0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-07-06 02:28:38 +02:00
construct/ircd/cl.cc

1449 lines
30 KiB
C++

// The Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2021 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#include <dlfcn.h>
#include <CL/cl.h>
// Util
namespace ircd::cl
{
static bool is_error(const int &code) noexcept;
static int throw_on_error(const int &code);
template<class func, class... args> static int call(func&&, args&&...);
template<class T = string_view, class F, class id, class param> static T info(F&&, const id &, const param &, const mutable_buffer &);
}
// Runtime state
namespace ircd::cl
{
static const size_t
OPTION_MAX {8},
PLATFORM_MAX {8},
DEVICE_MAX {8};
static uint
options,
platforms,
devices[PLATFORM_MAX];
static char
option[OPTION_MAX][256];
static void
*linkage;
static cl_platform_id
platform[PLATFORM_MAX];
static cl_device_id
device[PLATFORM_MAX][DEVICE_MAX];
static cl_context
primary;
static cl_command_queue
queue[PLATFORM_MAX][DEVICE_MAX];
static void handle_notify(const char *, const void *, size_t, void *) noexcept;
}
decltype(ircd::cl::log)
ircd::cl::log
{
"cl"
};
decltype(ircd::cl::version_api)
ircd::cl::version_api
{
"OpenCL", info::versions::API, CL_TARGET_OPENCL_VERSION,
{
#if defined(CL_VERSION_MAJOR) && defined(CL_VERSION_MINOR) && defined(CL_VERSION_PATCH)
CL_VERSION_MAJOR(CL_TARGET_OPENCL_VERSION),
CL_VERSION_MINOR(CL_TARGET_OPENCL_VERSION),
CL_VERSION_PATCH(CL_TARGET_OPENCL_VERSION),
#endif
}
};
decltype(ircd::cl::version_abi)
ircd::cl::version_abi
{
"OpenCL", info::versions::ABI
};
decltype(ircd::cl::enable)
ircd::cl::enable
{
{ "name", "ircd.cl.enable" },
{ "default", false },
{ "persist", false },
};
//
// init
//
ircd::cl::init::init()
{
if(!enable)
{
log::dwarning
{
log, "OpenCL hardware acceleration is not available or enabled."
};
return;
}
const ctx::posix::enable_pthread enable_pthread;
// Setup options
strlcpy{option[options++], "LP_NUM_THREADS=0"};
strlcpy{option[options++], "MESA_GLSL_CACHE_DISABLE=true"};
strlcpy{option[options++], "AMD_DEBUG=nogfx"};
assert(options <= OPTION_MAX);
// Configure options into the environment. TODO: XXX don't overwrite
while(options--)
sys::call(putenv, option[options]);
// Load the pipe.
assert(!linkage);
if(!(linkage = dlopen("libOpenCL.so", RTLD_LAZY | RTLD_GLOBAL)))
return;
// OpenCL sez platform=null is implementation defined.
info(clGetPlatformInfo, nullptr, CL_PLATFORM_VERSION, version_abi.string);
// Get the platforms.
call(clGetPlatformIDs, PLATFORM_MAX, platform, &platforms);
char buf[4][128];
for(size_t i(0); i < platforms; ++i)
log::logf
{
log, log::level::DEBUG,
"OpenCL:%d [%u][*] :%s :%s :%s :%s",
CL_TARGET_OPENCL_VERSION,
i,
info(clGetPlatformInfo, platform[i], CL_PLATFORM_VERSION, buf[0]),
info(clGetPlatformInfo, platform[i], CL_PLATFORM_VENDOR, buf[1]),
info(clGetPlatformInfo, platform[i], CL_PLATFORM_NAME, buf[2]),
info(clGetPlatformInfo, platform[i], CL_PLATFORM_EXTENSIONS, buf[3]),
};
size_t devices_total(0);
for(size_t i(0); i < platforms; ++i)
{
static const auto type
{
CL_DEVICE_TYPE_GPU | CL_DEVICE_TYPE_ACCELERATOR
};
call(clGetDeviceIDs, platform[i], type, DEVICE_MAX, device[i], devices + i);
devices_total += devices[i];
}
for(size_t i(0); i < platforms; ++i)
for(size_t j(0); j < devices[i]; ++j)
log::info
{
log, "OpenCL:%d [%u][%u] :%s :%s :%s :%s",
CL_TARGET_OPENCL_VERSION,
i,
j,
info(clGetDeviceInfo, device[i][j], CL_DEVICE_VERSION, buf[1]),
info(clGetDeviceInfo, device[i][j], CL_DEVICE_VENDOR, buf[2]),
info(clGetDeviceInfo, device[i][j], CL_DEVICE_NAME, buf[3]),
info(clGetDeviceInfo, device[i][j], CL_DRIVER_VERSION, buf[0]),
};
// Gather all devices we'll use.
