0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-01 03:18:54 +01:00
construct/ircd/magick.cc

975 lines
21 KiB
C++

// The Construct
//
// Copyright (C) The Construct Developers, Authors & Contributors
// Copyright (C) 2016-2020 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#include <RB_INC_SIGNAL_H
#include <RB_INC_MAGICK_API_H
namespace ircd::magick
{
struct display;
struct transform;
constexpr bool debug_progress {false};
[[noreturn]] static void handle_exception(const ExceptionType, const char *, const char *);
static void handle_fatal(const ExceptionType, const char *, const char *) __attribute__((noreturn));
static void handle_error(const ExceptionType, const char *, const char *) noexcept;
static void handle_warning(const ExceptionType, const char *, const char *) noexcept;
static void handle_log(const ExceptionType, const char *) noexcept;
static void *handle_realloc(void *, size_t) noexcept;
static void *handle_malloc(size_t) noexcept;
static void handle_free(void *) noexcept;
static uint handle_progress(const char *, const int64_t, const uint64_t, ExceptionInfo *) noexcept;
template<class R, class F, class... A> static R call(F&&, A&&...);
template<class R, class F, class... A> static R callex(F&&, A&&...);
template<class F, class... A> static void callpf(F&&, A&&...);
extern bool call_ready;
extern ctx::dock call_dock;
extern ctx::mutex call_mutex;
extern conf::item<uint64_t> limit_ticks;
extern conf::item<uint64_t> limit_cycles;
extern conf::item<uint64_t> yield_threshold;
extern conf::item<uint64_t> yield_interval;
extern log::log log;
}
struct ircd::magick::display
{
display(const ImageInfo &, Image &);
display(const const_buffer &);
};
struct ircd::magick::transform
{
using input = std::tuple<const ImageInfo &, const Image *>;
using output = std::function<void (const const_buffer &)>;
using transformer = std::function<Image *(const input &)>;
transform(const const_buffer &, const output &, const transformer &);
};
decltype(ircd::magick::log)
ircd::magick::log
{
"magick"
};
decltype(ircd::magick::limit_ticks)
ircd::magick::limit_ticks
{
{ "name", "ircd.magick.limit.ticks" },
{ "default", 10000L },
};
decltype(ircd::magick::limit_cycles)
ircd::magick::limit_cycles
{
{ "name", "ircd.magick.limit.cycles" },
{ "default", 0L },
};
decltype(ircd::magick::yield_threshold)
ircd::magick::yield_threshold
{
{ "name", "ircd.magick.yield.threshold" },
{ "default", 1000L },
};
decltype(ircd::magick::yield_interval)
ircd::magick::yield_interval
{
{ "name", "ircd.magick.yield.interval" },
{ "default", 768L },
};
// It is likely that we can't have two contexts enter libmagick
// simultaneously. This race is possible if the progress callback yields
// and another context starts an operation. It is highly unlikely the lib
// can handle reentrancy on the same thread. Hitting thread mutexes within
// magick will also be catastrophic to ircd::ctx.
decltype(ircd::magick::call_mutex)
ircd::magick::call_mutex;
decltype(ircd::magick::call_dock)
ircd::magick::call_dock;
decltype(ircd::magick::call_ready)
ircd::magick::call_ready;
decltype(ircd::magick::version_api)
ircd::magick::version_api
{
"magick", info::versions::API, MagickLibVersion, {0}, MagickLibVersionText
};
decltype(ircd::magick::version_abi)
ircd::magick::version_abi
{
"magick", info::versions::ABI, 0, {0}, []
(auto &version, const auto &buf)
{
ulong monotonic(0);
strlcpy(buf, GetMagickVersion(&monotonic));
version.monotonic = monotonic;
}
};
//
// Magick library signal handler workarounds.
//
// By default the graphicsmagick library installs signal handlers on
// supporting platforms starting in InitializeMagick() for the duration
// of the library. These handlers provide no essential functionality,
// polluting the address space for other libraries and users of our libircd,
// causing unexpected behavior.
//
// Even though the library makes a good faith attempt to not step on already-
// installed signal handlers: it falls short by not maintaining the full
// sigaction structure. It loses information for SA_SIGINFO handlers, etc.
