0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-30 10:42:47 +01:00
construct/include/ircd/json/tuple.h
2017-09-24 18:16:32 -07:00

795 lines
17 KiB
C++

/*
* Copyright (C) 2017 Charybdis Development Team
* Copyright (C) 2017 Jason Volk <jason@zemos.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice is present in all copies.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#define HAVE_IRCD_JSON_TUPLE_H
//
// Here we represent a JSON object with a named tuple, allowing the programmer
// to create a structure specifying all of the potentially valid members of the
// object. Access to a specific member is O(1) just like a native `struct`
// rather than a linear or logn lookup into a map. The size of the tuple is
// extremely minimal: only the size of the values it stores. This is because
// the member keys and type data are all static or dealt with at compile time.
//
// The member structure for the tuple is called `property` because json::member
// is already used to pair together runtime oriented json::values. This system
// only decays into runtime members and values when compile-time logic cannot
// be achieved.
//
// Create and use a tuple to efficiently extract members from a json::object.
// The tuple will populate its own members during a single-pass iteration of
// the JSON input. If the JSON does not contain a member specified in the
// tuple, the value will be default initialized. If the JSON contains a member
// not specified in the tuple, it is ignored. If you need to know all of the
// members specified in the JSON dynamically, use a json::index or iterate
// manually.
//
namespace ircd {
namespace json {
///////////////////////////////////////////////////////////////////////////////
//
// ircd::json::tuple template. Create your own struct inheriting this
// class template with the members.
//
struct tuple_base
{
// EBO tag
};
template<class... T>
struct tuple
:std::tuple<T...>
,tuple_base
{
using tuple_type = std::tuple<T...>;
using super_type = tuple<T...>;
static constexpr size_t size();
tuple(const json::object &);
tuple(const json::builder &);
tuple(const std::initializer_list<member> &);
tuple() = default;
};
template<class tuple>
constexpr bool
is_tuple()
{
return std::is_base_of<tuple_base, tuple>::value;
}
template<class tuple, class R>
using enable_if_tuple = typename std::enable_if<is_tuple<tuple>(), R>::type;
template<class tuple>
using tuple_type = typename tuple::tuple_type;
template<class tuple>
using tuple_size = std::tuple_size<tuple_type<tuple>>;
template<class tuple,
size_t i>
using tuple_element = typename std::tuple_element<i, tuple_type<tuple>>::type;
template<class tuple,
size_t i>
using tuple_value_type = typename tuple_element<tuple, i>::value_type;
template<class... T>
constexpr size_t
tuple<T...>::size()
{
return std::tuple_size<tuple_type>();
}
template<class tuple>
auto &
stdcast(const tuple &o)
{
return static_cast<const typename tuple::tuple_type &>(o);
}
template<class tuple>
auto &
stdcast(tuple &o)
{
return static_cast<typename tuple::tuple_type &>(o);
}
template<class tuple>
constexpr enable_if_tuple<tuple, size_t>
size()
{
return tuple_size<tuple>::value;
}
template<class tuple,
size_t i>
constexpr enable_if_tuple<tuple, const char *const &>
key()
{
return tuple_element<tuple, i>::key;
}
template<size_t i,
class tuple>
enable_if_tuple<tuple, const char *const &>
key(const tuple &t)