size_t _devs {0};
cl_device_id _dev[DEVICE_MAX];
for(size_t i(0); i < platforms; ++i)
for(size_t j(0); j < devices[i]; ++j)
_dev[_devs++] = device[i][j];
// Create a context from gathered devices.
cl_int err {CL_SUCCESS};
cl_context_properties ctxprop {0};
primary = clCreateContext(&ctxprop, _devs, _dev, handle_notify, nullptr, &err);
throw_on_error(err);
// Create a queue for each device.
cl_command_queue_properties qprop {0};
qprop |= CL_QUEUE_PROFILING_ENABLE;
for(size_t i(0); i < platforms; ++i)
for(size_t j(0); j < devices[i]; ++j)
{
queue[i][j] = clCreateCommandQueue(primary, device[i][j], qprop, &err);
throw_on_error(err);
}
work::init();
}
ircd::cl::init::~init()
noexcept
{
if(!linkage)
return;
const ctx::posix::enable_pthread enable_pthread;
if(primary)
{
log::debug
{
log, "Shutting down OpenCL...",
};
work::fini();
}
for(size_t i(0); i < PLATFORM_MAX; ++i)
for(size_t j(0); j < DEVICE_MAX; ++j)
if(queue[i][j])
{
call(clReleaseCommandQueue, queue[i][j]);
queue[i][j] = nullptr;
}
if(primary)
{
call(clReleaseContext, primary);
primary = nullptr;
}
dlclose(linkage);
}
//
// interface
//
void
ircd::cl::sync()
{
auto &q
{
queue[0][0]
};
call
(
clFinish, q
);
}
void
ircd::cl::flush()
{
auto &q
{
queue[0][0]
};
call
(
clFlush, q
);
}
//
// exec
//
namespace ircd::cl
{
static const size_t _deps_list_max {256};
static thread_local cl_event _deps_list[_deps_list_max];
static vector_view<cl_event> make_deps_default(cl::work *const &, const exec::opts &);
static vector_view<cl_event> make_deps(cl::work *const &, const exec::opts &);
}
template<>
decltype(ircd::util::instance_list<ircd::cl::work>::allocator)
ircd::util::instance_list<ircd::cl::work>::allocator
{};
template<>
decltype(ircd::util::instance_list<ircd::cl::work>::list)
ircd::util::instance_list<ircd::cl::work>::list
{
allocator
};
decltype(ircd::cl::exec::opts_default)
ircd::cl::exec::opts_default;
ircd::cl::exec::exec(const opts &opts)
try
{
auto &q
{
queue[0][0]
};
const auto deps
{
make_deps(this, opts)
};
assert(!this->handle);
call
(
clEnqueueBarrierWithWaitList,
q,
deps.size(),
deps.size()? deps.data(): nullptr,
reinterpret_cast<cl_event *>(&this->handle)
);
}
catch(const std::exception &e)
{
log::error
{
log, "Exec Barrier :%s",
e.what(),
};
throw;
}
ircd::cl::exec::exec(kern &kern,
const kern::range &work,
const opts &opts)
try
{
size_t dim(0);
for(size_t i(0); i < work.global.size(); ++i)
dim += work.global[i] > 0;
auto &q
{
queue[0][0]
};
const auto deps
{
make_deps(this, opts)
};
assert(!this->handle);
call
(
clEnqueueNDRangeKernel,
q,
cl_kernel(kern.handle),
dim,
work.offset.data(),
work.global.data(),
work.local.data(),
deps.size(),
deps.size()? deps.data(): nullptr,
reinterpret_cast<cl_event *>(&this->handle)
);
}
catch(const std::exception &e)
{
log::error
{
log, "Exec Kern :%s",
e.what(),
};
throw;
}
ircd::cl::exec::exec(data &data,
const mutable_buffer &buf,
const opts &opts)
try
{
auto &q
{
queue[0][0]
};
const auto deps
{
make_deps(this, opts)
};
assert(!this->handle);
call
(
clEnqueueReadBuffer,
q,
cl_mem(data.handle),
opts.blocking,
opts.offset,
ircd::size(buf),
ircd::data(buf),
deps.size(),
deps.size()? deps.data(): nullptr,
reinterpret_cast<cl_event *>(&this->handle)
);
}
catch(const std::exception &e)
{
log::error
{
log, "Exec Read :%s",
e.what(),
