.no_tlsv1;
if(opts.get<bool>("ssl_no_tlsv1_1", false))
flags |= ssl.no_tlsv1_1;
if(opts.get<bool>("ssl_no_tlsv1_2", false))
flags |= ssl.no_tlsv1_2;
ssl.set_options(flags);
if(!empty(unquote(opts["ssl_cipher_list"])))
{
const json::string &list
{
opts["ssl_cipher_list"]
};
assert(ssl.native_handle());
openssl::set_cipher_list(*ssl.native_handle(), list);
}
else if(!empty(string_view(ssl_cipher_list)))
{
assert(ssl.native_handle());
const string_view &list(ssl_cipher_list);
openssl::set_cipher_list(*ssl.native_handle(), list);
}
else if(!empty(string_view(ssl_cipher_blacklist)))
{
assert(ssl.native_handle());
std::stringstream res;
const string_view &blacklist(ssl_cipher_blacklist);
const auto ciphers(openssl::cipher_list(*ssl.native_handle(), 0));
ircd::tokens(ciphers, ':', [&res, &blacklist]
(const string_view &cipher)
{
assert(cipher);
if(!has(blacklist, cipher))
res << cipher << ':';
});
std::string list(res.str());
assert(list.empty() || list.back() == ':');
list.pop_back();
openssl::set_cipher_list(*ssl.native_handle(), list);
}
if(!empty(unquote(opts["ssl_curve_list"])))
{
const json::string &list
{
opts["ssl_curve_list"]
};
assert(ssl.native_handle());
openssl::set_curves(*ssl.native_handle(), list);
}
else if(!empty(string_view(ssl_curve_list)))
{
const string_view &list(ssl_curve_list);
assert(ssl.native_handle());
openssl::set_curves(*ssl.native_handle(), list);
}
if(!empty(unquote(opts["certificate_chain_path"])))
{
const std::string filename
{
unquote(opts["certificate_chain_path"])
};
if(!fs::exists(filename))
throw error
{
"%s SSL certificate chain file @ `%s' not found",
loghead(*this),
filename
};
ssl.use_certificate_chain_file(filename);
log::info
{
log, "%s using certificate chain file '%s'",
loghead(*this),
filename
};
}
if(!empty(unquote(opts["certificate_pem_path"])))
{
const std::string filename
{
unquote(opts.get("certificate_pem_path", name + ".crt"))
};
if(!fs::exists(filename))
throw error
{
"%s SSL certificate pem file @ `%s' not found",
loghead(*this),
filename
};
ssl.use_certificate_file(filename, asio::ssl::context::pem);
log::info
{
log, "%s using certificate file '%s'",
loghead(*this),
filename
};
}
if(!empty(unquote(opts["private_key_pem_path"])))
{
const std::string filename
{
unquote(opts.get("private_key_pem_path", name + ".crt.key"))
};
if(!fs::exists(filename))
throw error
{
"%s SSL private key file @ `%s' not found",
loghead(*this),
filename
};
ssl.use_private_key_file(filename, asio::ssl::context::pem);
log::info
{
log, "%s using private key file '%s'",
loghead(*this),
filename
};
}
if(!empty(unquote(opts["tmp_dh_path"])))
{
const std::string filename
{
unquote(opts.at("tmp_dh_path"))
};
if(!fs::exists(filename))
throw error
{
"%s SSL tmp dh file @ `%s' not found",
loghead(*this),
filename
};
ssl.use_tmp_dh_file(filename);
log::info
{
log, "%s using tmp dh file '%s'",
loghead(*this),
filename
};
}
else if(!empty(unquote(opts["tmp_dh"])))
{
const const_buffer buf
{
unquote(opts.at("tmp_dh"))
};
ssl.use_tmp_dh(buf);
log::info
{
log, "%s using DH params supplied in options (%zu bytes)",
loghead(*this),
size(buf)
};
}
else
{
assert(ssl.native_handle());
openssl::set_ecdh_auto(*ssl.native_handle(), true);
}
//TODO: XXX
ssl.set_password_callback([this]
(const auto &size, const auto &purpose)
{
log::notice
{
log, "%s asking for password with purpose '%s' (size: %zu)",
loghead(*this),
purpose,
size
};
//XXX: TODO
assert(0);
return "foobar";
});
SSL_CTX_set_alpn_select_cb(ssl.native_handle(), ircd_net_acceptor_handle_alpn, this);
SSL_CTX_set_tlsext_servername_callback(ssl.native_handle(), ircd_net_acceptor_handle_sni);
SSL_CTX_set_tlsext_servername_arg(ssl.native_handle(), this);
}
//
// acceptor_udp
//
std::ostream &
ircd::net::operator<<(std::ostream &s, const acceptor_udp &a)
{
s << loghead(a);
return s;
}
ircd::string_view
ircd::net::loghead(const acceptor_udp &a)
{
thread_local char buf[512];
return loghead(buf, a);
}
ircd::string_view
ircd::net::loghead(const mutable_buffer &out,
const acceptor_udp &a)
{
thread_local char addrbuf[128];
return fmt::sprintf
{
out, "[%s] @ [%s]:%u",
a.name,
string(addrbuf, a.ep.address()),
a.ep.port(),
};
}
//
// acceptor_udp::acceptor
//
ircd::net::acceptor_udp::acceptor_udp(const string_view &name,
const json::object &opts)
try
:name
{
name
}
,opts
{
opts
}
,ep
{
make_address(unquote(opts.get("host", "*"_sv))),
opts.get<uint16_t>("port", 8448L)
}
,a
{
ios::get()
}
{
static const ip::udp::socket::reuse_address reuse_address
{
true
};
a.open(ep.protocol());
a.set_option(reuse_address);
log::debug
{
log, "%s opened listener socket", loghead(*this)
};
a.bind(ep);
log::debug
{
log, "%s bound listener socket", loghead(*this)
};
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
ircd::net::acceptor_udp::~acceptor_udp()
noexcept
{
}
void
ircd::net::acceptor_udp::join()
noexcept try
{
interrupt();
joining.wait([this]
{
return waiting == 0;
});
}
catch(const std::exception &e)
{
log::error
{
log, "acceptor(%p) join: %s", this, e.what()
};
}
bool
ircd::net::acceptor_udp::interrupt()
noexcept try
{
a.cancel();
return true;
}
catch(const boost::system::system_error &e)
{
log::error
{
log, "acceptor(%p) interrupt: %s", this, string(e)
};
return false;
}
ircd::net::listener_udp::datagram &
ircd::net::acceptor_udp::operator()(datagram &datagram)
{
assert(ctx::current);
const auto flags
{
this->flags(datagram.flag)