//
// Our principal workaround involves interposing this function (thankfully
// exported by the library). Unfortunately this doesn't work in all
// environments so we retain a full list of signal numbers the libmagick
// interferes with.
namespace ircd::magick
{
extern const int sig_overrides[];
extern const size_t sig_overrides_num;
static void sig_pre(), sig_post();
}
/// List of signals from libmagick
decltype(ircd::magick::sig_overrides)
ircd::magick::sig_overrides
{
#ifdef HAVE_SIGNAL_H
SIGABRT, SIGBUS, SIGCHLD,
SIGFPE, SIGHUP, SIGINT,
SIGQUIT, SIGTERM, SIGSEGV,
SIGXCPU, SIGXFSZ,
#endif HAVE_SIGNAL_H
};
decltype(ircd::magick::sig_overrides_num)
ircd::magick::sig_overrides_num
{
sizeof(sig_overrides) / sizeof(int)
};
#ifdef HAVE_SIGNAL_H
static struct sigaction
ircd_magick_sig_vector[ircd::magick::sig_overrides_num];
#endif
void
ircd::magick::sig_pre()
{
#ifdef HAVE_SIGNAL_H
for(size_t i(0); i < sig_overrides_num; ++i)
syscall(::sigaction, sig_overrides[i], nullptr, ircd_magick_sig_vector + i);
#endif HAVE_SIGNAL_H
}
void
ircd::magick::sig_post()
{
#ifdef HAVE_SIGNAL_H
for(size_t i(0); i < sig_overrides_num; ++i)
syscall(::sigaction, sig_overrides[i], ircd_magick_sig_vector + i, nullptr);
#endif HAVE_SIGNAL_H
}
extern "C" void
InitializeMagickSignalHandlers(void)
{
ircd::log::debug
{
ircd::magick::log, "Bypassed InitializeMagickSignalHandlers()",
};
}
//
// init
//
ircd::magick::init::init()
{
log::info
{
log, "Initializing Magick Library version API:%lu [%s] ABI:%lu [%s]",
long(version_api),
string_view{version_api},
long(version_abi),
string_view{version_abi},
};
if(long(version_api) != long(version_abi))
log::warning
{
log, "Magick Library version mismatch headers:%lu library:%lu",
long(version_api),
long(version_abi),
};
sig_pre();
InitializeMagick(nullptr);
MagickAllocFunctions(handle_free, handle_malloc, handle_realloc);
SetFatalErrorHandler(handle_fatal);
SetErrorHandler(handle_error);
SetWarningHandler(handle_warning);
SetLogMethod(handle_log);
//SetLogEventMask("all"); // Pollutes stderr :/ can't fix
SetMonitorHandler(handle_progress);
SetMagickResourceLimit(ThreadsResource, 1UL);
sig_post();
call_ready = true;
call_dock.notify_all();
log::debug
{
log, "resource settings: pixel max:%lu:%lu height:%lu:%lu width:%lu:%lu; threads:%lu:%lu",
GetMagickResource(PixelsResource),
GetMagickResourceLimit(PixelsResource),
GetMagickResource(HeightResource),
GetMagickResourceLimit(HeightResource),
GetMagickResource(WidthResource),
GetMagickResourceLimit(WidthResource),
GetMagickResource(ThreadsResource),
GetMagickResourceLimit(ThreadsResource),
};
}
[[gnu::cold]]
ircd::magick::init::~init()
noexcept
{
log::debug
{
log, "Shutting down Magick Library..."
