0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2025-01-16 09:36:54 +01:00
construct/ircd/client.cc
2018-02-05 21:24:34 -08:00

752 lines
19 KiB
C++

// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2018 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#include <ircd/asio.h>
namespace ircd
{
template<class... args> std::shared_ptr<client> make_client(args&&...);
}
/// Linkage for the default settings
decltype(ircd::client::settings)
ircd::client::settings
{};
/// Linkage for the default conf
decltype(ircd::client::default_conf)
ircd::client::default_conf
{};
/// The pool of request contexts. When a client makes a request it does so by acquiring
/// a stack from this pool. The request handling and response logic can then be written
/// in a synchronous manner as if each connection had its own thread.
ircd::ctx::pool
ircd::client::context
{
"client", settings.stack_size
};
// Linkage for the container of all active clients for iteration purposes.
template<>
decltype(ircd::util::instance_list<ircd::client>::list)
ircd::util::instance_list<ircd::client>::list
{};
//
// init
//
ircd::client::init::init()
{
context.add(settings.pool_size);
}
void
ircd::client::init::interrupt()
{
if(context.active() || !client::list.empty())
log::warning("Interrupting %zu requests; dropping %zu requests; closing %zu clients...",
context.active(),
context.pending(),
client::list.size());
context.interrupt();
close_all_clients();
}
ircd::client::init::~init()
noexcept
{
interrupt();
if(context.active())
log::warning("Joining %zu active of %zu remaining request contexts...",
context.active(),
context.size());
else
log::debug("Waiting for %zu request contexts to join...",
context.size());
context.join();
if(unlikely(!client::list.empty()))
{
log::error("%zu clients are unterminated...", client::list.size());
assert(client::list.empty());
}
}
//
// util
//
ircd::http::response::write_closure
ircd::write_closure(client &client)
{
// returns a function that can be called to send an iovector of data to a client
return [&client](const ilist<const const_buffer> &iov)
{
//std::cout << "<<<< " << size(iov) << std::endl;
//std::cout << iov << std::endl;
//std::cout << "---- " << std::endl;
const auto written
{
write(*client.sock, iov)
};
};
}
ircd::parse::read_closure
ircd::read_closure(client &client)
{
// Returns a function the parser can call when it wants more data
return [&client](char *&start, char *const &stop)
{
char *const got(start);
read(client, start, stop);
//std::cout << ">>>> " << std::distance(got, start) << std::endl;
//std::cout << string_view{got, start} << std::endl;
//std::cout << "----" << std::endl;
};
}
char *
ircd::read(client &client,
char *&start,
char *const &stop)
{
assert(client.sock);
auto &sock(*client.sock);
const mutable_buffer buf
{
start, stop
};
char *const base(start);
start += net::read(sock, buf);
return base;
}
const char *
ircd::write(client &client,
const char *&start,
const char *const &stop)
{
assert(client.sock);
auto &sock(*client.sock);
const const_buffer buf
{
start, stop
};
const char *const base(start);
start += net::write(sock, buf);
return base;
}
std::shared_ptr<ircd::client>
ircd::add_client(std::shared_ptr<socket> s)
{
const auto client
{
make_client(std::move(s))
};
client->async();
return client;
}
template<class... args>
std::shared_ptr<ircd::client>
ircd::make_client(args&&... a)
{
return std::make_shared<client>(std::forward<args>(a)...);
}
void
ircd::close_all_clients()
{
auto it(begin(client::list));
while(it != end(client::list))
{
auto *const client(*it);
++it; try
{
client->close(net::dc::RST, net::close_ignore);
}
catch(const std::exception &e)
{
log::warning("Error disconnecting client @%p: %s", client, e.what());
}
}
}
ircd::ipport
ircd::local(const client &client)
{
if(!client.sock)
return {};
return net::local_ipport(*client.sock);
}
ircd::ipport
ircd::remote(const client &client)
{
if(!client.sock)
return {};
return net::remote_ipport(*client.sock);
}
//
// async loop
//
namespace ircd
{
static bool handle_ec_default(client &, const error_code &);
static bool handle_ec_timeout(client &);
static bool handle_ec_short_read(client &);
static bool handle_ec_eof(client &);
static bool handle_ec(client &, const error_code &);
static void handle_client_request(std::shared_ptr<client>);
static void handle_client_ready(std::shared_ptr<client>, const error_code &ec);
}
/// This function is the basis for the client's request loop. We still use
/// an asynchronous pattern until there is activity on the socket (a request)
/// in which case the switch to synchronous mode is made by jumping into an
/// ircd::context drawn from the request pool. When the request is finished,
/// the client exits back into asynchronous mode until the next request is
/// received and rinse and repeat.