};
const auto interruption{[this]
(ctx::ctx *const &)
{
this->interrupt();
}};
const scope_count waiting
{
this->waiting
};
ip::udp::endpoint ep;
size_t rlen; continuation
{
continuation::asio_predicate, interruption, [this, &rlen, &datagram, &ep, &flags]
(auto &yield)
{
rlen = a.async_receive_from(datagram.mbufs, ep, flags, yield);
}
};
datagram.remote = make_ipport(ep);
datagram.mbuf = {data(datagram.mbuf), rlen};
return datagram;
}
boost::asio::ip::udp::socket::message_flags
ircd::net::acceptor_udp::flags(const flag &flag)
{
ip::udp::socket::message_flags ret{0};
if(flag & flag::PEEK)
ret |= ip::udp::socket::message_peek;
return ret;
}
//
// listener_udp::datagram
//
ircd::net::listener_udp::datagram::datagram(const const_buffer &buf,
const ipport &remote,
const enum flag &flag)
:remote{remote}
,flag{flag}
{
cbuf = buf;
cbufs =
{
&this->cbuf, 1
};
}
ircd::net::listener_udp::datagram::datagram(const mutable_buffer &buf,
const enum flag &flag)
:flag{flag}
{
mbuf = buf;
mbufs =
{
&this->mbuf, 1
};
}
///////////////////////////////////////////////////////////////////////////////
//
// net/scope_timeout.h
//
ircd::net::scope_timeout::scope_timeout(socket &socket,
const milliseconds &timeout)
:s
{
timeout < 0ms? nullptr : &socket
}
{
if(timeout < 0ms)
return;
socket.set_timeout(timeout);
}
ircd::net::scope_timeout::scope_timeout(socket &socket,
const milliseconds &timeout,
handler callback)
:s
{
timeout < 0ms? nullptr : &socket
}
{
if(timeout < 0ms)
return;
socket.set_timeout(timeout, [callback(std::move(callback))]
(const error_code &ec)
{
const bool &timed_out{!ec}; // success = timeout
callback(timed_out);
});
}
ircd::net::scope_timeout::scope_timeout(scope_timeout &&other)
noexcept
:s{std::move(other.s)}
{
other.s = nullptr;
}
ircd::net::scope_timeout &
ircd::net::scope_timeout::operator=(scope_timeout &&other)
noexcept
{
this->~scope_timeout();
s = std::move(other.s);
other.s = nullptr;
return *this;
}
ircd::net::scope_timeout::~scope_timeout()
noexcept
{
cancel();
}
bool
ircd::net::scope_timeout::cancel()
noexcept try
{
if(!this->s)
return false;
auto *const s{this->s};
this->s = nullptr;
s->cancel_timeout();
return true;
}
catch(const std::exception &e)
{
log::error
{
log, "socket(%p) scope_timeout::cancel: %s",
(const void *)s,
e.what()
};
return false;
}
bool
ircd::net::scope_timeout::release()
{
const auto s{this->s};
this->s = nullptr;
return s != nullptr;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/socket.h
//
decltype(ircd::net::ssl_curve_list)
ircd::net::ssl_curve_list
{
{ "name", "ircd.net.ssl.curve.list" },
{ "default", string_view{} },
};
decltype(ircd::net::ssl_cipher_list)
ircd::net::ssl_cipher_list
{
{ "name", "ircd.net.ssl.cipher.list" },
{ "default", string_view{} },
};
decltype(ircd::net::ssl_cipher_blacklist)
ircd::net::ssl_cipher_blacklist
{
{ "name", "ircd.net.ssl.cipher.blacklist" },
{ "default", string_view{} },
};
boost::asio::ssl::context
ircd::net::sslv23_client
{
boost::asio::ssl::context::method::sslv23_client
};
decltype(ircd::net::socket::count)
ircd::net::socket::count
{};
decltype(ircd::net::socket::instances)
ircd::net::socket::instances
{};
decltype(ircd::net::socket::total_bytes_in)
ircd::net::socket::total_bytes_in
{
{ "name", "ircd.net.socket.in.total.bytes" },
{ "desc", "The total number of bytes received by all sockets" },
};
decltype(ircd::net::socket::total_bytes_out)
ircd::net::socket::total_bytes_out
{
{ "name", "ircd.net.socket.out.total.bytes" },
{ "desc", "The total number of bytes received by all sockets" },
};
decltype(ircd::net::socket::total_calls_in)
ircd::net::socket::total_calls_in
{
{ "name", "ircd.net.socket.in.total.calls" },
{ "desc", "The total number of read operations on all sockets" },
};
decltype(ircd::net::socket::total_calls_out)
ircd::net::socket::total_calls_out
{
{ "name", "ircd.net.socket.out.total.calls" },
{ "desc", "The total number of write operations on all sockets" },
};
//
// socket
//
ircd::net::socket::socket(asio::ssl::context &ssl,
boost::asio::io_service &ios)
:sd
{
ios
}
,ssl
{
this->sd, ssl
}
,timer
{
ios
}
{
++instances;
}
/// The dtor asserts that the socket is not open/connected requiring a
/// an SSL close_notify. There's no more room for async callbacks via
/// shared_ptr after this dtor.
ircd::net::socket::~socket()
noexcept try
{
assert(instances > 0);
if(unlikely(--instances == 0))
net::dock.notify_all();
if((RB_DEBUG_LEVEL) && unlikely(opened(*this)))
throw panic
{
"Failed to ensure socket(%p) is disconnected from %s before dtor.",
this,
string(remote())
};
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) close: %s",
this,
e.what()
};
return;
}
void
ircd::net::socket::connect(const endpoint &ep,
const open_opts &opts,
eptr_handler callback)
{
log::debug
{
log, "socket:%lu attempting connect remote[%s] to:%ld$ms",
this->id,
string(ep),
opts.connect_timeout.count()
};
static ios::descriptor desc
{
"ircd::net::socket connect"
};
auto connect_handler
{
std::bind(&socket::handle_connect, this, weak_from(*this), opts, std::move(callback), ph::_1)
};
set_timeout(opts.connect_timeout);
sd.async_connect(ep, ios::handle(desc, std::move(connect_handler)));
}
void
ircd::net::socket::handshake(const open_opts &opts,
eptr_handler callback)
{
assert(!fini && sd.is_open());
log::debug
{
log, "%s handshaking to '%s' for '%s' to:%ld$ms",
loghead(*this),
opts.send_sni?
