0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2025-01-04 03:44:15 +01:00
construct/ircd/fs_aio.cc
2019-06-23 16:22:06 -06:00

1219 lines
24 KiB
C++

// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2018 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#include <sys/syscall.h>
#include <sys/eventfd.h>
#include <ircd/asio.h>
#include "fs_aio.h"
///////////////////////////////////////////////////////////////////////////////
//
// ircd/fs/aio.h
//
// The contents of this section override weak symbols in ircd/fs.cc when this
// unit is conditionally compiled and linked on AIO-supporting platforms. On
// non-supporting platforms, or for items not listed here, the definitions in
// ircd/fs.cc are the default.
decltype(ircd::fs::aio::support)
ircd::fs::aio::support
{
true
};
/// True if IOCB_CMD_FSYNC is supported by AIO. If this is false then
/// fs::fsync_opts::async=true flag is ignored.
decltype(ircd::fs::aio::support_fsync)
ircd::fs::aio::support_fsync
{
#if defined(RWF_SYNC)
info::kernel_version[0] >= 4 &&
info::kernel_version[1] >= 18
#else
false
#endif
};
/// True if IOCB_CMD_FDSYNC is supported by AIO. If this is false then
/// fs::fsync_opts::async=true flag is ignored.
decltype(ircd::fs::aio::support_fdsync)
ircd::fs::aio::support_fdsync
{
#if defined(RWF_DSYNC)
info::kernel_version[0] >= 4 &&
info::kernel_version[1] >= 18
#else
false
#endif
};
decltype(ircd::fs::aio::MAX_EVENTS)
ircd::fs::aio::MAX_EVENTS
{
128L //TODO: get this info
};
decltype(ircd::fs::aio::MAX_REQPRIO)
ircd::fs::aio::MAX_REQPRIO
{
info::aio_reqprio_max
};
//
// init
//
ircd::fs::aio::init::init()
{
assert(!system);
if(!bool(aio::enable))
return;
system = new struct aio::system
(
size_t(max_events),
size_t(max_submit)
);
}
ircd::fs::aio::init::~init()
noexcept
{
delete system;
system = nullptr;
}
///////////////////////////////////////////////////////////////////////////////
//
// ircd/fs/op.h
//
// The contents of this section override weak symbols in ircd/fs.cc when this
// unit is conditionally compiled and linked on AIO-supporting platforms.
ircd::fs::op
ircd::fs::aio::translate(const int &val)
{
switch(val)
{
case IOCB_CMD_PREAD: return op::READ;
case IOCB_CMD_PWRITE: return op::WRITE;
case IOCB_CMD_FSYNC: return op::SYNC;
case IOCB_CMD_FDSYNC: return op::SYNC;
case IOCB_CMD_NOOP: return op::NOOP;
case IOCB_CMD_PREADV: return op::READ;
case IOCB_CMD_PWRITEV: return op::WRITE;
}
return op::NOOP;
}
///////////////////////////////////////////////////////////////////////////////
//
// fs_aio.h
//
//
// request::fsync
//
ircd::fs::aio::request::fsync::fsync(const int &fd,
const sync_opts &opts)
:request{fd, &opts}
{
assert(opts.op == op::SYNC);
aio_lio_opcode = IOCB_CMD_FSYNC;
aio_buf = 0;
aio_nbytes = 0;
aio_offset = 0;
}
void
ircd::fs::aio::fsync(const fd &fd,
const sync_opts &opts)
{
aio::request::fsync request
{
fd, opts
};
request();
}
//
// request::fdsync
//
ircd::fs::aio::request::fdsync::fdsync(const int &fd,
const sync_opts &opts)
:request{fd, &opts}
{
assert(opts.op == op::SYNC);