};
throw;
}
ircd::cl::exec::exec(data &data,
const const_buffer &buf,
const opts &opts)
try
{
auto &q
{
queue[0][0]
};
const auto deps
{
make_deps(this, opts)
};
assert(!this->handle);
call
(
clEnqueueWriteBuffer,
q,
cl_mem(data.handle),
opts.blocking,
opts.offset,
ircd::size(buf),
mutable_cast(ircd::data(buf)),
deps.size(),
deps.size()? deps.data(): nullptr,
reinterpret_cast<cl_event *>(&this->handle)
);
}
catch(const std::exception &e)
{
log::error
{
log, "Exec Write :%s",
e.what(),
};
throw;
}
ircd::cl::exec::exec(data &data,
const read_closure &closure,
const opts &opts)
try
{
auto &q
{
queue[0][0]
};
const auto deps
{
make_deps(this, opts)
};
const auto size
{
opts.size?: data.size()
};
cl_map_flags flags {0};
flags |= CL_MAP_READ;
int err {CL_SUCCESS};
assert(!this->handle);
void *const ptr
{
clEnqueueMapBuffer
(
q,
cl_mem(data.handle),
opts.blocking,
flags,
opts.offset,
size,
deps.size(),
deps.size()? deps.data(): nullptr,
reinterpret_cast<cl_event *>(&this->handle),
&err
)
};
throw_on_error(err);
assert(this->handle);
assert(ptr);
const unwind unmap{[this, &data, &q, &ptr]
{
assert(!this->handle);
call
(
clEnqueueUnmapMemObject,
q,
cl_mem(data.handle),
ptr,
0, // deps
nullptr, // depslist
reinterpret_cast<cl_event *>(&this->handle)
);
}};
wait();
closure(const_buffer
{
reinterpret_cast<const char *>(ptr), size
});
}
catch(const std::exception &e)
{
log::error
{
log, "Exec Read Closure :%s",
e.what(),
};
throw;
}
ircd::cl::exec::exec(data &data,
const write_closure &closure,
const opts &opts)
try
{
auto &q
{
queue[0][0]
};
const auto deps
{
make_deps(this, opts)
};
const auto size
{
opts.size?: data.size()
};
cl_map_flags flags {0};
flags |= CL_MAP_WRITE;
flags |= opts.duplex? CL_MAP_READ: 0;
int err {CL_SUCCESS};
assert(!this->handle);
void *const ptr
{
clEnqueueMapBuffer
(
q,
cl_mem(data.handle),
opts.blocking,
flags,
opts.offset,
size,
deps.size(),
deps.size()? deps.data(): nullptr,
reinterpret_cast<cl_event *>(&this->handle),
&err
)
};
throw_on_error(err);
assert(this->handle);
assert(ptr);
const unwind unmap{[this, &data, &q, &ptr]
{
assert(!this->handle);
call
(
clEnqueueUnmapMemObject,
q,
cl_mem(data.handle),
ptr,
0, // deps
nullptr, // depslist
reinterpret_cast<cl_event *>(&this->handle)
);
}};
wait();
closure(mutable_buffer
{
reinterpret_cast<char *>(ptr), size
});
}
catch(const std::exception &e)
{
log::error
{
log, "Exec Write Closure :%s",
e.what(),
};
throw;
}
ircd::vector_view<cl_event>
ircd::cl::make_deps(cl::work *const &work,
const exec::opts &opts)
{
if(empty(opts.deps))
return make_deps_default(work, opts);
size_t ret(0);
vector_view<cl_event> out(_deps_list);
for(auto &exec : opts.deps)
out.at(ret++) = cl_event(exec.handle);
return vector_view<cl_event>
{
out, ret
};
}
ircd::vector_view<cl_event>
ircd::cl::make_deps_default(cl::work *const &work,
const exec::opts &opts)
{
size_t ret(0);
vector_view<cl_event> out(_deps_list);
for(auto it(rbegin(cl::work::list)); it != rend(cl::work::list); ++it)
{
cl::work *const &other{*it};
if(other == work)
continue;
if(!other->handle)
continue;
if(other->context != ctx::current)
continue;
out.at(ret++) = cl_event(other->handle);
break;
}
return vector_view<cl_event>
{
out, ret
};
}
//
// kern
//
ircd::cl::kern::kern(code &code,
const string_view &name)
try
{
