0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-06-17 01:18:39 +02:00
construct/include/ircd/buffer.h
2017-10-03 04:27:10 -07:00

536 lines
14 KiB
C++

/*
* charybdis5
* Copyright (C) 2016 Jason Volk <jason@zemos.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice is present in all copies.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#define HAVE_IRCD_BUFFER_H
// Forward declarations from boost::asio because it is not included here. IRCd
// buffers are not based directly on the boost ones but are easily converted
// when passing our buffer to an asio function.
namespace boost::asio
{
struct const_buffer;
struct mutable_buffer;
}
/// Lightweight buffer interface compatible with boost::asio IO buffers and vectors
///
/// A const_buffer is a pair of iterators like `const char *` meant for sending
/// data; a mutable_buffer is a pair of iterators meant for receiving. In fact,
/// those types store signed char* and our convention is to represent readable
/// data with them. The const_raw_buffer and mutable_raw_buffer use unsigned
/// char* pairs and our convention is to represent unreadable/binary data with
/// them. Remember, these are conventions, not guarantees from these types. The
/// const_buffer is analogous (but doesn't inherit from) a string_view, so they
/// play well and convert easily between each other.
///
/// These templates offer tools for individual buffers as well as tools for
/// iterations of buffers. An iteration of buffers is an iovector that is
/// passed to our sockets etc. The ircd::iov template can host an iteration of
/// buffers. The `template template` functions are tools for a container of
/// buffers of any permutation.
///
namespace ircd::buffer
{
template<class it> struct buffer;
struct const_buffer;
struct mutable_buffer;
struct const_raw_buffer;
struct mutable_raw_buffer;
template<class buffer, size_t align> struct unique_buffer;
template<template<class> class I> using const_buffers = I<const_buffer>;
template<template<class> class I> using mutable_buffers = I<mutable_buffer>;
template<template<class> class I> using const_raw_buffers = I<const_raw_buffer>;
template<template<class> class I> using mutable_raw_buffers = I<mutable_raw_buffer>;
// Preconstructed null buffers
extern const mutable_buffer null_buffer;
extern const ilist<mutable_buffer> null_buffers;
// Single buffer iteration of contents
template<class it> const it &begin(const buffer<it> &buffer);
template<class it> const it &end(const buffer<it> &buffer);
template<class it> it &begin(buffer<it> &buffer);
template<class it> it &end(buffer<it> &buffer);
template<class it> it rbegin(const buffer<it> &buffer);
template<class it> it rend(const buffer<it> &buffer);
// Single buffer tools
template<class it> size_t size(const buffer<it> &buffer);
template<class it> const it &data(const buffer<it> &buffer);
template<class it> size_t consume(buffer<it> &buffer, const size_t &bytes);
template<class it> it copy(it &dest, const it &stop, const const_raw_buffer &);
template<class it> size_t copy(const it &dest, const size_t &max, const const_raw_buffer &buffer);
size_t copy(const mutable_raw_buffer &dst, const const_raw_buffer &src);
void zero(const mutable_raw_buffer &buf);
// Iterable of buffers tools
template<template<class> class I, class T> size_t size(const I<T> &buffers);
template<template<class> class I, class T> size_t copy(const mutable_raw_buffer &, const I<T> &buffer);
template<template<class> class I, class T> size_t consume(I<T> &buffers, const size_t &bytes);
// Convenience copy to stream
template<class it> std::ostream &operator<<(std::ostream &s, const buffer<it> &buffer);
template<template<class> class I, class T> std::ostream &operator<<(std::ostream &s, const I<T> &buffers);
}
// Export these important aliases down to main ircd namespace
namespace ircd
{
using buffer::const_buffer;
using buffer::mutable_buffer;
using buffer::const_raw_buffer;
using buffer::mutable_raw_buffer;
using buffer::unique_buffer;
using buffer::null_buffer;
using buffer::const_buffers;
using buffer::mutable_buffers;
}
/// Base for all buffer types
///
template<class it>
struct ircd::buffer::buffer
:std::tuple<it, it>
{
using iterator = it;
using value_type = typename std::remove_pointer<iterator>::type;
operator string_view() const;
operator std::string_view() const;
explicit operator std::string() const;
auto &begin() const { return std::get<0>(*this); }
auto &begin() { return std::get<0>(*this); }
auto &end() const { return std::get<1>(*this); }
auto &end() { return std::get<1>(*this); }
auto &operator[](const size_t &i) const
{
return *(begin() + i);
}
auto &operator[](const size_t &i)
{
return *(begin() + i);
}
buffer(const it &start, const it &stop)
:std::tuple<it, it>{start, stop}
{}
buffer(const it &start, const size_t &size)
:buffer{start, start + size}
{}
template<size_t SIZE>
buffer(value_type (&buf)[SIZE])
:buffer{buf, SIZE}
{}
template<size_t SIZE>
buffer(std::array<value_type, SIZE> &buf)
:buffer{buf.data(), SIZE}
{}
buffer()
:buffer{nullptr, nullptr}
{}
};
namespace ircd::buffer
{
template<class T> struct mutable_buffer_base;
}
/// Base for mutable buffers, or buffers which can be written to because they
/// are not const.