aio_lio_opcode = IOCB_CMD_FDSYNC;
aio_buf = 0;
aio_nbytes = 0;
aio_offset = 0;
}
void
ircd::fs::aio::fdsync(const fd &fd,
const sync_opts &opts)
{
aio::request::fdsync request
{
fd, opts
};
request();
}
//
// request::read
//
ircd::fs::aio::request::read::read(const int &fd,
const const_iovec_view &iov,
const read_opts &opts)
:request{fd, &opts}
{
assert(opts.op == op::READ);
aio_lio_opcode = IOCB_CMD_PREADV;
aio_buf = uintptr_t(iov.data());
aio_nbytes = iov.size();
aio_offset = opts.offset;
}
size_t
ircd::fs::aio::read(const fd &fd,
const const_iovec_view &bufs,
const read_opts &opts)
{
aio::request::read request
{
fd, bufs, opts
};
const scope_count cur_reads{stats.cur_reads};
stats.max_reads = std::max(stats.max_reads, stats.cur_reads);
#if defined(RWF_NOWAIT) && defined(RB_DEBUG_FS_AIO_READ_BLOCKING)
request.aio_rw_flags |= support_nowait? RWF_NOWAIT : 0;
#endif
size_t bytes
{
request()
};
#if defined(RWF_NOWAIT) && defined(RB_DEBUG_FS_AIO_READ_BLOCKING)
const bool would_block
{
opts.blocking &&
request.aio_rw_flags & RWF_NOWAIT &&
request.retval == -1 &&
request.errcode == EAGAIN
};
if(would_block)
{
log::dwarning
{
log, "read blocks io_submit(): fd:%d size:%zu off:%zd op:%u pri:%u in_flight:%zu qcount:%zu",
request.aio_fildes,
request.aio_nbytes,
request.aio_offset,
request.aio_lio_opcode,
request.aio_reqprio,
system->in_flight,
system->qcount,
};
assert(bytes == 0);
request.aio_rw_flags &= ~RWF_NOWAIT;
request.retval = -2;
request.errcode = 0;
bytes = request();
}
#endif
stats.bytes_read += bytes;
stats.reads++;
return bytes;
}
//
// request::write
//
ircd::fs::aio::request::write::write(const int &fd,
const const_iovec_view &iov,
const write_opts &opts)
:request{fd, &opts}
{
assert(opts.op == op::WRITE);
aio_lio_opcode = IOCB_CMD_PWRITEV;
aio_buf = uintptr_t(iov.data());
aio_nbytes = iov.size();
aio_offset = opts.offset;
#if defined(RWF_APPEND)
if(support_append && opts.offset == -1)
{
// AIO departs from pwritev2() behavior and EINVAL's on -1.
aio_offset = 0;
aio_rw_flags |= RWF_APPEND;
}
#endif
#if defined(RWF_DSYNC)
if(support_dsync && opts.sync && !opts.metadata)
aio_rw_flags |= RWF_DSYNC;
#endif
#if defined(RWF_SYNC)
if(support_sync && opts.sync && opts.metadata)
aio_rw_flags |= RWF_SYNC;
#endif
#ifdef RWF_WRITE_LIFE_SHIFT
if(support_rwf_write_life && opts.write_life)
aio_rw_flags |= (opts.write_life << (RWF_WRITE_LIFE_SHIFT));
#endif
}
size_t
ircd::fs::aio::write(const fd &fd,
const const_iovec_view &bufs,
const write_opts &opts)
{
aio::request::write request
{
fd, bufs, opts
};
const size_t req_bytes
{
fs::bytes(request.iovec())
};
// track current write count
const scope_count cur_writes{stats.cur_writes};
stats.max_writes = std::max(stats.max_writes, stats.cur_writes);
// track current write bytes count
stats.cur_bytes_write += req_bytes;
const unwind dec{[&req_bytes]
{
stats.cur_bytes_write -= req_bytes;
}};
// Make the request; ircd::ctx blocks here. Throws on error
const size_t bytes
{
request()
};
// Does linux ever not complete all bytes for an AIO?