int err {CL_SUCCESS};
handle = clCreateKernel(cl_program(code.handle), name.c_str(), &err);
throw_on_error(err);
}
catch(const std::exception &e)
{
log::error
{
log, "Kernel Create '%s' :%s",
name,
e.what(),
};
throw;
}
ircd::cl::kern::kern(kern &&o)
noexcept
:handle{std::move(o.handle)}
{
o.handle = nullptr;
}
ircd::cl::kern &
ircd::cl::kern::operator=(kern &&o)
noexcept
{
this->~kern();
handle = std::move(o.handle);
o.handle = nullptr;
return *this;
}
ircd::cl::kern::~kern()
noexcept try
{
call(clReleaseKernel, cl_kernel(handle));
}
catch(const std::exception &e)
{
log::critical
{
log, "Kernel Release :%s",
e.what(),
};
return;
}
void
ircd::cl::kern::arg(const int i,
data &data)
{
const auto &data_handle
{
cl_mem(data.handle)
};
call(clSetKernelArg, cl_kernel(handle), i, sizeof(cl_mem), &data_handle);
}
//
// code
//
ircd::cl::code::code(const string_view &src,
const string_view &build_opts)
:code
{
vector_view<const string_view>(&src, 1),
build_opts
}
{
}
ircd::cl::code::code(const vector_view<const string_view> &srcs,
const string_view &build_opts)
{
static const size_t iov_max
{
64 //TODO: ???
};
if(unlikely(srcs.size() > iov_max))
throw error
{
"Maximum number of sources exceeded: lim:%zu got:%zu",
iov_max,
srcs.size(),
};
const size_t count
{
std::min(srcs.size(), iov_max)
};
size_t len[count];
const char *src[count];
for(size_t i(0); i < count; ++i)
src[i] = ircd::data(srcs[i]),
len[i] = ircd::size(srcs[i]);
int err {CL_SUCCESS};
handle = clCreateProgramWithSource(primary, count, src, len, &err);
throw_on_error(err);
if(!null(build_opts))
build(build_opts);
}
ircd::cl::code::code(code &&o)
noexcept
:handle{std::move(o.handle)}
{
o.handle = nullptr;
}
ircd::cl::code &
ircd::cl::code::operator=(code &&o)
noexcept
{
this->~code();
handle = std::move(o.handle);
o.handle = nullptr;
return *this;
}
ircd::cl::code::~code()
noexcept try
{
call(clReleaseProgram, cl_program(handle));
}
catch(const std::exception &e)
{
log::critical
{
log, "Program Release :%s",
e.what(),
};
return;
}
namespace ircd::cl
{
static void
handle_built(cl_program program, void *priv)
{
ircd::always_assert(false);
}
}
void
ircd::cl::code::build(const string_view &opts)
try
{
const uint num_devices {0};
const cl_device_id *const device_list {nullptr};
call
(
clBuildProgram,
cl_program(handle),
num_devices,
device_list,
opts.c_str(),
&cl::handle_built,
nullptr
);
}
catch(const std::exception &e)
{
const auto error_closure{[this]
(const mutable_buffer &buf)
{
size_t len {0}; call
(
clGetProgramBuildInfo,
cl_program(this->handle),
device[0][0],
CL_PROGRAM_BUILD_LOG,
ircd::size(buf),
ircd::data(buf),
&len
);
return len;
}};
const auto error_message
{
ircd::string(8_KiB | SHRINK_TO_FIT, error_closure)
};
ircd::tokens(error_message, '\n', []
(const string_view &line)
{
// note last line is just a CR
if(likely(line.size() > 1))
log::logf
{
log, log::DERROR, "%s", line,
};
});
throw;
}
//
// data
//
ircd::cl::data::data(const size_t size_,
const mutable_buffer &buf,
const bool wonly)
{
const auto ptr
{
ircd::size(buf)? ircd::data(buf): nullptr
};
const auto size
{
ircd::size(buf)?: size_
};
cl_mem_flags flags {0};
flags |= CL_MEM_READ_WRITE;
flags |= wonly? CL_MEM_WRITE_ONLY: 0;
flags |= ircd::size(buf)? CL_MEM_COPY_HOST_PTR: 0;
int err {CL_SUCCESS};