//
/// This sequence exists to avoid any possible c10k-style limitation imposed by
/// dedicating a context and its stack space to the lifetime of a connection.
/// This is similar to the thread-per-request pattern before async was in vogue.
///
/// This call returns immediately so we no longer block the current context and
/// its stack while waiting for activity on idle connections between requests.
void
ircd::client::async()
{
assert(bool(this->sock));
assert(bool(this->conf));
auto &sock(*this->sock);
const net::wait_opts opts
{
net::ready::READ, conf->async_timeout
};
auto handler
{
std::bind(ircd::handle_client_ready, shared_from(*this), ph::_1)
};
sock(opts, std::move(handler));
}
/// The client's socket is ready for reading. This intermediate handler
/// intercepts any errors otherwise dispatches the client to the request
/// pool to be married with a stack. Right here this handler is executing on
/// the main stack (not in any ircd::context).
///
/// The context the closure ends up getting is the next available from the
/// request pool, which may not be available immediately so this handler might
/// be queued for some time after this call returns.
void
ircd::handle_client_ready(std::shared_ptr<client> client,
const error_code &ec)
{
if(!handle_ec(*client, ec))
return;
auto handler
{
std::bind(ircd::handle_client_request, std::move(client))
};
client::context(std::move(handler));
}
/// A request context has been dispatched and is now handling this client.
/// This function is executing on that ircd::ctx stack. client::main() will
/// now be called and synchronous programming is possible. Afterward, the
/// client will release this ctx and its stack and fall back to async mode
/// or die.
void
ircd::handle_client_request(std::shared_ptr<client> client)
{
if(!client->main())
{
client->close(net::dc::SSL_NOTIFY).wait();
return;
}
client->async();
}
/// This error handling switch is one of two places client errors
/// are handled. This handles the errors when the client is in async
/// mode rather than during a request. This executes on the main/callback
/// stack, not in any ircd::ctx, and must be asynchronous.
///
bool
ircd::handle_ec(client &client,
const error_code &ec)
{
using namespace boost::system::errc;
using boost::system::system_category;
using boost::asio::error::get_ssl_category;
using boost::asio::error::get_misc_category;
if(ec.category() == system_category()) switch(ec.value())
{
case success: return true;
case operation_canceled: return false;
case timed_out: return handle_ec_timeout(client);
default: return handle_ec_default(client, ec);
}
else if(ec.category() == get_misc_category()) switch(ec.value())
{
case asio::error::eof: return handle_ec_eof(client);
default: return handle_ec_default(client, ec);
}
else if(ec.category() == get_ssl_category()) switch(uint8_t(ec.value()))
{
case SSL_R_SHORT_READ: return handle_ec_short_read(client);
default: return handle_ec_default(client, ec);
}
else return handle_ec_default(client, ec);
}
/// The client indicated they will not be sending the data we have been
/// waiting for. The proper behavior now is to initiate a clean shutdown.
bool
ircd::handle_ec_eof(client &client)
try
{
log::debug("socket(%p) local[%s] remote[%s] end of file",
client.sock.get(),
string(local(client)),
string(remote(client)));
client.close(net::dc::SSL_NOTIFY, net::close_ignore);
return false;
}
catch(const std::exception &e)
{
log::error("socket(%p) EOF: %s",
client.sock.get(),
e.what());
return false;
}
/// The client terminated the connection, likely improperly, and SSL
/// is informing us with an opportunity to prevent truncation attacks.
