0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-07-03 09:18:19 +02:00
construct/include/ircd/js/string.h
Jason Volk 6b5bab0871 ircd::js: Convert all JS type wrappers into templates and typedef on requsted GC.
Templates are now in the namespace basic:: i.e `basic::value<>`
Typedefs are in ircd::js:: matching the original non-template types.

Ex. stack-duration type in template form is: `basic::value<lifetime::stack>`
Ex. stack-duration type in typedef form is `value`
Ex. heap-duration type in template form is: `basic::value<lifetime::heap>`
Ex. heap-duration type in typedef form is: `heap_value`
2016-11-13 16:32:39 -08:00

489 lines
11 KiB
C++

/*
* Copyright (C) 2016 Charybdis Development Team
* Copyright (C) 2016 Jason Volk <jason@zemos.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice is present in all copies.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#define HAVE_IRCD_JS_STRING_H
namespace ircd {
namespace js {
bool external(const JSString *const &);
size_t size(const JSString *const &);
char16_t at(const JSString *const &, const size_t &);
const size_t CSTR_BUFS = 8;
const size_t CSTR_BUFSIZE = 1024;
char *c_str(const JSString *const &);
namespace basic {
template<lifetime L>
struct string
:root<JSString *, L>
{
IRCD_OVERLOAD(literal)
char *c_str() const; // Copy into rotating buf
size_t native_size() const;
size_t size() const;
bool empty() const;
char16_t operator[](const size_t &at) const;
explicit operator std::string() const;
operator JS::Value() const;
using root<JSString *, L>::root;
string(literal_t, const char16_t *const &);
string(const char16_t *const &, const size_t &len);
string(const char16_t *const &);
string(const std::u16string &);
string(const char *const &, const size_t &len);
string(const std::string &);
string(const char *const &);
string(const value<L> &);
string(JSString *const &);
string(JSString &);
string();
struct less
{
using is_transparent = std::true_type;
template<class A, class B> bool operator()(const A &, const B &) const;
};
};
template<class T> constexpr bool is_string();
template<class A, class B> constexpr bool string_argument();
template<lifetime A, lifetime B> int cmp(const string<A> &a, const string<B> &b);
template<lifetime L> int cmp(const char *const &a, const string<L> &b);
template<lifetime L> int cmp(const string<L> &a, const char *const &b);
template<lifetime L> int cmp(const string<L> &a, const std::string &b);
template<lifetime L> int cmp(const std::string &a, const string<L> &b);
template<lifetime L> bool operator==(const string<L> &a, const char *const &b);
template<lifetime L> bool operator==(const char *const &a, const string<L> &b);
template<class A,
class B>
using string_comparison = typename std::enable_if<string_argument<A, B>(), bool>::type;
template<class A, class B> string_comparison<A, B> operator==(const A &a, const B &b);
template<class A, class B> string_comparison<A, B> operator!=(const A &a, const B &b);
template<class A, class B> string_comparison<A, B> operator>(const A &a, const B &b);
template<class A, class B> string_comparison<A, B> operator<(const A &a, const B &b);
template<class A, class B> string_comparison<A, B> operator>=(const A &a, const B &b);
template<class A, class B> string_comparison<A, B> operator<=(const A &a, const B &b);
template<class A, class B> string_comparison<A, B> operator==(const A &a, const B &b);
template<class A, class B> string_comparison<A, B> operator!=(const A &a, const B &b);
template<lifetime L>
using string_pair = std::pair<string<L>, string<L>>;
template<lifetime L> string_pair<L> split(const typename string<L>::handle &s, const char &c);
template<lifetime L> string_pair<L> split(const typename string<L>::handle &s, const char16_t &c);
template<lifetime L> string<L> substr(const typename string<L>::handle &s, const size_t &pos, const size_t &len);
template<lifetime L> string<L> operator+(const typename string<L>::handle &left, const typename string<L>::handle &right);
template<lifetime L> std::ostream & operator<<(std::ostream &os, const string<L> &s);
} // namespace basic
using string = basic::string<lifetime::stack>;
using heap_string = basic::string<lifetime::heap>;
//
// Implementation
//
namespace basic {
template<lifetime L>
string<L>::string()
:string<L>::root::type
{
JS_GetEmptyString(*rt)
}
{
}
template<lifetime L>
string<L>::string(JSString &val)
:string<L>::root::type{&val}
{
}
template<lifetime L>
string<L>::string(JSString *const &val)
:string<L>::root::type
{
likely(val)? val : throw internal_error("NULL string")
}
{
}
template<lifetime L>
string<L>::string(const value<L> &val)
:string<L>::root::type
{
JS::ToString(*cx, val)?: throw type_error("Failed to convert value to string")
}
{
}
template<lifetime L>
string<L>::string(const std::string &s)
:string(s.data(), s.size())
{
}
template<lifetime L>
string<L>::string(const char *const &s)
:string(s, strlen(s))
{
}
template<lifetime L>
string<L>::string(const char *const &s,
const size_t &len)
:string<L>::root::type{[&s, &len]
{
auto buf(native_external_copy(s, len));
return JS_NewExternalString(*cx, buf.release(), len, &native_external_delete);
}()}
{
if(unlikely(!this->get()))
throw type_error("Failed to construct string from character array");
}
template<lifetime L>
string<L>::string(const std::u16string &s)