handle = clCreateBuffer(primary, flags, size, ptr, &err);
throw_on_error(err);
}
ircd::cl::data::data(const size_t size_,
const const_buffer &buf)
{
const auto ptr
{
ircd::size(buf)? ircd::data(buf): nullptr
};
const auto size
{
ircd::size(buf)?: size_
};
cl_mem_flags flags {0};
flags |= CL_MEM_READ_ONLY;
flags |= ircd::size(buf)? CL_MEM_COPY_HOST_PTR: 0;
int err {CL_SUCCESS};
handle = clCreateBuffer(primary, flags, size, mutable_cast(ptr), &err);
throw_on_error(err);
}
ircd::cl::data::data(const mutable_buffer &buf,
const bool wonly)
{
cl_mem_flags flags {0};
flags |= CL_MEM_USE_HOST_PTR;
flags |= wonly? CL_MEM_WRITE_ONLY: CL_MEM_READ_WRITE;
int err {CL_SUCCESS};
handle = clCreateBuffer(primary, flags, ircd::size(buf), ircd::data(buf), &err);
throw_on_error(err);
}
ircd::cl::data::data(const const_buffer &buf)
{
cl_mem_flags flags {0};
flags |= CL_MEM_USE_HOST_PTR;
flags |= CL_MEM_READ_ONLY;
int err {CL_SUCCESS};
handle = clCreateBuffer(primary, flags, ircd::size(buf), mutable_cast(ircd::data(buf)), &err);
throw_on_error(err);
}
ircd::cl::data::data(data &&o)
noexcept
:handle{std::move(o.handle)}
{
o.handle = nullptr;
}
ircd::cl::data &
ircd::cl::data::operator=(data &&o)
noexcept
{
this->~data();
handle = std::move(o.handle);
o.handle = nullptr;
return *this;
}
ircd::cl::data::~data()
noexcept try
{
call(clReleaseMemObject, cl_mem(handle));
}
catch(const std::exception &e)
{
log::critical
{
log, "Memory Release :%s",
e.what(),
};
return;
}
char *
ircd::cl::data::ptr()
const
{
assert(handle);
char buf[sizeof(void *)] {0};
return info<char *>(clGetMemObjectInfo, cl_mem(mutable_cast(handle)), CL_MEM_SIZE, buf);
}
size_t
ircd::cl::data::size()
const
{
assert(handle);
char buf[sizeof(size_t)] {0};
return info<size_t>(clGetMemObjectInfo, cl_mem(mutable_cast(handle)), CL_MEM_SIZE, buf);
}
uint
ircd::cl::data::flags()
const
{
assert(handle);
char buf[sizeof(uint)] {0};
return info<uint>(clGetMemObjectInfo, cl_mem(mutable_cast(handle)), CL_MEM_FLAGS, buf);
}
//
// cl::work (event)
//
namespace ircd::cl
{
struct alignas(16) pkg
{
cl_event event {nullptr};
ctx::ctx *ctx {nullptr};
}
__packed;
static std::unique_ptr<ctx::context> handle_context;
static std::mutex offload_mutex alignas(64);
static std::condition_variable offload_cond alignas(64);
static std::atomic<bool> offload_term alignas(64);
static std::atomic<pkg> offload_pkg alignas(64);
static void handle_event(cl_event, cl_int, void *) noexcept;
static void handle_incomplete(work &, const int &);
static void handle_offload();
static void handle_worker();
}
void
ircd::cl::work::init()
{
assert(!handle_context);
handle_context = std::make_unique<ctx::context>
(
"cl.work", handle_worker
);
}
void
ircd::cl::work::fini()
noexcept
{
cl::sync();
if(!handle_context)
return;
offload_term.store(true, std::memory_order_release);
offload_cond.notify_all();
handle_context->terminate();
handle_context->join();
handle_context.reset(nullptr);
}
void
ircd::cl::handle_worker()
{
ctx::ole::opts opts;
opts.name = "cl.work"_sv;
ctx::offload
{
opts, []
{
while(!offload_term.load(std::memory_order_relaxed))
handle_offload();
}
};
}
void
ircd::cl::handle_offload()
{
// This is a pre-locked mutex used to achieve "naked wakeup" with only the
// standard API's and contractual assumptions and atomics between threads.