{
return std::get<i>(t).key;
}
template<class tuple,
size_t i>
constexpr typename std::enable_if<i == size<tuple>(), size_t>::type
indexof(const char *const &name)
{
return size<tuple>();
}
template<class tuple,
size_t i = 0>
constexpr typename std::enable_if<i < size<tuple>(), size_t>::type
indexof(const char *const &name)
{
const auto equal
{
_constexpr_equal(key<tuple, i>(), name)
};
return equal? i : indexof<tuple, i + 1>(name);
}
template<class tuple,
size_t i>
constexpr typename std::enable_if<i == size<tuple>(), size_t>::type
indexof(const string_view &name)
{
return size<tuple>();
}
template<class tuple,
size_t i = 0>
constexpr typename std::enable_if<i < size<tuple>(), size_t>::type
indexof(const string_view &name)
{
const auto equal
{
name == key<tuple, i>()
};
return equal? i : indexof<tuple, i + 1>(name);
}
template<size_t i,
class tuple>
enable_if_tuple<tuple, tuple_value_type<tuple, i> &>
get(tuple &t)
{
return std::get<i>(t);
}
template<size_t i,
class tuple>
enable_if_tuple<tuple, const tuple_value_type<tuple, i> &>
get(const tuple &t)
{
return std::get<i>(t);
}
template<size_t i,
class tuple>
enable_if_tuple<tuple, const tuple_value_type<tuple, i> &>
val(const tuple &t)
{
using value_type = tuple_value_type<tuple, i>;
return static_cast<const value_type &>(get<i>(t));
}
template<size_t i,
class tuple>
enable_if_tuple<tuple, tuple_value_type<tuple, i> &>
val(tuple &t)
{
using value_type = tuple_value_type<tuple, i>;
return static_cast<value_type &>(get<i>(t));
}
template<const char *const &name,
class tuple>
enable_if_tuple<tuple, const tuple_value_type<tuple, indexof<tuple>(name)> &>
val(const tuple &t)
{
return val<indexof<tuple>(name)>(t);
}
template<const char *const &name,
class tuple>
enable_if_tuple<tuple, tuple_value_type<tuple, indexof<tuple>(name)> &>
val(tuple &t)
{
return val<indexof<tuple>(name)>(t);
}
template<const char *const &name,
class tuple>
enable_if_tuple<tuple, const tuple_value_type<tuple, indexof<tuple>(name)> &>
at(const tuple &t)
{
constexpr size_t idx
{
indexof<tuple>(name)
};
auto &ret
{
val<idx>(t)
};
using value_type = tuple_value_type<tuple, idx>;
//TODO: does tcmalloc zero this or huh?
if(ret == value_type{})
throw not_found("%s", name);
return ret;
}
template<const char *const &name,
class tuple>
enable_if_tuple<tuple, tuple_value_type<tuple, indexof<tuple>(name)> &>
at(tuple &t)
{
constexpr size_t idx
{
indexof<tuple>(name)
};
auto &ret
{
val<idx>(t)
};
using value_type = tuple_value_type<tuple, idx>;
//TODO: does tcmalloc zero this or huh?
if(ret == value_type{})
throw not_found("%s", name);
return ret;
}
template<const char *const &name,
class... T>
tuple_value_type<tuple<T...>, indexof<tuple<T...>>(name)>
get(const tuple<T...> &t,
const tuple_value_type<tuple<T...>, indexof<tuple<T...>>(name)> &def = {})
{
constexpr size_t idx
{
indexof<tuple<T...>>(name)
};
const auto &ret
{
val<idx>(t)
};
using value_type = tuple_value_type<tuple<T...>, idx>;
//TODO: does tcmalloc zero this or huh?
return ret != value_type{}? ret : def;
}
template<const char *const &name,
class... T>
tuple_value_type<tuple<T...>, indexof<tuple<T...>>(name)> &
get(tuple<T...> &t,
tuple_value_type<tuple<T...>, indexof<tuple<T...>>(name)> &def)
{
constexpr size_t idx
{
indexof<tuple<T...>>(name)
};
auto &ret
{
val<idx>(t)
};
using value_type = tuple_value_type<tuple<T...>, idx>;
//TODO: does tcmalloc zero this or huh?