};
call_ready = false;
call_dock.wait([]() noexcept
{
return !call_mutex.locked();
});
DestroyMagick();
}
//
// thumbcrop
//
ircd::magick::thumbcrop::thumbcrop(const const_buffer &in,
const dimensions &req,
const result_closure &out)
{
crop::offset offset;
const auto scaler{[&req, &offset]
(const auto &image)
{
const auto &img_p
{
std::get<const Image *>(image)
};
const auto &img_x(img_p->columns);
const auto &img_y(img_p->rows);
const auto &[req_x_, req_y_] {req};
const auto &req_x{std::min(req_x_, img_x)};
const auto &req_y{std::min(req_y_, img_y)};
const bool aspect
{
req_x * img_y < req_y * img_x
};
const dimensions scaled
{
aspect? req_y * img_x / img_y : req_x,
aspect? req_y : req_x * img_y / img_x,
};
offset =
{
aspect? (scaled.first - req_x) / 2.0 : 0,
aspect? 0 : (scaled.second - req_y) / 2.0,
};
return callex<Image *>(ThumbnailImage, img_p, scaled.first, scaled.second);
}};
const auto cropper{[&req, &out, &offset]
(const const_buffer &in)
{
crop
{
in, req, offset, out
};
}};
transform
{
in, cropper, scaler
};
}
//
// thumbnail
//
ircd::magick::thumbnail::thumbnail(const const_buffer &in,
const dimensions &req,
const result_closure &out)
{
transform
{
in, out, [&req](const auto &image)
{
const auto &img_p
{
std::get<const Image *>(image)
};
const auto &img_x(img_p->columns);
const auto &img_y(img_p->rows);
const auto &[req_x_, req_y_] {req};
const auto &req_x{std::min(req_x_, img_x)};
const auto &req_y{std::min(req_y_, img_y)};
const bool aspect
{
req_x * img_y < req_y * img_x
};
const dimensions scaled
{
aspect? req_y * img_x / img_y : req_x,
aspect? req_y : req_x * img_y / img_x,
};
return callex<Image *>(ThumbnailImage, img_p, scaled.first, scaled.second);
}
};
}
//
// scale
//
ircd::magick::scale::scale(const const_buffer &in,
const dimensions &dim,
const result_closure &out)
{
transform
{
in, out, [&dim](const auto &image)
{
return callex<Image *>(ScaleImage, std::get<const Image *>(image), dim.first, dim.second);
}
};
}
//
// shave
//
ircd::magick::shave::shave(const const_buffer &in,
const dimensions &dim,
const offset &off,
const result_closure &out)
{
const RectangleInfo geometry
{
dim.first, // width
dim.second, // height
off.first, // x
off.second, // y
};
transform
{
in, out, [&geometry](const auto &image)
{
return callex<Image *>(ShaveImage, std::get<const Image *>(image), &geometry);
}
};
}
//
// crop
//
ircd::magick::crop::crop(const const_buffer &in,
const dimensions &dim,
const offset &off,
const result_closure &out)
{
const RectangleInfo geometry
{
dim.first, // width
dim.second, // height
off.first, // x
off.second, // y
};
transform
{
in, out, [&geometry](const auto &image)
{
return callex<Image *>(CropImage, std::get<const Image *>(image), &geometry);
}
};
}
//
// transform (internal)
//
ircd::magick::transform::transform(const const_buffer &input,
const output &output,
const transformer &transformer)
{
const custom_ptr<ImageInfo> input_info
{
CloneImageInfo(nullptr),
DestroyImageInfo
};
const custom_ptr<ImageInfo> output_info
{
CloneImageInfo(nullptr),
DestroyImageInfo
};
const custom_ptr<Image> input_image
{
callex<Image *>(BlobToImage, input_info.get(), data(input), size(input)),
DestroyImage // pollock
};
const custom_ptr<Image> output_image
{
transformer({*input_info, input_image.get()}),
DestroyImage
};
size_t output_size(0);
const auto output_data
{
callex<void *>(ImageToBlob, output_info.get(), output_image.get(), &output_size)
};
const const_buffer result
{
reinterpret_cast<char *>(output_data), output_size
};
output(result);
}
//
// display (internal)
//
ircd::magick::display::display(const const_buffer &input)
{
const custom_ptr<ImageInfo> input_info
{
CloneImageInfo(nullptr),
DestroyImageInfo
};
const custom_ptr<Image> input_image
{
callex<Image *>(BlobToImage, input_info.get(), data(input), size(input)),
DestroyImage // pollock
};
display
{
*input_info, *input_image
};
}
ircd::magick::display::display(const ImageInfo &info,
Image &image)
{
callpf(DisplayImages, &info, &image);
}
//
// util (internal)
//
template<class return_t,
class function,
class... args>
return_t
ircd::magick::callex(function&& f,
args&&... a)
{
if(unlikely(!call_ready))
throw error
{
"Graphics library not ready."
};
const std::lock_guard lock
{
call_mutex
};
ExceptionInfo ei;
GetExceptionInfo(&ei); // initializer
const unwind destroy{[&ei]
{
DestroyExceptionInfo(&ei);
}};
assert(call_ready);
const auto ret
{
f(std::forward<args>(a)..., &ei)
};
const auto their_handler
{
SetErrorHandler(handle_exception)
};
const unwind reset{[&their_handler]
{
SetErrorHandler(their_handler);
}};
// exception comes out of here; if this is not safe we'll have to
// convey with a global or inspect ExceptionInfo manually.