static std::unique_lock lock{offload_mutex};
// Acquire the work assignment pkg. The mutex/lock does nothing here
// because the main thread never takes it (nor does anyone else). Instead
// the main thread (notifier) guarantees if our result is not visible, a
// notify is to follow, therefor it's always safe for this thread to go to
// sleep if the condition is not witnessed as satisfied.
pkg p;
bool terminated {false};
offload_cond.wait(lock, [&p, &terminated]
{
// Also check for termination as another wakeup condition.
terminated = offload_term.load(std::memory_order_relaxed);
p = offload_pkg.load(std::memory_order_acquire);
return terminated | (p.event != nullptr);
});
if(unlikely(!p.event))
{
assert(terminated);
return;
}
int status; try
{
char buf[4] {0};
status = info<int>(clGetEventInfo, p.event, CL_EVENT_COMMAND_EXECUTION_STATUS, buf);
}
catch(...)
{
status = -1;
}
if(status < 0 || status == CL_COMPLETE)
{
handle_event(p.event, status, p.ctx);
return;
}
const auto res
{
clSetEventCallback(p.event, CL_COMPLETE, &handle_event, p.ctx)
};
if(unlikely(res != CL_SUCCESS))
ircd::terminate
{
"clSetEventCallback(%p) context:%p unexpected error #%d.",
p.event,
p.ctx,
res,
};
}
void
ircd::cl::handle_event(cl_event event,
cl_int status,
void *const priv)
noexcept
{
always_assert(status < 0 || status == CL_COMPLETE);
// Prepare response to the main thread. The event pointer is anulled to
// indicate completion.
pkg ours;
ours.event = nullptr;
ours.ctx = reinterpret_cast<ctx::ctx *>(priv);
// Expect the main thread to not have changed anything in the pacakge
// during our operation. The context should be nicely suspended this whole
// time. In case the context anulls the package to abandon the result this
// transaction will fail and we'll do nothing further from here.
//
// Note at this time abandonment is not supported since we're missing
// another phase indicating a commitment by this thread to notify. Without
// any obligation by the main thread to such a commitment, the *ctx may
// be invalid by the time this thread notifies.
pkg theirs;
theirs.ctx = ours.ctx;
theirs.event = event;
constexpr auto
success(std::memory_order_acq_rel),
failure(std::memory_order_relaxed);
if(unlikely(!offload_pkg.compare_exchange_strong(theirs, ours, success, failure)))
return;
if(unlikely(!theirs.ctx))
return;
// Wakeup the ctx for the result. This is a special notify meant to
// originate from external threads.
ctx::notify(*theirs.ctx, ctx::threadsafe);
}
void
ircd::cl::handle_incomplete(work &work,
const int &status)
{
// Expose the datagram to the other thread. On supported architectures
// we can pass 16 bytes atomically, or two pointers. One for the event
// (input) and the other for the context to notify (output).
pkg theirs, ours;
ours.event = cl_event(work.handle);
ours.ctx = ctx::current;
constexpr auto
success(std::memory_order_acq_rel),
failure(std::memory_order_relaxed);
if(unlikely(!offload_pkg.compare_exchange_strong(theirs, ours, success, failure)))
{
always_assert(false); // Conflict from two ircd::ctx.
return;
}
// When finished here the package is cleared immediately without condition.
// It's probably unsafe to clear the package with zero cooperation from the
// other thread, so we disable interrupts here for now; the other thread
// must respond.
const ctx::uninterruptible::nothrow ui;
const unwind unset{[]
{
offload_pkg.store(pkg{}, std::memory_order_release);
}};
// Send a "naked wakeup" to the other thread because we're not taking a
// lock on this condition variable for the notify. To accomplish this we
// fulfill two obligations on this side:
// 1. Ensure every package is always followed by a notify after it.
// 2. Ensure notify is followed by same release-semantics as an unlock().
offload_cond.notify_one();
std::atomic_thread_fence(std::memory_order_release); do
{
// Unconditionally suspend this context. The other thread will have
// to respond with at least one notification preceded by a result.