:string(s.data(), s.size())
{
}
template<lifetime L>
string<L>::string(const char16_t *const &s)
:string(s, std::char_traits<char16_t>::length(s))
{
}
template<lifetime L>
string<L>::string(const char16_t *const &s,
const size_t &len)
:string<L>::root::type{[&s, &len]
{
// JS_NewExternalString does not require a null terminated buffer, but we are going
// to terminate anyway in case the deleter ever wants to iterate a canonical vector.
auto buf(std::make_unique<char16_t[]>(len+1));
memcpy(buf.get(), s, len * 2);
buf.get()[len] = char16_t(0);
return JS_NewExternalString(*cx, buf.release(), len, &native_external_delete);
}()}
{
if(unlikely(!this->get()))
throw type_error("Failed to construct string from character array");
}
template<lifetime L>
string<L>::string(literal_t,
const char16_t *const &s)
:string<L>::root::type
{
JS_NewExternalString(*cx, s, std::char_traits<char16_t>::length(s), &native_external_static)
}
{
if(unlikely(!this->get()))
throw type_error("Failed to construct string from wide character literal");
}
template<lifetime L>
char16_t
string<L>::operator[](const size_t &pos)
const
{
return at(this->get(), pos);
}
template<lifetime L>
string<L>::operator JS::Value()
const
{
return JS::StringValue(this->get());
}
template<lifetime L>
string<L>::operator std::string()
const
{
return native(this->get());
}
template<lifetime L>
char *
string<L>::c_str()
const
{
return js::c_str(this->get());
}
template<lifetime L>
bool
string<L>::empty()
const
{
return size() == 0;
}
template<lifetime L>
size_t
string<L>::size()
const
{
return js::size(this->get());
}
template<lifetime L>
size_t
string<L>::native_size()
const
{
return js::native_size(this->get());
}
template<lifetime L>
template<class A,
class B>
bool
string<L>::less::operator()(const A &a, const B &b)
const
{
return cmp(a, b) < 0;
}
template<lifetime L>
std::ostream &
operator<<(std::ostream &os, const string<L> &s)
{
os << std::string(s);
return os;
}
template<class A,
class B>
string_comparison<A, B>
operator>(const A &a, const B &b)
{
return cmp(a, b) > 0;
}
template<class A,
class B>
string_comparison<A, B>
operator<(const A &a, const B &b)
{
return cmp(a, b) < 0;
}
template<class A,
class B>
string_comparison<A, B>
operator>=(const A &a, const B &b)
{
return cmp(a, b) >= 0;
}
template<class A,
class B>
string_comparison<A, B>
operator<=(const A &a, const B &b)
{
return cmp(a, b) <= 0;
}
template<class A,
class B>
string_comparison<A, B>
operator==(const A &a, const B &b)
{
return cmp(a, b) == 0;
}
template<class A,
class B>
string_comparison<A, B>
operator!=(const A &a, const B &b)
{
return !(operator==(a, b));
}
template<lifetime L>
bool
operator==(const string<L> &a, const char *const &b)
{
bool ret;
if(unlikely(!JS_StringEqualsAscii(*cx, a, b, &ret)))
throw internal_error("Failed to compare string to native");
return ret;
}
template<lifetime L>
bool
operator==(const char *const &a, const string<L> &b)
{
bool ret;
if(unlikely(!JS_StringEqualsAscii(*cx, b, a, &ret)))
throw internal_error("Failed to compare string to native");
return ret;
}
template<lifetime L>
int
cmp(const string<L> &a,
const std::string &b)
{
return cmp(a, b.c_str());
}
template<lifetime L>
int
cmp(const std::string &a,
const string<L> &b)
{
return cmp(a.c_str(), b);
}
template<lifetime L>
int
cmp(const string<L> &a,
const char *const &b)
{
return cmp(a, string<L>(b));
}
template<lifetime L>
int
cmp(const char *const &a,
const string<L> &b)
{
return cmp(string<L>(a), b);
}
template<lifetime A,
lifetime B>
int
cmp(const string<A> &a,
const string<B> &b)
{
int32_t ret;
if(unlikely(!JS_CompareStrings(*cx, a, b, &ret)))
throw internal_error("Failed to compare strings");
return ret;
}
template<lifetime L>
std::pair<string<L>, string<L>>
split(const typename string<L>::handle &s,
const char &c)
{
return {};
}
template<lifetime L>
std::pair<string<L>, string<L>>
split(const typename string<L>::handle &s,
const char16_t &c)
{
size_t i(0);
for(; i < size(s) && at(s, i) != c; ++i);
return
{
substr(s, 0, i),
i < size(s)? substr(s, i + 1, size(s) - i) : string<L>()
};
}
template<lifetime L>
string<L>
substr(const typename string<L>::handle &s,
const size_t &pos,
const size_t &len)
{
const auto _len(len == size_t(-1)? size(s) - pos : len);
const auto ret(JS_NewDependentString(*cx, s, pos, _len));
if(!ret)
throw std::out_of_range("substr(): invalid arguments");
return ret;
}
template<lifetime L>
string<L>
operator+(const typename string<L>::handle &left,
const typename string<L>::handle &right)
{
return JS_ConcatStrings(*cx, left, right);
}
template<class A,
class B>
constexpr bool
string_argument()
{
return is_string<A>() || is_string<B>();
}
template<class T>
constexpr bool
is_string()
{
return std::is_base_of<string<lifetime::stack>, T>() ||
std::is_base_of<string<lifetime::heap>, T>();
}
} // namespace basic
inline char16_t
at(const JSString *const &s,
const size_t &pos)
{
char16_t ret;
if(unlikely(!JS_GetStringCharAt(*cx, const_cast<JSString *>(s), pos, &ret)))
throw range_error("index %zu is out of range", pos);
return ret;
}
inline size_t
size(const JSString *const &s)
{
return JS_GetStringLength(const_cast<JSString *>(s));
}
inline bool
external(const JSString *const &s)
{
return JS_IsExternalString(const_cast<JSString *>(s));
}
} // namespace js
} // namespace ircd