server_name(opts):
"<no sni>"_sv,
common_name(opts),
opts.handshake_timeout.count()
};
static ios::descriptor desc
{
"ircd::net::socket handshake"
};
auto handshake_handler
{
std::bind(&socket::handle_handshake, this, weak_from(*this), std::move(callback), ph::_1)
};
auto verify_handler
{
std::bind(&socket::handle_verify, this, ph::_1, ph::_2, opts)
};
assert(!fini);
set_timeout(opts.handshake_timeout);
if(opts.send_sni && server_name(opts))
openssl::server_name(*this, server_name(opts));
ssl.set_verify_callback(std::move(verify_handler));
ssl.async_handshake(handshake_type::client, ios::handle(desc, std::move(handshake_handler)));
}
void
ircd::net::socket::disconnect(const close_opts &opts,
eptr_handler callback)
try
{
if(!sd.is_open())
{
call_user(callback, {});
return;
}
log::debug
{
log, "%s disconnect type:%d user: in:%zu out:%zu",
loghead(*this),
uint(opts.type),
in.bytes,
out.bytes
};
assert(!fini);
fini = true;
cancel();
if(opts.sopts)
set(*this, *opts.sopts);
switch(opts.type)
{
case dc::RST:
sd.close();
break;
case dc::FIN:
sd.shutdown(ip::tcp::socket::shutdown_both);
break;
case dc::FIN_SEND:
sd.shutdown(ip::tcp::socket::shutdown_send);
break;
case dc::FIN_RECV:
sd.shutdown(ip::tcp::socket::shutdown_receive);
break;
case dc::SSL_NOTIFY:
{
static ios::descriptor desc
{
"ircd::net::socket shutdown"
};
auto disconnect_handler
{
std::bind(&socket::handle_disconnect, this, shared_from(*this), std::move(callback), ph::_1)
};
set_timeout(opts.timeout);
ssl.async_shutdown(ios::handle(desc, std::move(disconnect_handler)));
return;
}
}
call_user(callback, {});
}
catch(const boost::system::system_error &e)
{
log::derror
{
log, "socket:%lu disconnect type:%d :%s",
this->id,
uint(opts.type),
e.what()
};
call_user(callback, make_error_code(e));
}
catch(const std::exception &e)
{
throw panic
{
"socket:%lu disconnect: type: %d: %s",
this->id,
uint(opts.type),
e.what()
};
}
void
ircd::net::socket::cancel()
noexcept
{
cancel_timeout();
boost::system::error_code ec;
sd.cancel(ec);
if(likely(!ec))
return;
thread_local char ecbuf[64];
log::dwarning
{
log, "socket:%lu cancel :%s",
this->id,
string(ecbuf, ec)
};
}
void
ircd::net::socket::wait(const wait_opts &opts,
wait_callback_eptr callback)
{
wait(opts, [callback(std::move(callback))]
(const error_code &ec)
{
if(likely(!ec))
return callback(std::exception_ptr{});
callback(make_system_eptr(ec));
});
}
/// Asynchronous callback when the socket is ready
///
/// Overload for operator() without a timeout. see: operator()
///
void
ircd::net::socket::wait(const wait_opts &opts)
try
{
const auto interruption{[this]
(ctx::ctx *const &)
{
this->cancel();
}};
const scope_timeout timeout
{
*this, opts.timeout
};
switch(opts.type)
{
case ready::READ: continuation
{
continuation::asio_predicate, interruption, [this]
(auto &yield)
{
sd.async_wait(wait_type::wait_read, yield);
}
};
break;
case ready::WRITE: continuation
{
continuation::asio_predicate, interruption, [this]
(auto &yield)
{
sd.async_wait(wait_type::wait_write, yield);
}
};
break;
case ready::ERROR: continuation
{
continuation::asio_predicate, interruption, [this]
(auto &yield)
{
sd.async_wait(wait_type::wait_error, yield);
}
};
break;
default:
throw ircd::not_implemented{};
}
}
catch(const boost::system::system_error &e)
{
if(e.code() == boost::system::errc::operation_canceled && timedout)
throw_system_error(std::errc::timed_out);
throw_system_error(e);
}
/// Asynchronous callback when the socket is ready
///
/// This function calls back the handler when the socket is ready
/// for the operation of the specified type.
///
void
ircd::net::socket::wait(const wait_opts &opts,
wait_callback_ec callback)
try
{
set_timeout(opts.timeout);
const unwind::exceptional unset{[this]
{
cancel_timeout();
}};
switch(opts.type)
{
case ready::ERROR:
{
static ios::descriptor desc
{
"ircd::net::socket::wait ready::ERROR"
};
auto handle
{
std::bind(&socket::handle_ready, this, weak_from(*this), opts.type, std::move(callback), ph::_1, 0UL)
};
sd.async_wait(wait_type::wait_error, ios::handle(desc, std::move(handle)));
break;
}
case ready::WRITE:
{
static ios::descriptor desc
{
"ircd::net::socket::wait ready::WRITE"
};
auto handle
{
std::bind(&socket::handle_ready, this, weak_from(*this), opts.type, std::move(callback), ph::_1, 0UL)
};
sd.async_wait(wait_type::wait_write, ios::handle(desc, std::move(handle)));
break;
}
case ready::READ:
{
static char buf[1];
static const ilist<mutable_buffer> bufs{buf};
static ios::descriptor desc
{
"ircd::net::socket::wait ready::READ"
};
auto handle
{
std::bind(&socket::handle_ready, this, weak_from(*this), opts.type, std::move(callback), ph::_1, ph::_2)
};
// The problem here is that waiting on the sd doesn't account for bytes
// read into SSL that we didn't consume yet. If something is stuck in
// those userspace buffers, the socket won't know about it and perform
// the wait. ASIO should fix this by adding a ssl::stream.wait() method
// which will bail out immediately in this case before passing up to the
// real socket wait.
if(SSL_peek(ssl.native_handle(), buf, sizeof(buf)) >= ssize_t(sizeof(buf)))
{
ircd::post(desc, [handle(std::move(handle))]
{
handle(error_code{}, 1UL);
});
break;
}
// The problem here is that the wait operation gives ec=success on both a
// socket error and when data is actually available. We then have to check
// using a non-blocking peek in the handler. By doing it this way here we
// just get the error in the handler's ec.
sd.async_receive(bufs, sd.message_peek, ios::handle(desc, std::move(handle)));
//sd.async_wait(wait_type::wait_read, std::move(handle));
break;
}
default:
throw ircd::not_implemented{};
}
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
void
ircd::net::socket::check(const ready &type)
{
const error_code ec
{
check(std::nothrow, type)
};
if(ec.value())
throw_system_error(ec);
}
std::error_code
ircd::net::socket::check(std::nothrow_t,
const ready &type)
noexcept
{
assert(type == ready::ERROR);
static char buf[1];
static const ilist<mutable_buffer> bufs{buf};
static const std::error_code eof
{
make_error_code(boost::system::error_code
{
boost::asio::error::eof, boost::asio::error::get_misc_category()
})
};
std::error_code ret;
if(SSL_peek(ssl.native_handle(), buf, sizeof(buf)) >= ssize_t(sizeof(buf)))
return ret;
assert(!blocking(*this));
boost::system::error_code ec;
if(sd.receive(bufs, sd.message_peek, ec) >= ssize_t(sizeof(buf)))
{
assert(!ec.value());
return ret;
}
if(ec.value())
ret = make_error_code(ec);
else
ret = eof;
if(ret == std::errc::resource_unavailable_try_again)
ret = {};
return ret;
}
/// Yields ircd::ctx until buffers are full.