ctx::wait();
theirs = offload_pkg.load(std::memory_order_acquire);
}
while(theirs.event != nullptr);
assert(theirs.ctx == ctx::current);
}
//
// work::work
//
ircd::cl::work::work(void *const &handle)
{
call(clRetainEvent, cl_event(handle));
this->handle = handle;
}
ircd::cl::work::~work()
noexcept try
{
wait();
}
catch(const std::exception &e)
{
log::critical
{
log, "Work Release :%s",
e.what(),
};
return;
}
bool
ircd::cl::work::wait()
{
if(!handle)
return false;
char buf[4];
const auto &status
{
info<int>(clGetEventInfo, cl_event(handle), CL_EVENT_COMMAND_EXECUTION_STATUS, buf)
};
if(status >= 0 && status != CL_COMPLETE)
handle_incomplete(*this, status);
call(clReleaseEvent, cl_event(handle));
handle = nullptr;
return true;
}
std::array<uint64_t, 4>
ircd::cl::work::profile()
const
{
const auto handle
{
cl_event(this->handle)
};
char buf[4][8];
return std::array<uint64_t, 4>
{
info<size_t>(clGetEventProfilingInfo, handle, CL_PROFILING_COMMAND_QUEUED, buf[0]),
info<size_t>(clGetEventProfilingInfo, handle, CL_PROFILING_COMMAND_SUBMIT, buf[1]),
info<size_t>(clGetEventProfilingInfo, handle, CL_PROFILING_COMMAND_START, buf[2]),
info<size_t>(clGetEventProfilingInfo, handle, CL_PROFILING_COMMAND_END, buf[3]),
};
}
//
// callback surface
//
void
ircd::cl::handle_notify(const char *errstr,
const void *token,
size_t cb,
void *priv)
noexcept
{
if(errstr)
log::error
{
log, "OpenCL t:%p cb:%zu :%s",
token,
cb,
errstr,
};
}
//
// util
//
template<class T,
class F,
class id,
class param>
T
ircd::cl::info(F&& func,
const id &i,
const param &p,
const mutable_buffer &out)
{
using ircd::data;
using ircd::size;
size_t len {0};
call(std::forward<F>(func), i, p, size(out), data(out), &len);
const string_view str
{
data(out), len
};
return byte_view<T>(str);
}
template<class func,
class... args>
int
ircd::cl::call(func&& f,
args&&... a)
{
const int ret
{
f(std::forward<args>(a)...)
};
return throw_on_error(ret);
}
int
ircd::cl::throw_on_error(const int &code)
{
if(unlikely(is_error(code)))
throw opencl_error
{
"(#%d) :%s",
code,
reflect_error(code),
};
return code;
}
bool
ircd::cl::is_error(const int &code)
noexcept
{
return code < 0;
}
ircd::string_view
ircd::cl::reflect_error(const int code)
noexcept
{
switch(code)
{
case CL_SUCCESS: return "SUCCESS";
case CL_DEVICE_NOT_FOUND: return "DEVICE_NOT_FOUND";
case CL_DEVICE_NOT_AVAILABLE: return "DEVICE_NOT_AVAILABLE";
case CL_COMPILER_NOT_AVAILABLE: return "COMPILER_NOT_AVAILABLE";
case CL_MEM_OBJECT_ALLOCATION_FAILURE: return "MEM_OBJECT_ALLOCATION_FAILURE";
case CL_OUT_OF_RESOURCES: return "OUT_OF_RESOURCES";
case CL_OUT_OF_HOST_MEMORY: return "OUT_OF_HOST_MEMORY";
case CL_PROFILING_INFO_NOT_AVAILABLE: return "PROFILING_INFO_NOT_AVAILABLE";
case CL_MEM_COPY_OVERLAP: return "MEM_COPY_OVERLAP";
case CL_IMAGE_FORMAT_MISMATCH: return "IMAGE_FORMAT_MISMATCH";
case CL_IMAGE_FORMAT_NOT_SUPPORTED: return "IMAGE_FORMAT_NOT_SUPPORTED";
case CL_BUILD_PROGRAM_FAILURE: return "BUILD_PROGRAM_FAILURE";
case CL_MAP_FAILURE: return "MAP_FAILURE";
case CL_INVALID_VALUE: return "INVALID_VALUE";
case CL_INVALID_DEVICE_TYPE: return "INVALID_DEVICE_TYPE";