CatchException(&ei);
return ret;
}
template<class function,
class... args>
void
ircd::magick::callpf(function&& f,
args&&... a)
{
if(unlikely(!call<MagickPassFail>(f, std::forward<args>(a)...)))
throw error{};
}
template<class return_t,
class function,
class... args>
return_t
ircd::magick::call(function&& f,
args&&... a)
{
if(unlikely(!call_ready))
throw error
{
"Graphics library not ready."
};
const std::lock_guard lock
{
call_mutex
};
assert(call_ready);
return f(std::forward<args>(a)...);
}
//
// ircd::magick::job
//
namespace ircd::magick
{
static string_view loghead(const job &);
static void job_init(const string_view &, const int64_t &, const uint64_t &, const uint64_t &);
static void finished(job &);
static bool check_yield(job &);
static void check_cycles(job &);
}
struct ircd::magick::job::state
{
uint64_t cycles {0};
uint64_t yield {0};
char description[1024];
}
thread_local ircd::magick::job::state;
decltype(ircd::magick::job::cur) thread_local
ircd::magick::job::cur;
decltype(ircd::magick::job::tot) thread_local
ircd::magick::job::tot;
uint
ircd::magick::handle_progress(const char *const text,
const int64_t tick,
const uint64_t ticks,
ExceptionInfo *ei)
noexcept try
{
// Sample the current reference cycle count first and once. This is an
// accumulated cycle count for only this ircd::ctx and the current slice,
// (all other cycles are not accumulated here) which is non-zero by now
// and monotonically increases across jobs as well.
const auto cycles_sample
{
ctx::this_ctx::cycles()
};
// Detect if this is a new job. Tick is usually zero for a new job, but for
// large jobs it may start after 0. Tick always appears monotonic for a job.
// The ticks appears constant for a job, though could be the same for different
// jobs. We don't know of any succinct way to test for a new job, so we use all
// of the above information.
const bool new_job
{
tick == 0
|| tick < job::cur.tick
|| ticks != job::cur.ticks
};
// Assert general assumptions about invocations of this callback.
assert(new_job || tick >= job::cur.tick);
assert(new_job || ticks == job::cur.ticks);
// Branch after detecting this callback is unrelated to the last job.
if(new_job)
{
finished(job::cur);
job_init(text, tick, ticks, cycles_sample);
}
// Unconditional bookkeeping updates for this invocation. These statements
// behave properly regardless of whether this is the same or a new job.
assert(cycles_sample >= job::state.cycles);
job::cur.cycles += cycles_sample - job::state.cycles;
job::state.cycles = cycles_sample;
job::cur.tick = tick;
// This debug message is very noisy, even for debug mode. Developer can
// enable it at their discretion.
if constexpr(debug_progress)
log::debug
{
log, "job:%lu progress %2.2lf%% (%ld/%ld) cycles:%lu intrs:%lu errors:%lu",
job::cur.id,
(job::cur.tick / double(job::cur.ticks) * 100.0),
job::cur.tick,
job::cur.ticks,
job::cur.cycles,
job::cur.intrs,
job::cur.errors,
};
check_cycles(job::cur);
check_yield(job::cur);
return true;
}
catch(const ctx::interrupted &e)
{
++job::cur.intrs;
job::cur.eptr = std::current_exception();
ThrowException(ei, MonitorError, "interrupted", e.what());
ei->signature = MagickSignature; // ???
return false;
}
catch(const ctx::terminated &)
{
++job::cur.intrs;
job::cur.eptr = std::current_exception();
ThrowException(ei, MonitorError, "terminated", nullptr);
ei->signature = MagickSignature; // ???
return false;
}
catch(const std::exception &e)
{
++job::cur.errors;
job::cur.eptr = std::current_exception();
ThrowLoggedException(ei, MonitorError, "error", e.what(), __FILE__, __FUNCTION__, __LINE__);
ei->signature = MagickSignature; // ???
return false;
}
catch(...)