template<class iov>
size_t
ircd::net::socket::read_all(iov&& bufs)
try
{
static const auto completion
{
asio::transfer_all()
};
const auto interruption{[this]
(ctx::ctx *const &)
{
this->cancel();
}};
size_t ret; continuation
{
continuation::asio_predicate, interruption, [this, &ret, &bufs]
(auto &yield)
{
ret = asio::async_read(ssl, std::forward<iov>(bufs), completion, yield);
}
};
if(!ret)
throw std::system_error
{
boost::asio::error::eof, boost::asio::error::get_misc_category()
};
++in.calls;
in.bytes += ret;
++total_calls_in;
total_bytes_in += ret;
return ret;
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
/// Yields ircd::ctx until remote has sent at least some data.
template<class iov>
size_t
ircd::net::socket::read_few(iov&& bufs)
try
{
const auto interruption{[this]
(ctx::ctx *const &)
{
this->cancel();
}};
size_t ret; continuation
{
continuation::asio_predicate, interruption, [this, &ret, &bufs]
(auto &yield)
{
ret = ssl.async_read_some(std::forward<iov>(bufs), yield);
}
};
if(!ret)
throw std::system_error
{
asio::error::eof, asio::error::get_misc_category()
};
++in.calls;
in.bytes += ret;
++total_calls_in;
total_bytes_in += ret;
return ret;
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
/// Non-blocking; as much as possible without blocking
template<class iov>
size_t
ircd::net::socket::read_any(iov&& bufs)
{
assert(!blocking(*this));
static const auto completion
{
asio::transfer_all()
};
boost::system::error_code ec;
const size_t ret
{
asio::read(ssl, std::forward<iov>(bufs), completion, ec)
};
++in.calls;
in.bytes += ret;
++total_calls_in;
total_bytes_in += ret;
if(likely(!ec))
return ret;
if(ec == boost::system::errc::resource_unavailable_try_again)
return ret;
throw_system_error(ec);
__builtin_unreachable();
}
/// Non-blocking; One system call only; never throws eof;
template<class iov>
size_t
ircd::net::socket::read_one(iov&& bufs)
{
assert(!blocking(*this));
boost::system::error_code ec;
const size_t ret
{
ssl.read_some(std::forward<iov>(bufs), ec)
};
++in.calls;
in.bytes += ret;
++total_calls_in;
total_bytes_in += ret;
if(likely(!ec))
return ret;
if(ec == boost::system::errc::resource_unavailable_try_again)
return ret;
throw_system_error(ec);
__builtin_unreachable();
}
/// Yields ircd::ctx until all buffers are sent.
template<class iov>
size_t
ircd::net::socket::write_all(iov&& bufs)
try
{
static const auto completion
{
asio::transfer_all()
};
const auto interruption{[this]
(ctx::ctx *const &)
{
this->cancel();
}};
size_t ret; continuation
{
continuation::asio_predicate, interruption, [this, &ret, &bufs]
(auto &yield)
{
ret = asio::async_write(ssl, std::forward<iov>(bufs), completion, yield);
}
};
++out.calls;
out.bytes += ret;
++total_calls_out;
total_bytes_out += ret;
return ret;
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
/// Yields ircd::ctx until one or more bytes are sent.
template<class iov>
size_t
ircd::net::socket::write_few(iov&& bufs)
try
{
const auto interruption{[this]
(ctx::ctx *const &)
{
this->cancel();
}};
size_t ret; continuation
{
continuation::asio_predicate, interruption, [this, &ret, &bufs]
(auto &yield)
{
ret = ssl.async_write_some(std::forward<iov>(bufs), yield);
}
};
++out.calls;
out.bytes += ret;
++total_calls_out;
total_bytes_out += ret;
return ret;
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
/// Non-blocking; writes as much as possible without blocking
template<class iov>
size_t
ircd::net::socket::write_any(iov&& bufs)
try
{
static const auto completion
{
asio::transfer_all()
};
assert(!blocking(*this));
const size_t ret
{
asio::write(ssl, std::forward<iov>(bufs), completion)
};
++out.calls;
out.bytes += ret;
++total_calls_out;
total_bytes_out += ret;
return ret;
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
/// Non-blocking; Writes one "unit" of data or less; never more.
template<class iov>
size_t
ircd::net::socket::write_one(iov&& bufs)
try
{
assert(!blocking(*this));
const size_t ret
{
ssl.write_some(std::forward<iov>(bufs))
};
++out.calls;
out.bytes += ret;
++total_calls_out;
total_bytes_out += ret;
return ret;
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
void
ircd::net::socket::handle_ready(const std::weak_ptr<socket> wp,
const net::ready type,
const ec_handler callback,
error_code ec,
const size_t bytes)
noexcept try
{
using std::errc;
// After life_guard is constructed it is safe to use *this in this frame.
const life_guard<socket> s{wp};
if(!timedout && !is(ec, errc::operation_canceled) && !fini)
cancel_timeout();
if(timedout && is(ec, errc::operation_canceled))
ec = make_error_code(errc::timed_out);
if(unlikely(!ec && !sd.is_open()))
ec = make_error_code(errc::bad_file_descriptor);
if(type == ready::READ && !ec && bytes == 0)
ec = error_code{asio::error::eof, asio::error::get_misc_category()};
#ifdef IRCD_DEBUG_NET_SOCKET_READY
thread_local char ecbuf[64];
log::debug
{
log, "%s ready %s %s avail:%zu:%zu:%d",
loghead(*this),
reflect(type),
string(ecbuf, ec),
type == ready::READ? bytes : 0UL,
type == ready::READ? available(*this) : 0UL,
SSL_pending(ssl.native_handle())
};
#endif
call_user(callback, ec);
}
catch(const std::bad_weak_ptr &e)
{
// This handler may still be registered with asio after the socket destructs, so
// the weak_ptr will indicate that fact. However, this is never intended and is
// a debug assertion which should be corrected.
log::warning
{
log, "socket(%p) belated callback to handler... (%s)",
this,
e.what()
};
assert(0);
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) handle: %s",
this,
e.what()
};
assert(0);
call_user(callback, ec);
}
void
ircd::net::socket::handle_timeout(const std::weak_ptr<socket> wp,
ec_handler callback,
error_code ec)
noexcept try
{
if(unlikely(wp.expired()))
return;
// We increment our end of the timer semaphore. If the count is still
// behind the other end of the semaphore, this callback was sitting in
// the ios queue while the timer was given a new task; any effects here
// will be erroneously bleeding into the next timeout. However the callback
// is still invoked to satisfy the user's expectation for receiving it.