return ret != value_type{}? ret : def;
}
template<size_t i,
class tuple,
class function>
typename std::enable_if<i == size<tuple>(), void>::type
for_each(const tuple &t,
function&& f)
{}
template<size_t i,
class tuple,
class function>
typename std::enable_if<i == size<tuple>(), void>::type
for_each(tuple &t,
function&& f)
{}
template<size_t i = 0,
class tuple,
class function>
typename std::enable_if<i < size<tuple>(), void>::type
for_each(const tuple &t,
function&& f)
{
f(key<i>(t), val<i>(t));
for_each<i + 1>(t, std::forward<function>(f));
}
template<size_t i = 0,
class tuple,
class function>
typename std::enable_if<i < size<tuple>(), void>::type
for_each(tuple &t,
function&& f)
{
f(key<i>(t), val<i>(t));
for_each<i + 1>(t, std::forward<function>(f));
}
template<class tuple,
class function,
ssize_t i>
typename std::enable_if<(i < 0), void>::type
rfor_each(const tuple &t,
function&& f)
{}
template<class tuple,
class function,
ssize_t i>
typename std::enable_if<(i < 0), void>::type
rfor_each(tuple &t,
function&& f)
{}
template<class tuple,
class function,
ssize_t i = size<tuple>() - 1>
typename std::enable_if<i < tuple_size<tuple>(), void>::type
rfor_each(const tuple &t,
function&& f)
{
f(key<i>(t), val<i>(t));
rfor_each<tuple, function, i - 1>(t, std::forward<function>(f));
}
template<class tuple,
class function,
ssize_t i = size<tuple>() - 1>
typename std::enable_if<i < tuple_size<tuple>(), void>::type
rfor_each(tuple &t,
function&& f)
{
f(key<i>(t), val<i>(t));
rfor_each<tuple, function, i - 1>(t, std::forward<function>(f));
}
template<size_t i,
class tuple,
class function>
typename std::enable_if<i == size<tuple>(), bool>::type
until(const tuple &t,
function&& f)
{
return true;
}
template<size_t i,
class tuple,
class function>
typename std::enable_if<i == size<tuple>(), bool>::type
until(tuple &t,
function&& f)
{
return true;
}
template<size_t i = 0,
class tuple,
class function>
typename std::enable_if<i < size<tuple>(), bool>::type
until(const tuple &t,
function&& f)
{
return f(key<i>(t), val<i>(t))?
until<i + 1>(t, std::forward<function>(f)):
false;
}
template<size_t i = 0,
class tuple,
class function>
typename std::enable_if<i < size<tuple>(), bool>::type
until(tuple &t,
function&& f)
{
return f(key<i>(t), val<i>(t))?
until<i + 1>(t, std::forward<function>(f)):
false;
}
template<class tuple,
class function,
ssize_t i>
typename std::enable_if<(i < 0), bool>::type
runtil(const tuple &t,
function&& f)
{
return true;
}
template<class tuple,
class function,
ssize_t i>
typename std::enable_if<(i < 0), bool>::type
runtil(tuple &t,
function&& f)
{
return true;
}
template<class tuple,
class function,
ssize_t i = size<tuple>() - 1>
typename std::enable_if<i < size<tuple>(), bool>::type
runtil(const tuple &t,
function&& f)
{
return f(key<i>(t), val<i>(t))?
runtil<tuple, function, i - 1>(t, std::forward<function>(f)):
false;
}
template<class tuple,
class function,
ssize_t i = size<tuple>() - 1>
typename std::enable_if<i < size<tuple>(), bool>::type
runtil(tuple &t,
function&& f)
{
return f(key<i>(t), val<i>(t))?
runtil<tuple, function, i - 1>(t, std::forward<function>(f)):
false;
}
template<class tuple,
class function,
size_t i>
typename std::enable_if<i == size<tuple>(), void>::type
at(tuple &t,
const string_view &name,
function&& f)
{
}
template<class tuple,
class function,
size_t i = 0>
typename std::enable_if<i < size<tuple>(), void>::type
at(tuple &t,
const string_view &name,
function&& f)
{
if(indexof<tuple>(name) == i)
f(val<i>(t));
else
at<tuple, function, i + 1>(t, name, std::forward<function>(f));
}
template<class tuple,
class function,
size_t i>
typename std::enable_if<i == size<tuple>(), void>::type
at(const tuple &t,
const string_view &name,
function&& f)
{
}
template<class tuple,
class function,
size_t i = 0>
typename std::enable_if<i < size<tuple>(), void>::type
at(const tuple &t,
const string_view &name,
function&& f)
{
if(indexof<tuple>(name) == i)
f(val<i>(t));
else
at<tuple, function, i + 1>(t, name, std::forward<function>(f));
}
template<class V,
class... T>
tuple<T...> &
set(tuple<T...> &t,
const string_view &key,
const V &val)
{
at(t, key, [&key, &val]
(auto &target)
{
using target_type = decltype(target);
using cast_type = typename std::remove_reference<target_type>::type;
target = byte_view<cast_type>(val);
});
return t;
}
template<class... T>
tuple<T...>::tuple(const json::object &object)
{
//TODO: is tcmalloc zero-initializing all tuple elements, or is something else doing that?