///
template<class T>
struct ircd::buffer::mutable_buffer_base
:buffer<T>
{
using iterator = typename buffer<T>::iterator;
using value_type = typename buffer<T>::value_type;
// Allows boost::spirit to append to the buffer; this means the size() of
// this buffer becomes a consumption counter and the real size of the buffer
// must be kept separately. This is the lowlevel basis for a stream buffer.
void insert(const iterator &it, const value_type &v)
{
assert(it >= this->begin() && it <= this->end());
memmove(it + 1, it, std::distance(it, this->end()));
*it = v;
++std::get<1>(*this);
}
using buffer<T>::buffer;
mutable_buffer_base(): buffer<T>{} {}
// lvalue string reference offered to write through to a std::string as
// the buffer. not explicit; should be hard to bind by accident...
mutable_buffer_base(std::string &buf)
:mutable_buffer_base<iterator>{const_cast<iterator>(buf.data()), buf.size()}
{}
};
/// A writable buffer of signed char data. Convention is for this buffer to
/// represent readable strings, which may or may not be null terminated. This
/// is just a convention; not a gurantee of the type.
///
struct ircd::buffer::mutable_buffer
:mutable_buffer_base<char *>
{
// Conversion offered for the analogous asio buffer
operator boost::asio::mutable_buffer() const;
using mutable_buffer_base<char *>::mutable_buffer_base;
};
/// A writable buffer of unsigned signed char data. Convention is for this
/// buffer to represent unreadable binary data. It may also be constructed
/// from a mutable_buffer because a buffer of any data (this one) can also
/// be readable data. The inverse is not true, mutable_buffer cannot be
/// constructed from this class.
///
struct ircd::buffer::mutable_raw_buffer
:mutable_buffer_base<unsigned char *>
{
// Conversion offered for the analogous asio buffer
operator boost::asio::mutable_buffer() const;
using mutable_buffer_base<iterator>::mutable_buffer_base;
mutable_raw_buffer(const mutable_buffer &b)
:mutable_buffer_base<iterator>{reinterpret_cast<iterator>(data(b)), size(b)}
{}
};
namespace ircd::buffer
{
template<class T> struct const_buffer_base;
}
template<class T>
struct ircd::buffer::const_buffer_base
:buffer<T>
{
using iterator = typename buffer<T>::iterator;
using value_type = typename buffer<T>::value_type;
using buffer<iterator>::buffer;
const_buffer_base(): buffer<T>{} {}
const_buffer_base(const mutable_buffer &b)
:buffer<iterator>{reinterpret_cast<iterator>(data(b)), size(b)}
{}
const_buffer_base(const string_view &s)
:buffer<iterator>{reinterpret_cast<iterator>(s.data()), s.size()}
{}
explicit const_buffer_base(const std::string &s)
:buffer<iterator>{reinterpret_cast<iterator>(s.data()), s.size()}
{}
};
struct ircd::buffer::const_buffer
:const_buffer_base<const char *>
{
operator boost::asio::const_buffer() const;
using const_buffer_base<iterator>::const_buffer_base;
};
struct ircd::buffer::const_raw_buffer
:const_buffer_base<const unsigned char *>
{
operator boost::asio::const_buffer() const;
using const_buffer_base<iterator>::const_buffer_base;
const_raw_buffer(const const_buffer &b)
:const_buffer_base{reinterpret_cast<const unsigned char *>(data(b)), size(b)}
{}
const_raw_buffer(const mutable_raw_buffer &b)
:const_buffer_base{reinterpret_cast<const unsigned char *>(data(b)), size(b)}
{}
};
/// Like unique_ptr, this template holds ownership of an allocated buffer
///
///
template<class buffer,
size_t align = 16>
struct ircd::buffer::unique_buffer
:buffer
{
unique_buffer(std::unique_ptr<uint8_t[]> &&, const size_t &size);
unique_buffer(const size_t &size);
unique_buffer() = default;
unique_buffer(unique_buffer &&) noexcept;
unique_buffer(const unique_buffer &) = delete;
~unique_buffer() noexcept;
};
template<class buffer,
size_t alignment>
ircd::buffer::unique_buffer<buffer, alignment>::unique_buffer(std::unique_ptr<uint8_t[]> &&b,
const size_t &size)
:buffer
{
typename buffer::iterator(b.release()), size
}
{
}
template<class buffer,
size_t alignment>