assert(timer_sem[0] < timer_sem[1]);
if(++timer_sem[0] == timer_sem[1] && timer_set) switch(ec.value())
{
// A 'success' for this handler means there was a timeout on the socket
case 0:
{
assert(timedout == false);
timedout = true;
sd.cancel();
break;
}
// A cancelation means there was no timeout.
case int(std::errc::operation_canceled):
{
assert(ec.category() == std::system_category());
assert(timedout == false);
break;
}
// All other errors are unexpected, logged and ignored here.
default: throw panic
{
"socket(%p): unexpected: %s\n", (const void *)this, string(ec)
};
}
else ec = make_error_code(std::errc::operation_canceled);
if(callback)
call_user(callback, ec);
}
catch(const boost::system::system_error &e)
{
using std::errc;
const auto &ec_(e.code());
if(system_category(ec_)) switch(ec_.value())
{
case int(errc::bad_file_descriptor):
{
if(fini)
break;
[[fallthrough]];
}
default:
{
assert(0);
log::critical
{
log, "socket(%p) handle timeout: %s",
(const void *)this,
string(e)
};
break;
}
}
if(callback)
call_user(callback, ec_);
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) handle timeout: %s",
(const void *)this,
e.what()
};
assert(0);
if(callback)
call_user(callback, ec);
}
void
ircd::net::socket::handle_connect(std::weak_ptr<socket> wp,
const open_opts &opts,
eptr_handler callback,
error_code ec)
noexcept try
{
using std::errc;
const life_guard<socket> s{wp};
thread_local char ecbuf[64];
log::debug
{
log, "%s connect %s",
loghead(*this),
string(ecbuf, ec)
};
// The timer was set by socket::connect() and may need to be canceled.
if(!timedout && !is(ec, errc::operation_canceled) && !fini)
cancel_timeout();
if(timedout && is(ec, errc::operation_canceled))
ec = make_error_code(errc::timed_out);
if(!ec && opts.handshake && fini)
ec = make_error_code(errc::operation_canceled);
// A connect error; abort here by calling the user back with error.
if(ec)
return call_user(callback, ec);
// Try to set the user's socket options now; if something fails we can
// invoke their callback with the error from the exception handler.
if(opts.sopts && !fini)
set(*this, *opts.sopts);
// The user can opt out of performing the handshake here.
if(!opts.handshake)
return call_user(callback, ec);
assert(!fini);
handshake(opts, std::move(callback));
}
catch(const std::bad_weak_ptr &e)
{
log::warning
{
log, "socket(%p) belated callback to handle_connect... (%s)",
this,
e.what()
};
assert(0);
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) handle_connect: %s",
this,
e.what()
};
assert(0);
call_user(callback, ec);
}
void
ircd::net::socket::handle_disconnect(std::shared_ptr<socket> s,
eptr_handler callback,
error_code ec)
noexcept try
{
using std::errc;
assert(fini);
if(!timedout && ec != errc::operation_canceled)
cancel_timeout();
if(timedout && ec == errc::operation_canceled)
ec = make_error_code(errc::timed_out);
thread_local char ecbuf[64];
log::debug
{
log, "%s disconnect %s",
loghead(*this),
string(ecbuf, ec)
};
// This ignores EOF and turns it into a success to alleviate user concern.
if(ec.category() == asio::error::get_misc_category())
if(ec.value() == asio::error::eof)
ec = error_code{};
sd.close();
call_user(callback, ec);
}
catch(const boost::system::system_error &e)
{
log::error
{
log, "socket(%p) disconnect: %s",
this,
e.what()
};
assert(0);
call_user(callback, e.code());
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) disconnect: %s",
this,
e.what()
};
assert(0);
call_user(callback, ec);
}
void
ircd::net::socket::handle_handshake(std::weak_ptr<socket> wp,
eptr_handler callback,
error_code ec)
noexcept try
{
using std::errc;
const life_guard<socket> s{wp};
if(!timedout && ec != errc::operation_canceled && !fini)
cancel_timeout();
if(timedout && ec == errc::operation_canceled)
ec = make_error_code(errc::timed_out);
#ifdef RB_DEBUG
const auto *const current_cipher
{
!ec?
openssl::current_cipher(*this):
nullptr
};
thread_local char ecbuf[64];
log::debug
{
log, "%s handshake cipher:%s %s",
loghead(*this),
current_cipher?
openssl::name(*current_cipher):
"<NO CIPHER>"_sv,
string(ecbuf, ec)
};
#endif
// Toggles the behavior of non-async functions; see func comment
if(!ec)
blocking(*this, false);
// This is the end of the asynchronous call chain; the user is called
// back with or without error here.
call_user(callback, ec);
}
catch(const boost::system::system_error &e)
{
log::error
{
log, "socket(%p) after handshake: %s",
this,
e.what()
};
assert(0);
call_user(callback, e.code());
}
catch(const std::bad_weak_ptr &e)
{
log::warning
{
log, "socket(%p) belated callback to handle_handshake... (%s)",
this,
e.what()
};
assert(0);
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) handle_handshake: %s",
this,
e.what()
};
assert(0);
call_user(callback, ec);
}
bool
ircd::net::socket::handle_verify(const bool valid,
asio::ssl::verify_context &vc,
const open_opts &opts)
noexcept try
{
// `valid` indicates whether or not there's an anomaly with the
// certificate; if so, it is usually enumerated by the `switch()`
// statement below. If `valid` is false, this function can return
// true to still continue.
// Socket ordered to shut down. We abort the verification here
// to allow the open_opts out of scope with the user.
if(fini || !sd.is_open())
return false;
// The user can set this option to bypass verification.