assert(!opts.blocking || bytes == req_bytes);
stats.bytes_write += bytes;
stats.writes++;
return bytes;
}
size_t
ircd::fs::aio::count_queued(const op &type)
{
assert(system);
const auto &qcount(system->qcount);
return std::count_if(begin(system->queue), begin(system->queue)+qcount, [&type]
(const iocb *const &iocb)
{
assert(iocb);
return aio::translate(iocb->aio_lio_opcode) == type;
});
}
bool
ircd::fs::aio::for_each_queued(const std::function<bool (const request &)> &closure)
{
assert(system);
for(size_t i(0); i < system->qcount; ++i)
if(!closure(*reinterpret_cast<const request *>(system->queue[i]->aio_data)))
return false;
return true;
}
bool
ircd::fs::aio::for_each_completed(const std::function<bool (const request &)> &closure)
{
assert(system && system->head);
const auto &max{system->head->nr};
volatile auto head(system->head->head);
volatile const auto &tail(system->head->tail);
for(; head != tail; ++head, head %= max)
if(!closure(*reinterpret_cast<const request *>(system->ring[head].data)))
return false;
return true;
}
//
// request
//
ircd::fs::aio::request::request(const int &fd,
const struct opts *const &opts)
:iocb{0}
,opts{opts}
{
assert(system);
assert(ctx::current);
aio_flags = IOCB_FLAG_RESFD;
aio_resfd = system->resfd.native_handle();
aio_fildes = fd;
aio_data = uintptr_t(this);
aio_reqprio = reqprio(opts->priority);
#if defined(RWF_HIPRI)
if(support_hipri && aio_reqprio == reqprio(opts::highest_priority))
aio_rw_flags |= RWF_HIPRI;
#endif
#if defined(RWF_NOWAIT)
if(support_nowait && !opts->blocking)
aio_rw_flags |= RWF_NOWAIT;
#endif
}
ircd::fs::aio::request::~request()
noexcept
{
}
/// Cancel a request. The handler callstack is invoked directly from here
/// which means any callback will be invoked or ctx will be notified if
/// appropriate.
bool
ircd::fs::aio::request::cancel()
{
assert(system);
if(!system->cancel(*this))
return false;
stats.bytes_cancel += bytes(iovec());
stats.cancel++;
return true;
}
/// Submit a request and properly yield the ircd::ctx. When this returns the
/// result will be available or an exception will be thrown.
size_t
ircd::fs::aio::request::operator()()
{
assert(system);
assert(ctx::current);
assert(waiter == ctx::current);
const size_t submitted_bytes
{
bytes(iovec())
};
// Update stats for submission phase
stats.bytes_requests += submitted_bytes;
stats.requests++;
const uint16_t &curcnt(stats.requests - stats.complete);
stats.max_requests = std::max(stats.max_requests, curcnt);
// Wait here until there's room to submit a request
system->dock.wait([]
{
return system->request_avail() > 0;
});
// Submit to system
system->submit(*this);
// Wait for completion
while(!system->wait(*this));
assert(completed());
assert(retval <= ssize_t(submitted_bytes));
// Update stats for completion phase.