/// Best behavior here is to just close the sd.
bool
ircd::handle_ec_short_read(client &client)
try
{
log::warning("socket(%p) local[%s] remote[%s] short_read",
client.sock.get(),
string(local(client)),
string(remote(client)));
client.close(net::dc::RST, net::close_ignore);
return false;
}
catch(const std::exception &e)
{
log::error("socket(%p) short_read: %s",
client.sock.get(),
e.what());
return false;
}
/// The net:: system determined the client timed out because we set a timer
/// on the socket waiting for data which never arrived. The client may very
/// well still be there, so the best thing to do is to attempt a clean
/// disconnect.
bool
ircd::handle_ec_timeout(client &client)
try
{
assert(bool(client.sock));
log::debug
{
"socket(%p) local[%s] remote[%s] disconnecting after inactivity timeout",
client.sock.get(),
string(local(client)),
string(remote(client))
};
client.close(net::dc::SSL_NOTIFY, net::close_ignore);
return false;
}
catch(const std::exception &e)
{
log::error("socket(%p) timeout: %s",
client.sock.get(),
e.what());
return false;
}
/// Unknown/untreated error. Probably not worth attempting a clean shutdown
/// so a hard / immediate disconnect given instead.
bool
ircd::handle_ec_default(client &client,
const error_code &ec)
{
log::warning("socket(%p) local[%s] remote[%s] %s",
client.sock.get(),
string(local(client)),
string(remote(client)),
string(ec));
client.close(net::dc::RST, net::close_ignore);
return false;
}
//
// client
//
ircd::client::client()
:client{std::shared_ptr<socket>{}}
{
}
ircd::client::client(std::shared_ptr<socket> sock)
:sock{std::move(sock)}
{
}
ircd::client::~client()
noexcept try
{
//assert(!sock || !connected(*sock));
}
catch(const std::exception &e)
{
log::critical("socket(%p) ~client(%p): %s",
sock.get(),
this,
e.what());
return;
}
/// Client main loop.
///
/// Before main(), the client had been sitting in async mode waiting for
/// socket activity. Once activity with data was detected indicating a request,
/// the client was dispatched to the request pool where it is paired to an
/// ircd::ctx with a stack. main() is then invoked on that ircd::ctx stack.
/// Nothing from the socket has been read into userspace before main().
///
/// This function parses requests off the socket in a loop until there are no
/// more requests or there is a fatal error. The ctx will "block" to wait for
/// more data off the socket during the middle of a request until the request
/// timeout is reached. main() will not "block" to wait for more data after a
/// request; it will simply `return true` which puts this client back into
/// async mode and relinquishes this stack. returning false will disconnect
/// the client rather than putting it back into async mode.
///
/// Exceptions do not pass below main() therefor anything unhandled is an
/// internal server error and the client is disconnected. The exception handler
/// here though is executing on a request ctx stack, and we can choose to take
/// advantage of that; in contrast to the handle_ec() switch which handles
/// errors on the main/callback stack and must be asynchronous.
///
bool
ircd::client::main()
noexcept try
{
char buffer[client::request::HEAD_MAX];
parse::buffer pb{mutable_buffer{buffer}};
parse::capstan pc{pb, read_closure(*this)}; do
{
if(!handle_request(pc))
return false;
// After the request, the head and content has been read off the socket
// and the capstan has advanced to the end of the content. The catch is
// that reading off the socket could have read too much, bleeding into
// the next request. This is rare, but pb.remove() will memmove() the
// bleed back to the beginning of the head buffer for the next loop.
pb.remove();
}
while(pc.unparsed());
return true;
}
catch(const boost::system::system_error &e)
{
using namespace boost::system::errc;
using boost::system::system_category;
using boost::asio::error::get_ssl_category;
using boost::asio::error::get_misc_category;
log::debug("socket(%p) local[%s] remote[%s] error during request: %s",
sock.get(),
string(local(*this)),
string(remote(*this)),
string(e.code()));
const error_code &ec{e.code()};
const int &value{ec.value()};
if(ec.category() == system_category()) switch(value)
{
case success:
assert(0);
return true;
case broken_pipe:
case connection_reset:
case not_connected:
close(net::dc::RST, net::close_ignore);
return false;
case operation_canceled:
case timed_out:
return false;
case bad_file_descriptor:
return false;
default:
break;
}
else if(ec.category() == get_ssl_category()) switch(uint8_t(value))
{
case SSL_R_SHORT_READ:
close(net::dc::RST, net::close_ignore);
return false;
case SSL_R_PROTOCOL_IS_SHUTDOWN:
close(net::dc::RST, net::close_ignore);
return false;
default:
break;
}
else if(ec.category() == get_misc_category()) switch(value)
{
case boost::asio::error::eof:
return false;
default:
break;
}
log::error("socket(%p) (unexpected) %s: (%d) %s",
sock.get(),
ec.category().name(),
value,
ec.message());
close(net::dc::RST, net::close_ignore);
return false;
}
catch(const std::exception &e)
{
log::error("client[%s] [500 Internal Error]: %s",
string(remote(*this)),
e.what());
#ifdef RB_DEBUG
throw;
#else
return false;
#endif
}
/// The constructor for request state is only made in
/// client::handle_request(). It is defined here to be adjacent to that
/// callsite
///
ircd::client::request::request(parse::capstan &pc)
:head
{
// This is the first read off the wire. The headers are entirely read and
// the tape is advanced.