if(!opts.verify_certificate)
return true;
// X509_STORE_CTX &
assert(vc.native_handle());
const auto &stctx{*vc.native_handle()};
const auto &cert{openssl::current_cert(stctx)};
const auto reject{[&stctx, &opts]
{
throw inauthentic
{
"%s #%ld: %s",
common_name(opts),
openssl::get_error(stctx),
openssl::get_error_string(stctx)
};
}};
if(!valid)
{
thread_local char buf[16_KiB];
const critical_assertion ca;
log::warning
{
log, "verify[%s]: %s :%s",
common_name(opts),
openssl::get_error_string(stctx),
openssl::print_subject(buf, cert)
};
}
const auto err
{
openssl::get_error(stctx)
};
if(!valid) switch(err)
{
case X509_V_OK:
assert(0);
default:
reject();
__builtin_unreachable();
case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT:
assert(openssl::get_error_depth(stctx) == 0);
if(opts.allow_self_signed)
return true;
reject();
__builtin_unreachable();
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY:
case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE:
case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN:
if(opts.allow_self_signed || opts.allow_self_chain)
return true;
reject();
__builtin_unreachable();
case X509_V_ERR_CERT_HAS_EXPIRED:
if(opts.allow_expired)
return true;
reject();
__builtin_unreachable();
}
const bool verify_common_name
{
opts.verify_common_name &&
(opts.verify_self_signed_common_name && err == X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT)
};
if(verify_common_name)
{
if(unlikely(!common_name(opts)))
throw inauthentic
{
"No common name specified in connection options"
};
boost::asio::ssl::rfc2818_verification verifier
{
common_name(opts)
};
if(!verifier(true, vc))
{
thread_local char buf[rfc1035::NAME_BUFSIZE];
const critical_assertion ca;
throw inauthentic
{
"/CN=%s does not match target host %s :%s",
openssl::subject_common_name(buf, cert),
common_name(opts),
openssl::get_error_string(stctx)
};
}
}
#ifdef RB_DEBUG
thread_local char buf[16_KiB];
const critical_assertion ca;
log::debug
{
log, "verify[%s]: %s",
common_name(opts),
openssl::print_subject(buf, cert)
};
#endif
return true;
}
catch(const inauthentic &e)
{
log::error
{
log, "Certificate rejected: %s", e.what()
};
return false;
}
catch(const std::exception &e)
{
log::critical
{
log, "Certificate error: %s", e.what()
};
return false;
}
void
ircd::net::socket::call_user(const ec_handler &callback,
const error_code &ec)
noexcept try
{
callback(ec);
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) async handler: unhandled exception: %s",
this,
e.what()
};
close(*this, dc::RST, close_ignore);
}
void
ircd::net::socket::call_user(const eptr_handler &callback,
const error_code &ec)
noexcept try
{
if(likely(!ec))
return callback(std::exception_ptr{});
callback(make_system_eptr(ec));
}
catch(const std::exception &e)
{
log::critical
{
log, "socket(%p) async handler: unhandled exception: %s",
this,
e.what()
};
}
ircd::milliseconds
ircd::net::socket::cancel_timeout()
noexcept
{
const auto exp
{
timer.expires_from_now()
};
const auto ret
{
duration_cast<milliseconds>(exp)
};
timer_set = false;
timedout = false;
boost::system::error_code ec;
timer.cancel(ec);
assert(!ec);
return ret;
}
void
ircd::net::socket::set_timeout(const milliseconds &t)
{
set_timeout(t, nullptr);
}
void
ircd::net::socket::set_timeout(const milliseconds &t,
ec_handler callback)
{
cancel_timeout();
if(t < milliseconds(0))
return;
static ios::descriptor descriptor
{
"ircd::net::socket timer"
};
auto handler
{
std::bind(&socket::handle_timeout, this, weak_from(*this), std::move(callback), ph::_1)
};
// The sending-side of the semaphore is incremented here to invalidate any
// pending/queued callbacks to handle_timeout as to not conflict now. The
// required companion boolean timer_set is also lit here.
assert(timer_sem[0] <= timer_sem[1]);
assert(timer_set == false);
assert(timedout == false);
++timer_sem[1];
timer_set = true;
timer.expires_from_now(t);
timer.async_wait(ios::handle(descriptor, std::move(handler)));
}
boost::asio::ip::tcp::endpoint
ircd::net::socket::local()
const
{
return sd.local_endpoint();
}
boost::asio::ip::tcp::endpoint
ircd::net::socket::remote()
const
{
return sd.remote_endpoint();
}
ircd::net::socket::operator
SSL &()
{
assert(ssl.native_handle());
return *ssl.native_handle();
}
ircd::net::socket::operator
const SSL &()
const
{
using type = typename std::remove_const<decltype(socket::ssl)>::type;
auto &ssl(const_cast<type &>(this->ssl));
assert(ssl.native_handle());
return *ssl.native_handle();
}
///////////////////////////////////////////////////////////////////////////////
//
// net/dns.h
//
decltype(ircd::net::dns::log)
ircd::net::dns::log
{
"net.dns"
};
/// Linkage for default opts
decltype(ircd::net::dns::opts_default)
ircd::net::dns::opts_default;
void
ircd::net::dns::resolve(const hostport &hp,
const opts &op,
callback_ipport cb)
{
using prototype = void (const hostport &, const opts &, callback_ipport);
static mods::import<prototype> call
{
"net_dns", "ircd::net::dns::resolve"
};
call(hp, op, std::move(cb));
}
void
ircd::net::dns::resolve(const hostport &hp,
const opts &op,
callback_one cb)
{
using prototype = void (const hostport &, const opts &, callback_one);
static mods::import<prototype> call
{
"net_dns", "ircd::net::dns::resolve"
};
call(hp, op, std::move(cb));
}
void
ircd::net::dns::resolve(const hostport &hp,
const opts &op,
callback cb)
{
using prototype = void (const hostport &, const opts &, callback);
static mods::import<prototype> call
{
"net_dns", "ircd::net::dns::resolve"
};
call(hp, op, std::move(cb));
}
/// Really assumptional and hacky right now. We're just assuming the SRV
/// key is the first two elements of a dot-delimited string which start
/// with underscores. If that isn't good enough in the future this will rot
/// and become a regression hazard.
ircd::string_view
ircd::net::dns::unmake_SRV_key(const string_view &key)
{
if(token_count(key, '.') < 3)
return key;
if(!startswith(token(key, '.', 0), '_'))
return key;
if(!startswith(token(key, '.', 1), '_'))
return key;
return tokens_after(key, '.', 1);
}
ircd::string_view
ircd::net::dns::make_SRV_key(const mutable_buffer &out,
const hostport &hp,
const opts &opts)
{
if(!opts.srv)
return fmt::sprintf
{
out, "_%s._%s.%s", service(hp), opts.proto, host(hp)
};
else
return fmt::sprintf
{
out, "%s%s", opts.srv, host(hp)
};
}
ircd::json::object
ircd::net::dns::random_choice(const json::array &rrs)
{
const size_t &count
{
rrs.size()
};
if(!count)
return json::object{};
const auto choice
{
rand::integer(0, count - 1)
};
assert(choice < count);
const json::object &rr
{
rrs[choice]
};
return rr;
}
bool
ircd::net::dns::expired(const json::object &rr,
const time_t &rr_ts)
{
static mods::import<conf::item<seconds>> min_ttl
{
"net_dns", "ircd::net::dns::cache::min_ttl"
};
static mods::import<conf::item<seconds>> error_ttl
{
"net_dns", "ircd::net::dns::cache::error_ttl"
};
const conf::item<seconds> &min_ttl_item
{
static_cast<conf::item<seconds> &>(min_ttl)
};
const conf::item<seconds> &error_ttl_item
{
static_cast<conf::item<seconds> &>(error_ttl)
};
const seconds &min_seconds(min_ttl_item);
const seconds &err_seconds(error_ttl_item);
const time_t &min
{
is_error(rr)?