stats.bytes_complete += submitted_bytes;
stats.complete++;
if(likely(retval != -1))
return size_t(retval);
assert(opts);
const auto blocking
{
#if defined(RWF_NOWAIT)
~aio_rw_flags & RWF_NOWAIT
#else
opts->blocking
#endif
};
static_assert(EAGAIN == EWOULDBLOCK);
if(!blocking && retval == -1 && errcode == EAGAIN)
return 0UL;
stats.errors++;
stats.bytes_errors += submitted_bytes;
thread_local char errbuf[512]; fmt::sprintf
{
errbuf, "fd:%d size:%zu off:%zd op:%u pri:%u #%lu",
aio_fildes,
aio_nbytes,
aio_offset,
aio_lio_opcode,
aio_reqprio,
errcode
};
throw std::system_error
{
make_error_code(errcode), errbuf
};
}
bool
ircd::fs::aio::request::queued()
const
{
return !for_each_queued([this]
(const auto &request)
{
return &request != this; // true to continue and return true
});
}
bool
ircd::fs::aio::request::completed()
const
{
return retval >= -1L;
}
ircd::fs::const_iovec_view
ircd::fs::aio::request::iovec()
const
{
return
{
reinterpret_cast<const ::iovec *>(aio_buf), aio_nbytes
};
}
//
// system
//
decltype(ircd::fs::aio::system::eventfd_flags)
ircd::fs::aio::system::eventfd_flags
{
EFD_CLOEXEC | EFD_NONBLOCK
};
//
// system::system
//
ircd::fs::aio::system::system(const size_t &max_events,
const size_t &max_submit)
try
:event
{
max_events
}
,queue
{
max_submit?: max_events
}
,resfd
{
ios::get(), int(syscall(::eventfd, ecount, eventfd_flags))
}
,head
{
[this]
{
aio_context *idp {nullptr};
syscall<SYS_io_setup>(this->max_events(), &idp);
return idp;
}(),
[](const aio_context *const &head)
{
syscall<SYS_io_destroy>(head);
}
}
,ring
{
reinterpret_cast<const io_event *>
(
reinterpret_cast<const uint8_t *>(head.get()) +
sizeof(aio_context)
)
}
{
assert(head->magic == aio_context::MAGIC);
if(unlikely(head->magic != aio_context::MAGIC))
throw panic
{
"ircd::fs::aio kernel context structure magic:%u != %u",
head->magic,
aio_context::MAGIC,
};
assert(sizeof(aio_context) == head->header_length);
if(unlikely(head->header_length != sizeof(*head)))
throw panic
{
"ircd::fs::aio kernel context structure length:%u != %u",
head->header_length,
sizeof(*head),
};
log::debug
{
log, "Established head(%p) ring(%p) id:%u fd:%d max_events:%zu max_submit:%zu compat:%x incompat:%x len:%u nr:%u",
head.get(),
ring,
head->id,
int(resfd.native_handle()),
this->max_events(),
this->max_submit(),
head->compat_features,
head->incompat_features,
head->header_length,
head->nr
};
}
catch(const std::exception &e)
{
log::error
{
log, "Error starting AIO context %p :%s",
(const void *)this,
e.what()
};
}
ircd::fs::aio::system::~system()
noexcept try
{
assert(qcount == 0);
const ctx::uninterruptible::nothrow ui;
interrupt();
wait();
boost::system::error_code ec;
resfd.close(ec);
}
catch(const std::exception &e)
{
log::critical
{
log, "Error shutting down AIO context %p :%s",
(const void *)this,
e.what()
};
}
bool
ircd::fs::aio::system::interrupt()
{
if(!resfd.is_open())
return false;
if(handle_set)
resfd.cancel();
else
ecount = -1;
return true;
}
bool
ircd::fs::aio::system::wait()
{
if(!resfd.is_open())
return false;
log::debug
{
log, "Waiting for AIO context %p", this
};
dock.wait([this]
{
return ecount == uint64_t(-1);
});
assert(request_count() == 0);
return true;
}
/// Block the current context while waiting for results.
///
/// This function returns true when the request completes and it's safe to
/// continue. This function intercepts all exceptions and cancels the request
/// if it's appropriate before rethrowing; after which it is safe to continue.
///
/// If this function returns false it is not safe to continue; it *must* be
/// called again until it no longer returns false.
bool
ircd::fs::aio::system::wait(request &request)
try
{
assert(ctx::current == request.waiter);
while(!request.completed())
ctx::wait();
return true;
}
catch(...)