ircd::buffer::unique_buffer<buffer, alignment>::unique_buffer(const size_t &size)
:unique_buffer<buffer, alignment>
{
std::unique_ptr<uint8_t[]>
{
new __attribute__((aligned(alignment))) uint8_t[size]
},
size
}
{
}
template<class buffer,
size_t alignment>
ircd::buffer::unique_buffer<buffer, alignment>::unique_buffer(unique_buffer &&other)
noexcept
:buffer
{
std::move(other)
}
{
get<0>(other) = nullptr;
}
template<class buffer,
size_t alignment>
ircd::buffer::unique_buffer<buffer, alignment>::~unique_buffer()
noexcept
{
delete[] data(*this);
}
template<template<class>
class buffers,
class T>
std::ostream &
ircd::buffer::operator<<(std::ostream &s, const buffers<T> &b)
{
std::for_each(std::begin(b), std::end(b), [&s]
(const T &b)
{
s << b;
});
return s;
}
template<template<class>
class buffers,
class T>
size_t
ircd::buffer::consume(buffers<T> &b,
const size_t &bytes)
{
size_t remain(bytes);
for(auto it(std::begin(b)); it != std::end(b) && remain > 0; ++it)
{
using buffer = typename buffers<T>::value_type;
using iterator = typename buffer::iterator;
buffer &b(const_cast<buffer &>(*it));
remain -= consume(b, remain);
}
return bytes - remain;
}
template<template<class>
class buffers,
class T>
size_t
ircd::buffer::copy(const mutable_raw_buffer &dest,
const buffers<T> &b)
{
size_t ret(0);
for(const T &b : b)
ret += copy(data(dest) + ret, size(dest) - ret, b);
return ret;
}
template<template<class>
class buffers,
class T>
size_t
ircd::buffer::size(const buffers<T> &b)
{
return std::accumulate(std::begin(b), std::end(b), size_t(0), []
(auto ret, const T &b)
{
return ret += size(b);
});
}
template<class it>
std::ostream &
ircd::buffer::operator<<(std::ostream &s, const buffer<it> &buffer)
{
s.write(data(buffer), size(buffer));
return s;
}
inline size_t
ircd::buffer::copy(const mutable_raw_buffer &dst,
const const_raw_buffer &src)
{
auto e{begin(dst)};
copy(e, end(dst), src);
return std::distance(begin(dst), e);
}
template<class it>
size_t
ircd::buffer::copy(const it &dest,
const size_t &max,
const const_raw_buffer &src)
{
if(!max)
return 0;
it out{dest};
const it stop{dest + max - 1};
copy(out, stop, const_raw_buffer{src});
*out = '\0';
return std::distance(dest, out);
}
template<class it>
it
ircd::buffer::copy(it &dest,
const it &stop,
const const_raw_buffer &src)
{
const it ret{dest};
const size_t remain(stop - dest);
dest += std::min(size(src), remain);
memcpy(ret, data(src), dest - ret);
return ret;
}
template<class it>
size_t
ircd::buffer::consume(buffer<it> &buffer,
const size_t &bytes)
{
get<0>(buffer) += std::min(size(buffer), bytes);
return size(buffer);
}
template<class it>
const it &
ircd::buffer::data(const buffer<it> &buffer)
{
return get<0>(buffer);
}
template<class it>
size_t
ircd::buffer::size(const buffer<it> &buffer)
{
assert(get<0>(buffer) <= get<1>(buffer));
return std::distance(get<0>(buffer), get<1>(buffer));
}
template<class it>
it
ircd::buffer::rend(const buffer<it> &buffer)
{
return std::reverse_iterator<it>(get<0>(buffer));
}
template<class it>
it
ircd::buffer::rbegin(const buffer<it> &buffer)
{
return std::reverse_iterator<it>(get<0>(buffer) + size(buffer));
}
template<class it>
it &
ircd::buffer::end(buffer<it> &buffer)
{
return get<1>(buffer);
}
template<class it>
it &
ircd::buffer::begin(buffer<it> &buffer)
{
return get<0>(buffer);
}
template<class it>
const it &
ircd::buffer::end(const buffer<it> &buffer)
{
return get<1>(buffer);
}
template<class it>
const it &
ircd::buffer::begin(const buffer<it> &buffer)
{
return get<0>(buffer);
}
template<class it>
ircd::buffer::buffer<it>::operator std::string()
const
{
return { reinterpret_cast<const char *>(data(*this)), size(*this) };
}
template<class it>
ircd::buffer::buffer<it>::operator std::string_view()
const
{
return { reinterpret_cast<const char *>(data(*this)), size(*this) };
}
template<class it>
ircd::buffer::buffer<it>::operator string_view()
const
{
return { reinterpret_cast<const char *>(data(*this)), size(*this) };
}