err_seconds.count():
min_seconds.count()
};
return expired(rr, rr_ts, min);
}
bool
ircd::net::dns::expired(const json::object &rr,
const time_t &rr_ts,
const time_t &min_ttl)
{
const auto ttl(get_ttl(rr));
return rr_ts + std::max(ttl, min_ttl) < ircd::time();
}
time_t
ircd::net::dns::get_ttl(const json::object &rr)
{
return rr.get<time_t>("ttl", 0L);
}
bool
ircd::net::dns::is_empty(const json::array &rrs)
{
return std::all_of(begin(rrs), end(rrs), []
(const json::object &rr)
{
return is_empty(rr);
});
}
bool
ircd::net::dns::is_empty(const json::object &rr)
{
return empty(rr) || (rr.has("ttl") && size(rr) == 1);
}
bool
ircd::net::dns::is_error(const json::array &rrs)
{
return !std::none_of(begin(rrs), end(rrs), []
(const json::object &rr)
{
return is_error(rr);
});
}
bool
ircd::net::dns::is_error(const json::object &rr)
{
return rr.has("error");
}
//
// cache
//
bool
ircd::net::dns::cache::put(const hostport &h,
const opts &o,
const uint &r,
const string_view &m)
try
{
using prototype = bool (const hostport &, const opts &, const uint &, const string_view &);
static mods::import<prototype> call
{
"net_dns", "ircd::net::dns::cache::put"
};
return call(h, o, r, m);
}
catch(const mods::unavailable &e)
{
thread_local char buf[128];
log::dwarning
{
log, "Failed to put error for '%s' in DNS cache :%s",
string(buf, h),
e.what()
};
return false;
}
bool
ircd::net::dns::cache::put(const hostport &h,
const opts &o,
const records &r)
try
{
using prototype = bool (const hostport &, const opts &, const records &);
static mods::import<prototype> call
{
"net_dns", "ircd::net::dns::cache::put"
};
return call(h, o, r);
}
catch(const mods::unavailable &e)
{
thread_local char buf[128];
log::dwarning
{
log, "Failed to put '%s' in DNS cache :%s",
string(buf, h),
e.what()
};
return false;
}
/// This function has an opportunity to respond from the DNS cache. If it
/// returns true, that indicates it responded by calling back the user and
/// nothing further should be done for them. If it returns false, that
/// indicates it did not respond and to proceed normally. The response can
/// be of a cached successful result, or a cached error. Both will return
/// true.
bool
ircd::net::dns::cache::get(const hostport &h,
const opts &o,
const callback &c)
try
{
using prototype = bool (const hostport &, const opts &, const callback &);
static mods::import<prototype> call
{
"net_dns", "ircd::net::dns::cache::get"
};
return call(h, o, c);
}
catch(const mods::unavailable &e)
{
thread_local char buf[128];
log::dwarning
{
log, "Failed to get '%s' from DNS cache :%s",
string(buf, h),
e.what()
};
return false;
}
bool
ircd::net::dns::cache::for_each(const hostport &h,
const opts &o,
const closure &c)
{
using prototype = bool (const hostport &, const opts &, const closure &);
static mods::import<prototype> call
{
"net_dns", "ircd::net::dns::cache::for_each"
};
return call(h, o, c);
}
bool
ircd::net::dns::cache::for_each(const string_view &type,
const closure &c)
{
using prototype = bool (const string_view &, const closure &);
static mods::import<prototype> call
{
"net_dns", "ircd::net::dns::cache::for_each"
};
return call(type, c);
}
ircd::string_view
ircd::net::dns::cache::make_type(const mutable_buffer &out,
const uint16_t &type)
try
{
return make_type(out, rfc1035::rqtype.at(type));
}
catch(const std::out_of_range &)
{
throw error
{
"Record type[%u] is not recognized", type
};
}
ircd::string_view
ircd::net::dns::cache::make_type(const mutable_buffer &out,
const string_view &type)
{
return fmt::sprintf
{
out, "ircd.dns.rrs.%s", type
};
}
///////////////////////////////////////////////////////////////////////////////
//
// net/ipport.h
//
std::ostream &
ircd::net::operator<<(std::ostream &s, const ipport &t)
{
thread_local char buf[128];
const critical_assertion ca;
s << net::string(buf, t);
return s;
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const ipport &ipp)
{
mutable_buffer out{buf};
const bool has_port(port(ipp));
const bool need_bracket(has_port && is_v6(ipp));
if(need_bracket)
consume(out, copy(out, "["_sv));
if(ipp)
consume(out, size(string(out, std::get<ipport::IP>(ipp))));
if(need_bracket)
consume(out, copy(out, "]"_sv));
if(has_port)
{
consume(out, copy(out, ":"_sv));
consume(out, size(lex_cast(port(ipp), out)));
}
return
{
data(buf), data(out)
};
}
ircd::net::ipport
ircd::net::make_ipport(const boost::asio::ip::udp::endpoint &ep)
{
return ipport
{
ep.address(), ep.port()
};
}
ircd::net::ipport
ircd::net::make_ipport(const boost::asio::ip::tcp::endpoint &ep)
{
return ipport
{
ep.address(), ep.port()
};
}
boost::asio::ip::udp::endpoint
ircd::net::make_endpoint_udp(const ipport &ipport)
{
return
{
make_address(std::get<ipport::IP>(ipport)), port(ipport)
};
}
boost::asio::ip::tcp::endpoint
ircd::net::make_endpoint(const ipport &ipport)
{
return
{
make_address(std::get<ipport::IP>(ipport)), port(ipport)
};
}
//
// cmp
//
bool
ircd::net::ipport::cmp_ip::operator()(const ipport &a, const ipport &b)
const
{
return ipaddr::cmp()(std::get<ipport::IP>(a), std::get<ipport::IP>(b));
}
bool
ircd::net::ipport::cmp_port::operator()(const ipport &a, const ipport &b)
const
{
return std::get<ipport::PORT>(a) < std::get<ipport::PORT>(b);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/ipaddr.h
//
boost::asio::ip::address
ircd::net::make_address(const ipaddr &ipaddr)
{
return is_v6(ipaddr)?
ip::address(make_address(ipaddr.v6)):
ip::address(make_address(ipaddr.v4));
}
boost::asio::ip::address
ircd::net::make_address(const string_view &ip)
try
{
return
ip && ip == "*"?
boost::asio::ip::address_v6::any():
ip?
boost::asio::ip::make_address(ip):
boost::asio::ip::address{};
}
catch(const boost::system::system_error &e)
{
throw_system_error(e);
}
boost::asio::ip::address_v4
ircd::net::make_address(const uint32_t &ip)
{
return ip::address_v4{ip};
}
boost::asio::ip::address_v6
ircd::net::make_address(const uint128_t &ip)
{
const auto &pun
{
reinterpret_cast<const uint8_t (&)[16]>(ip)
};
auto punpun
{
reinterpret_cast<const std::array<uint8_t, 16> &>(pun)
};
std::reverse(begin(punpun), end(punpun));
return ip::address_v6{punpun};
}
std::ostream &
ircd::net::operator<<(std::ostream &s, const ipaddr &ipa)
{
thread_local char buf[128];
const critical_assertion ca;
s << net::string(buf, ipa);
return s;
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const ipaddr &ipaddr)
{
return is_v6(ipaddr)?