{
// When the ctx is interrupted we're obliged to cancel the request
// if it has not reached a completed state.
if(request.completed())
throw;
// The handler callstack is invoked synchronously on this stack for
// requests which are still in our userspace queue.
if(request.queued())
{
request.cancel();
throw;
}
// The handler callstack is invoked asynchronously for requests
// submitted to the kernel; we *must* wait for that by blocking
// ctx interrupts and terminations and continue to wait. The caller
// must loop into this call again until it returns true or throws.
return false;
}
bool
ircd::fs::aio::system::cancel(request &request)
try
{
assert(request.aio_data == uintptr_t(&request));
assert(!request.completed() || request.queued());
iocb *const cb
{
static_cast<iocb *>(&request)
};
const auto eit
{
std::remove(begin(queue), begin(queue) + qcount, cb)
};
const auto qcount
{
size_t(std::distance(begin(queue), eit))
};
// We know something was erased if the qcount no longer matches
const bool erased_from_queue
{
this->qcount > qcount
};
// Make the qcount accurate again after any erasure.
assert(!erased_from_queue || this->qcount == qcount + 1);
assert(erased_from_queue || this->qcount == qcount);
if(erased_from_queue)
{
this->qcount--;
dock.notify_one();
stats.cur_queued--;
}
// Setup an io_event result which we will handle as a normal event
// immediately on this stack. We create our own cancel result if
// the request was not yet submitted to the system so the handler
// remains agnostic to our userspace queues.
io_event result {0};
if(erased_from_queue)
{
result.data = cb->aio_data;
result.obj = uintptr_t(cb);
result.res = -1;
result.res2 = ECANCELED;
} else {
assert(!request.queued());
syscall_nointr<SYS_io_cancel>(head.get(), cb, &result);
in_flight--;
stats.cur_submits--;
dock.notify_one();
}
handle_event(result);
return true;
}
catch(const std::system_error &e)
{
assert(request.aio_data == uintptr_t(&request));
log::critical
{
"AIO(%p) cancel(fd:%d size:%zu off:%zd op:%u pri:%u) #%lu :%s",
this,
request.aio_fildes,
request.aio_nbytes,
request.aio_offset,
request.aio_lio_opcode,
request.aio_reqprio,
e.code().value(),
e.what()
};
return false;
}
bool
ircd::fs::aio::system::submit(request &request)
{
assert(request.opts);
assert(qcount < queue.size());
assert(qcount + in_flight < max_events());
assert(request.aio_data == uintptr_t(&request));
assert(!request.completed());
const ctx::critical_assertion ca;
queue.at(qcount++) = static_cast<iocb *>(&request);
stats.cur_queued++;
stats.max_queued = std::max(stats.max_queued, stats.cur_queued);
assert(stats.cur_queued == qcount);
// Determine whether this request will trigger a flush of the queue
// and be submitted itself as well.
const bool submit_now
{
// The nodelay flag is set by the user.
request.opts->nodelay
// The queue has reached its limits.
|| qcount >= max_submit()
};
const size_t submitted
{
submit_now? submit() : 0
};
// Only post the chaser when the queue has one item. If it has more
// items the chaser was already posted after the first item and will
// flush the whole queue down to 0.
if(qcount == 1)
{
static ios::descriptor descriptor
{
"ircd::fs::aio chase"
};
auto handler(std::bind(&system::chase, this));
ircd::defer(descriptor, std::move(handler));
}
return true;
}
/// The chaser is posted to the IRCd event loop after the first request.