case CL_INVALID_PLATFORM: return "INVALID_PLATFORM";
case CL_INVALID_DEVICE: return "INVALID_DEVICE";
case CL_INVALID_CONTEXT: return "INVALID_CONTEXT";
case CL_INVALID_QUEUE_PROPERTIES: return "INVALID_QUEUE_PROPERTIES";
case CL_INVALID_COMMAND_QUEUE: return "INVALID_COMMAND_QUEUE";
case CL_INVALID_HOST_PTR: return "INVALID_HOST_PTR";
case CL_INVALID_MEM_OBJECT: return "INVALID_MEM_OBJECT";
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR: return "INVALID_IMAGE_FORMAT_DESCRIPTOR";
case CL_INVALID_IMAGE_SIZE: return "INVALID_IMAGE_SIZE";
case CL_INVALID_SAMPLER: return "INVALID_SAMPLER";
case CL_INVALID_BINARY: return "INVALID_BINARY";
case CL_INVALID_BUILD_OPTIONS: return "INVALID_BUILD_OPTIONS";
case CL_INVALID_PROGRAM: return "INVALID_PROGRAM";
case CL_INVALID_PROGRAM_EXECUTABLE: return "INVALID_PROGRAM_EXECUTABLE";
case CL_INVALID_KERNEL_NAME: return "INVALID_KERNEL_NAME";
case CL_INVALID_KERNEL_DEFINITION: return "INVALID_KERNEL_DEFINITION";
case CL_INVALID_KERNEL: return "INVALID_KERNEL";
case CL_INVALID_ARG_INDEX: return "INVALID_ARG_INDEX";
case CL_INVALID_ARG_VALUE: return "INVALID_ARG_VALUE";
case CL_INVALID_ARG_SIZE: return "INVALID_ARG_SIZE";
case CL_INVALID_KERNEL_ARGS: return "INVALID_KERNEL_ARGS";
case CL_INVALID_WORK_DIMENSION: return "INVALID_WORK_DIMENSION";
case CL_INVALID_WORK_GROUP_SIZE: return "INVALID_WORK_GROUP_SIZE";
case CL_INVALID_WORK_ITEM_SIZE: return "INVALID_WORK_ITEM_SIZE";
case CL_INVALID_GLOBAL_OFFSET: return "INVALID_GLOBAL_OFFSET";
case CL_INVALID_EVENT_WAIT_LIST: return "INVALID_EVENT_WAIT_LIST";
case CL_INVALID_EVENT: return "INVALID_EVENT";
case CL_INVALID_OPERATION: return "INVALID_OPERATION";
case CL_INVALID_GL_OBJECT: return "INVALID_GL_OBJECT";
case CL_INVALID_BUFFER_SIZE: return "INVALID_BUFFER_SIZE";
case CL_INVALID_MIP_LEVEL: return "INVALID_MIP_LEVEL";
case CL_INVALID_GLOBAL_WORK_SIZE: return "INVALID_GLOBAL_WORK_SIZE";
#ifdef CL_VERSION_1_1
case CL_INVALID_PROPERTY: return "INVALID_PROPERTY";
case CL_MISALIGNED_SUB_BUFFER_OFFSET: return "MISALIGNED_SUB_BUFFER_OFFSET";
case CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST: return "EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST";
#endif
#ifdef CL_VERSION_1_2
case CL_COMPILE_PROGRAM_FAILURE: return "COMPILE_PROGRAM_FAILURE";
case CL_LINKER_NOT_AVAILABLE: return "LINKER_NOT_AVAILABLE";
case CL_LINK_PROGRAM_FAILURE: return "LINK_PROGRAM_FAILURE";
case CL_DEVICE_PARTITION_FAILED: return "DEVICE_PARTITION_FAILED";
case CL_KERNEL_ARG_INFO_NOT_AVAILABLE: return "KERNEL_ARG_INFO_NOT_AVAILABLE";
case CL_INVALID_IMAGE_DESCRIPTOR: return "INVALID_IMAGE_DESCRIPTOR";
case CL_INVALID_COMPILER_OPTIONS: return "INVALID_COMPILER_OPTIONS";
case CL_INVALID_LINKER_OPTIONS: return "INVALID_LINKER_OPTIONS";
case CL_INVALID_DEVICE_PARTITION_COUNT: return "INVALID_DEVICE_PARTITION_COUNT";
#endif
#ifdef CL_VERSION_2_0
case CL_INVALID_PIPE_SIZE: return "INVALID_PIPE_SIZE";
case CL_INVALID_DEVICE_QUEUE: return "INVALID_DEVICE_QUEUE";
#endif
#ifdef CL_VERSION_2_2
case CL_INVALID_SPEC_ID: return "INVALID_SPEC_ID";
case CL_MAX_SIZE_RESTRICTION_EXCEEDED: return "MAX_SIZE_RESTRICTION_EXCEEDED";
#endif
}
return "???????";
}