string_ip6(buf, ipaddr.v6):
string_ip4(buf, ipaddr.v4);
}
ircd::string_view
ircd::net::string_ip4(const mutable_buffer &buf,
const uint32_t &ip)
{
return string(buf, make_address(ip));
}
ircd::string_view
ircd::net::string_ip6(const mutable_buffer &buf,
const uint128_t &ip)
{
return string(buf, make_address(ip));
}
bool
ircd::net::is_loop(const ipaddr &ipaddr)
{
return is_v6(ipaddr)?
make_address(ipaddr.v6).is_loopback():
make_address(ipaddr.v4).is_loopback();
}
bool
ircd::net::is_v4(const ipaddr &ipaddr)
{
return ipaddr.v6 == 0 ||
(ipaddr.byte[4] == 0xff && ipaddr.byte[5] == 0xff);
}
bool
ircd::net::is_v6(const ipaddr &ipaddr)
{
return ipaddr.v6 == 0 ||
!(ipaddr.byte[4] == 0xff && ipaddr.byte[5] == 0xff);
}
//
// ipaddr::ipaddr
//
ircd::net::ipaddr::ipaddr(const string_view &ip)
:ipaddr
{
make_address(ip)
}
{
}
ircd::net::ipaddr::ipaddr(const rfc1035::record::A &rr)
:ipaddr
{
rr.ip4
}
{
}
ircd::net::ipaddr::ipaddr(const rfc1035::record::AAAA &rr)
:ipaddr
{
rr.ip6
}
{
}
ircd::net::ipaddr::ipaddr(const uint32_t &ip)
:ipaddr
{
make_address(ip)
}
{
}
ircd::net::ipaddr::ipaddr(const uint128_t &ip)
:ipaddr
{
make_address(ip)
}
{
}
ircd::net::ipaddr::ipaddr(const asio::ip::address &address)
{
const auto address_
{
address.is_v6()?
address.to_v6():
make_address_v6(ip::v4_mapped, address.to_v4())
};
byte = address_.to_bytes();
std::reverse(byte.begin(), byte.end());
}
//
// ipaddr::ipaddr
//
bool
ircd::net::ipaddr::cmp::operator()(const ipaddr &a, const ipaddr &b)
const
{
return a.byte < b.byte;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/hostport.h
//
decltype(ircd::net::canon_port)
ircd::net::canon_port
{
8448
};
decltype(ircd::net::canon_service)
ircd::net::canon_service
{
"matrix"
};
std::ostream &
ircd::net::operator<<(std::ostream &s, const hostport &t)
{
thread_local char buf[256];
const critical_assertion ca;
s << string(buf, t);
return s;
}
std::string
ircd::net::canonize(const hostport &hp,
const uint16_t &port)
{
const size_t len
{
size(host(hp)) + 1 + 5 + 1 // optimistic ':' + portnum
};
return ircd::string(len, [&hp, &port]
(const mutable_buffer &buf)
{
return canonize(buf, hp, port);
});
}
ircd::string_view
ircd::net::canonize(const mutable_buffer &buf,
const hostport &hp,
const uint16_t &port)
{
if(net::port(hp) == 0 || net::port(hp) == port)
return fmt::sprintf
{
buf, "%s", host(hp)
};
return fmt::sprintf
{
buf, "%s:%u", host(hp), net::port(hp)
};
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const hostport &hp)
{
if(empty(service(hp)) && port(hp) == 0)
return fmt::sprintf
{
buf, "%s", host(hp)
};
if(!empty(service(hp)))
return fmt::sprintf
{
buf, "%s:%s", host(hp), service(hp)
};
if(empty(service(hp)) && port(hp) != 0)
return fmt::sprintf
{
buf, "%s:%u", host(hp), port(hp)
};
return fmt::sprintf
{
buf, "%s:%u (%s)", host(hp), port(hp), service(hp)
};
}
///////////////////////////////////////////////////////////////////////////////
//
// net/asio.h
//
std::string
ircd::net::string(const ip::tcp::endpoint &ep)
{
return string(make_ipport(ep));
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const ip::tcp::endpoint &ep)
{
return string(buf, make_ipport(ep));
}
std::string
ircd::net::host(const ip::tcp::endpoint &ep)
{
return string(addr(ep));
}
boost::asio::ip::address
ircd::net::addr(const ip::tcp::endpoint &ep)
{
return ep.address();
}
uint16_t
ircd::net::port(const ip::tcp::endpoint &ep)
{
return ep.port();
}
std::string
ircd::net::string(const ip::address &addr)
{
return
addr.is_v4()?
string(addr.to_v4()):
string(addr.to_v6());
}
std::string
ircd::net::string(const ip::address_v4 &addr)
{
return util::string(16, [&addr]
(const mutable_buffer &out)
{
return string(out, addr);
});
}
std::string
ircd::net::string(const ip::address_v6 &addr)
{
return addr.to_string();
}
ircd::string_view
ircd::net::string(const mutable_buffer &out,
const ip::address &addr)
{
return
addr.is_v4()?
string(out, addr.to_v4()):
string(out, addr.to_v6());
}
ircd::string_view
ircd::net::string(const mutable_buffer &out,
const ip::address_v4 &addr)
{
const uint32_t a(addr.to_ulong());
return fmt::sprintf
{
out, "%u.%u.%u.%u",
(a & 0xFF000000U) >> 24,
(a & 0x00FF0000U) >> 16,
(a & 0x0000FF00U) >> 8,
(a & 0x000000FFU) >> 0,
};
}
ircd::string_view
ircd::net::string(const mutable_buffer &out,
const ip::address_v6 &addr)
{
return
{
data(out), string(addr).copy(data(out), size(out))
};
}
///////////////////////////////////////////////////////////////////////////////
//
// buffer.h - provide definition for the null buffers and asio conversion
//
const ircd::buffer::mutable_buffer
ircd::buffer::null_buffer
{
nullptr, nullptr
};
const ircd::ilist<ircd::buffer::mutable_buffer>
ircd::buffer::null_buffers
{{
null_buffer
}};
ircd::buffer::mutable_buffer::operator
boost::asio::mutable_buffer()
const
{
return boost::asio::mutable_buffer
{
data(*this), size(*this)
};
}
ircd::buffer::const_buffer::operator
boost::asio::const_buffer()
const
{
return boost::asio::const_buffer
{
data(*this), size(*this)
};
}