/// Ideally more requests will queue up before the chaser reaches the front
/// of the IRCd event queue and executes.
void
ircd::fs::aio::system::chase()
noexcept try
{
if(!qcount)
return;
const auto submitted
{
submit()
};
stats.chases++;
assert(!qcount);
}
catch(const std::exception &e)
{
throw panic
{
"AIO(%p) system::chase() qcount:%zu :%s", this, qcount, e.what()
};
}
/// The submitter submits all queued requests and resets our userspace queue
/// count down to zero.
size_t
ircd::fs::aio::system::submit()
noexcept try
{
assert(qcount > 0);
assert(in_flight + qcount <= MAX_EVENTS);
assert(in_flight + qcount <= max_events());
const bool idle
{
in_flight == 0
};
size_t submitted; do
{
submitted = io_submit();
}
while(qcount > 0 && !submitted);
in_flight += submitted;
qcount -= submitted;
assert(!qcount);
stats.submits += bool(submitted);
stats.cur_queued -= submitted;
stats.cur_submits += submitted;
stats.max_submits = std::max(stats.max_submits, stats.cur_submits);
assert(stats.cur_queued == qcount);
assert(stats.cur_submits == in_flight);
if(idle && submitted > 0 && !handle_set)
set_handle();
return submitted;
}
catch(const std::exception &e)
{
ircd::terminate{ircd::error
{
"AIO(%p) system::submit() qcount:%zu :%s",
this,
qcount,
e.what()
}};
__builtin_unreachable();
}
size_t
ircd::fs::aio::system::io_submit()
try
{
#ifdef RB_DEBUG_FS_AIO_SUBMIT_BLOCKING
const size_t count[3]
{
count_queued(op::READ),
count_queued(op::WRITE),
count_queued(op::SYNC),
};
ctx::syscall_usage_warning warning
{
"fs::aio::system::submit(in_flight:%zu qcount:%zu r:%zu w:%zu s:%zu)",
in_flight,
qcount,
count[0],
count[1],
count[2],
};
#endif
assert(qcount > 0);
const auto ret
{
syscall<SYS_io_submit>(head.get(), qcount, queue.data())
};
#ifdef RB_DEBUG_FS_AIO_SUBMIT_BLOCKING
stats.stalls += warning.timer.sample() > 0;
#endif
assert(!qcount || ret > 0);
return ret;
}
catch(const std::system_error &e)
{
log::error
{
log, "AIO(%p): io_submit() inflight:%zu qcount:%zu :%s",
this,
in_flight,
qcount,
e.what()
};
switch(e.code().value())
{
// Manpages sez that EBADF is thrown if the fd in the FIRST iocb has
// an issue.
case int(std::errc::bad_file_descriptor):
dequeue_one(e.code());
return 0;
case int(std::errc::invalid_argument):
{
dequeue_all(e.code());
return 0;
}
}
throw;
}
void
ircd::fs::aio::system::dequeue_all(const std::error_code &ec)
{
while(qcount > 0)
dequeue_one(ec);
}
void
ircd::fs::aio::system::dequeue_one(const std::error_code &ec)
{
assert(qcount > 0);
iocb *const cb(queue.front());
std::rotate(begin(queue), begin(queue)+1, end(queue));
stats.cur_queued--;
qcount--;
io_event result {0};
assert(cb->aio_data == uintptr_t(static_cast<request *>(cb)));
result.data = cb->aio_data;
result.obj = uintptr_t(cb);
result.res = -1;
result.res2 = ec.value();
handle_event(result);
}
void
ircd::fs::aio::system::set_handle()
try
{
assert(!handle_set);
handle_set = true;
ecount = 0;
const asio::mutable_buffers_1 bufs
{
&ecount, sizeof(ecount)
};
auto handler
{
std::bind(&system::handle, this, ph::_1, ph::_2)
};
resfd.async_read_some(bufs, ios::handle(handle_descriptor, std::move(handler)));
}
catch(...)
{
handle_set = false;
throw;
}
decltype(ircd::fs::aio::system::handle_descriptor)
ircd::fs::aio::system::handle_descriptor
{
"ircd::fs::aio sigfd",
// allocator; custom allocation strategy because this handler
// appears to excessively allocate and deallocate 120 bytes; this
// is a simple asynchronous operation, we can do better (and perhaps
// even better than this below).