std::for_each(std::begin(object), std::end(object), [this]
(const auto &member)
{
at(*this, member.first, [&member]
(auto &target)
{
using target_type = decltype(target);
using cast_type = typename std::remove_reference<target_type>::type; try
{
target = lex_cast<cast_type>(member.second);
}
catch(const bad_lex_cast &e)
{
throw parse_error("member '%s' must convert to '%s'",
member.first,
typeid(target_type).name());
}
});
});
}
template<class... T>
tuple<T...>::tuple(const json::builder &builder)
{
//TODO: is tcmalloc zero-initializing all tuple elements, or is something else doing that?
for_each(builder, [this]
(const auto &member)
{
at(*this, member.first, [&member]
(auto &target)
{
using target_type = decltype(target);
using cast_type = typename std::remove_reference<target_type>::type; try
{
target = static_cast<cast_type>(member.second);
}
catch(const bad_lex_cast &e)
{
throw parse_error("member '%s' must convert to '%s'",
member.first,
typeid(target_type).name());
}
});
});
}
template<class... T>
tuple<T...>::tuple(const std::initializer_list<member> &members)
{
std::for_each(std::begin(members), std::end(members), [this]
(const auto &member)
{
switch(type(member.second))
{
case type::STRING:
case type::LITERAL:
set(*this, member.first, string_view{member.second});
break;
case type::NUMBER:
if(member.second.floats)
set(*this, member.first, member.second.floating);
else
set(*this, member.first, member.second.integer);
break;
case type::ARRAY:
case type::OBJECT:
if(!member.second.serial)
throw parse_error("Unserialized value not supported yet");
set(*this, member.first, string_view{member.second});
break;
}
});
}
template<class tuple,
class it_a,
class it_b,
class closure>
constexpr void
_key_transform(it_a it,
const it_b end,
closure&& lambda)
{
for(size_t i(0); i < tuple::size() && it != end; ++i)
{
*it = lambda(key<tuple, i>());
++it;
}
}
template<class tuple,
class it_a,
class it_b>
constexpr void
_key_transform(it_a it,
const it_b end)
{
for(size_t i(0); i < tuple::size() && it != end; ++i)
{
*it = key<tuple, i>();
++it;
}
}
template<class it_a,
class it_b,
class... T>
void
_key_transform(const tuple<T...> &tuple,
it_a it,
const it_b end)
{
for_each(tuple, [&it, &end]
(const auto &key, const auto &val)
{
if(it != end)
{
*it = key;
++it;
}
});
}
template<class it_a,
class it_b,
class closure,
class... T>
void
_member_transform(const tuple<T...> &tuple,
it_a it,
const it_b end,
closure&& lambda)
{
until(tuple, [&it, &end, &lambda]
(const auto &key, const auto &val)
{
if(it == end)
return false;
*it = lambda(key, val);
++it;
return true;
});
}
template<class it_a,
class it_b,
class... T>
void
_member_transform(const tuple<T...> &tuple,
it_a it,
const it_b end)
{
until(tuple, [&it, &end]
(const auto &key, const auto &val)
{
if(it == end)
return false;
*it = { key, val };
++it;
return true;
});
}
template<class T>
constexpr bool
serialized_lex_cast()
{
using type = typename std::remove_reference<T>::type;
return std::is_arithmetic<type>::value;
}
template<class T>
typename std::enable_if<serialized_lex_cast<T>(), size_t>::type
serialized(T&& t)
{
return lex_cast(t).size();
}
template<class... T>
size_t
serialized(const tuple<T...> &t)
{
constexpr const size_t member_count
{
tuple<T...>::size()
};
// Number of commas for this object is one less than the member count, or 0
const size_t commas
{
member_count? member_count - 1 : 0
};
// 2 for the {} and the comma count
const size_t overhead
{
2 + commas
};
std::array<size_t, member_count> sizes;
_member_transform(t, begin(sizes), end(sizes), []
(const string_view &key, auto&& val)
{
// " " :
return 1 + key.size() + 1 + 1 + serialized(val);
});
return std::accumulate(begin(sizes), end(sizes), overhead);
}
template<class... T>
string_view
stringify(mutable_buffer &buf,
const tuple<T...> &tuple)
{
std::array<member, tuple.size()> members;
_member_transform(tuple, begin(members), end(members));
return stringify(buf, begin(members), end(members));
}
template<class... T>
std::ostream &
operator<<(std::ostream &s, const tuple<T...> &t)
{
s << json::string(t);
return s;
}
} // namespace json
} // namespace ircd