pc
}
,content_consumed
{
// The size of HTTP headers are never initially known, which means
// the above head parse could have read too much off the socket bleeding
// into the content or even the next request entirely. That's ok because
// the state of `pc` will reflect that back to the main() loop for the
// next request, but for this request we have to figure out how much of
// the content was accidentally read so far.
std::min(pc.unparsed(), head.content_length)
}
,content_partial
{
pc.parsed, content_consumed
}
{
pc.parsed += content_consumed;
}
/// Handle a single request within the client main() loop.
///
/// This function returns false if the main() loop should exit
/// and thus disconnect the client. It should return true in most
/// cases even for lightly erroneous requests that won't affect
/// the next requests on the tape.
///
/// This function is timed. The timeout will prevent a client from
/// sending a partial request and leave us waiting for the rest.
/// As of right now this timeout extends to our handling of the
/// request too.
bool
ircd::client::handle_request(parse::capstan &pc)
try
{
const socket::scope_timeout timeout
{
*sock, conf->request_timeout
};
struct request request{pc};
assert(pc.parsed <= pc.read);
this->request = &request;
log::debug("socket(%p) local[%s] remote[%s] HTTP %s `%s' content-length:%zu part:%zu",
sock.get(),
string(local(*this)),
string(remote(*this)),
request.head.method,
request.head.path,
request.head.content_length,
request.content_consumed);
bool ret
{
resource_request(request)
};
if(ret && iequals(request.head.connection, "close"_sv))
ret = false;
return ret;
}
catch(const boost::system::system_error &e)
{
if(e.code().value() != boost::system::errc::operation_canceled)
throw;
resource::response
{
*this, {}, {}, http::REQUEST_TIMEOUT
};
return false;
}
catch(const ircd::error &e)
{
log::error("socket(%p) local[%s] remote[%s]: %s",
sock.get(),
string(local(*this)),
string(remote(*this)),
e.what());
resource::response
{
*this, e.what(), {}, http::INTERNAL_SERVER_ERROR
};
throw;
}
bool
ircd::client::resource_request(struct request &request)
try
{
auto &resource
{
ircd::resource::find(request.head.path)
};
resource(*this, request, request.head);
return true;
}
catch(const http::error &e)
{
resource::response
{
*this, e.content, "text/html; charset=utf8", e.code, e.headers
};
switch(e.code)
{
// These codes are "unrecoverable" errors and no more HTTP can be
// conducted with this tape. The client must be disconnected.
case http::BAD_REQUEST:
case http::REQUEST_TIMEOUT:
case http::PAYLOAD_TOO_LARGE:
case http::INTERNAL_SERVER_ERROR:
return false;
// These codes are "recoverable" and allow the next HTTP request in
// a pipeline to take place.
default:
discard_unconsumed(request);
return true;
}
}
void
ircd::client::discard_unconsumed(struct request &request)
{
if(unlikely(!sock))
return;
const size_t unconsumed
{
request.head.content_length - request.content_consumed
};
if(!unconsumed)
return;
log::debug("socket(%p) local[%s] remote[%s] discarding %zu unconsumed of %zu bytes content...",
sock.get(),
string(local(*this)),
string(remote(*this)),
unconsumed,
request.head.content_length);
request.content_consumed += net::discard_all(*sock, unconsumed);
assert(request.content_consumed == request.head.content_length);
}
ircd::ctx::future<void>
ircd::client::close(const net::close_opts &opts)
{
if(likely(sock))
return net::close(*sock, opts);
else
return {};
}
void
ircd::client::close(const net::close_opts &opts,
net::close_callback callback)
{
net::close(*sock, opts, std::move(callback));
}