[](auto &handler, const size_t &size)
{
assert(ircd::fs::aio::system);
auto &system(*ircd::fs::aio::system);
if(unlikely(!system.handle_data))
{
system.handle_size = size;
system.handle_data = std::make_unique<uint8_t[]>(size);
}
assert(system.handle_size == size);
return system.handle_data.get();
},
// no deallocation; satisfied by class member unique_ptr
[](auto &handler, void *const &ptr, const auto &size) {}
};
/// Handle notifications that requests are complete.
void
ircd::fs::aio::system::handle(const boost::system::error_code &ec,
const size_t bytes)
noexcept try
{
namespace errc = boost::system::errc;
assert((bytes == 8 && !ec && ecount >= 1) || (bytes == 0 && ec));
assert(!ec || ec.category() == asio::error::get_system_category());
assert(handle_set);
handle_set = false;
switch(ec.value())
{
case errc::success:
handle_events();
break;
case errc::interrupted:
break;
case errc::operation_canceled:
throw ctx::interrupted();
default:
throw_system_error(ec);
}
if(in_flight > 0 && !handle_set)
set_handle();
}
catch(const ctx::interrupted &)
{
log::debug
{
log, "AIO context %p interrupted", this
};
ecount = -1;
dock.notify_all();
}
void
ircd::fs::aio::system::handle_events()
noexcept try
{
assert(!ctx::current);
// The number of completed requests available in events[]. This syscall
// is restarted by us on EINTR. After restart, it may or may not find any ready
// events but it never blocks to do so.
const auto count
{
syscall_nointr<SYS_io_getevents>(head.get(), 0, event.size(), event.data(), nullptr)
};
// The count should be at least 1 event. The only reason to return 0 might
// be related to an INTR; this assert will find out and may be commented.
//assert(count > 0);
assert(count >= 0);
in_flight -= count;
stats.cur_submits -= count;
stats.handles++;
if(likely(count))
dock.notify_one();
for(ssize_t i(0); i < count; ++i)
handle_event(event[i]);
}
catch(const std::exception &e)
{
log::error
{
log, "AIO(%p) handle_events: %s",
this,
e.what()
};
}
void
ircd::fs::aio::system::handle_event(const io_event &event)
noexcept try
{
// The kernel always references the iocb in `event.obj`
auto *const iocb
{
reinterpret_cast<struct ::iocb *>(event.obj)
};
// We referenced our request (which extends the same iocb anyway)
// for the kernel to carry through as an opaque in `event.data`.
auto *const request
{
reinterpret_cast<aio::request *>(event.data)
};
// Check that everything lines up.
assert(request && iocb);
assert(iocb == static_cast<struct ::iocb *>(request));
assert(request->aio_data);
assert(request->aio_data == event.data);
assert(request->aio_data == iocb->aio_data);
assert(request->aio_data == uintptr_t(request));
// Assert that we understand the return-value semantics of this interface.
assert(event.res2 >= 0);
assert(event.res == -1 || event.res2 == 0);
// Set result indicators
request->retval = std::max(event.res, -1LL);
request->errcode = event.res >= -1? event.res2 : std::abs(event.res);
// Notify the waiting context. Note that we are on the main async stack
// but it is safe to notify from here.
assert(request->waiter);
ctx::notify(*request->waiter);
stats.events++;
}
catch(const std::exception &e)
{
log::critical
{
log, "Unhandled request(%lu) event(%p) error: %s",
event.data,
&event,
e.what()
};
}
size_t
ircd::fs::aio::system::request_avail()
const
{
assert(request_count() <= max_events());
return max_events() - request_count();
}
size_t
ircd::fs::aio::system::request_count()
const
{
return qcount + in_flight;
}
size_t
ircd::fs::aio::system::max_submit()
const
{
return queue.size();
}
size_t
ircd::fs::aio::system::max_events()
const
{
return event.size();
}