{
++job::cur.errors;
job::cur.eptr = std::current_exception();
ThrowLoggedException(ei, MonitorFatalError, "unknown", nullptr, __FILE__, __FUNCTION__, __LINE__);
ei->signature = MagickSignature; // ???
return false;
}
void
ircd::magick::check_cycles(job &job)
{
const uint64_t &limit_cycles
{
magick::limit_cycles
};
// Check if job exceeded its reference cycle limit if enabled.
if(unlikely(limit_cycles && job.cycles > limit_cycles))
throw error
{
"job:%lu CPU cycles:%lu exceeded server limit:%lu (progress %2.2lf%% (%ld/%ld))",
job.id,
job.cycles,
limit_cycles,
(job.tick / double(job.ticks) * 100.0),
job.tick,
job.ticks,
};
}
bool
ircd::magick::check_yield(job &job)
{
const uint64_t &yield_threshold
{
magick::yield_threshold
};
// This job is too small to conduct any yields.
if(likely(job.ticks < yield_threshold))
return false;
const uint64_t &yield_interval
{
magick::yield_interval
};
// Haven't reached the yield interval yet.
if(likely(job.tick - job::state.yield <= yield_interval))
return false;
job::state.yield = job.tick;
ctx::yield();
return true;
}
void
ircd::magick::finished(job &job)
{
// Update total state from last job
assert(job.id == job::tot.id + 1 || (job.id == job::tot.id && !job.id));
job::tot.id = job.id;
job::tot.tick += job.tick;
job::tot.ticks += job.ticks;
job::tot.cycles += job.cycles;
job::tot.yields += job.yields;
job::tot.intrs += job.intrs;
job::tot.errors += job.errors;
}
void
ircd::magick::job_init(const string_view &text,
const int64_t &tick,
const uint64_t &ticks,
const uint64_t &cycles_sample)
{
// Reset the current job structure
job::cur =
{
job::tot.id + 1, // id
tick, // tick
ticks, // ticks
};
// Update internal state
job::state.cycles = cycles_sample;
// The description text may have this annoying empty "[]" on this
// message so we'll strip that here.
job::cur.description = strlcpy
{
job::state.description, lstrip(text, "[] ")
};
log::debug
{
log, "job:%lu started; ticks:%lu :%s",
job::cur.id,
job::cur.ticks,
job::cur.description,
};
// This job is too large based on the ticks measurement. This is an ad hoc
// measurement of the job size created internally by ImageMagick.
if(job::cur.ticks > uint64_t(limit_ticks))
throw error
{
"job:%lu computation ticks:%lu exceeds server limit:%lu :%s",
job::cur.id,
job::cur.ticks,
uint64_t(limit_ticks),
job::cur.description,
};
}
ircd::string_view
ircd::magick::loghead(const job &job)
{
thread_local char buf[256];
return fmt::sprintf
{
buf, "job:%lu %ld/%lu [%s]",
job.id,
job.tick,
job.ticks,
job.description,
};
}
//
// (Internal) patch panels
//
void
ircd::magick::handle_free(void *const ptr)
noexcept
{
std::free(ptr);
}
void *
ircd::magick::handle_malloc(size_t size)
noexcept
{
return std::malloc(size);
}
void *
ircd::magick::handle_realloc(void *const ptr,
size_t size)
noexcept
{
return std::realloc(ptr, size);
}
void
ircd::magick::handle_log(const ExceptionType type,
const char *const message)
noexcept
{
log::debug
{
log, "%s (%d) %s :%s",
loghead(job::cur),
int(type),
GetLocaleExceptionMessage(type, ""),
message,
};
}
void
ircd::magick::handle_warning(const ExceptionType type,
const char *const reason,
const char *const description)
noexcept
{
log::warning
{
log, "%s (#%d) %s :%s :%s",
loghead(job::cur),
int(type),
GetLocaleExceptionMessage(type, ""),
reason,
description,
};
}
void
ircd::magick::handle_error(const ExceptionType type,
const char *const reason,
const char *const description)
noexcept
{
log::error
{
log, "%s (#%d) %s :%s :%s",
loghead(job::cur),
int(type),
GetLocaleExceptionMessage(type, ""),
reason,
description,
};
}
void
ircd::magick::handle_fatal(const ExceptionType type,
const char *const reason,
const char *const description)
{
log::critical
{
log, "%s (#%d) %s :%s :%s",
loghead(job::cur),
int(type),
GetLocaleExceptionMessage(type, ""),
reason,
description,
};
ircd::terminate();
__builtin_unreachable();
}
void
ircd::magick::handle_exception(const ExceptionType type,
const char *const reason,
const char *const description)
{
const auto &message
{
GetLocaleExceptionMessage(type, "")?: "???"
};
thread_local char buf[exception::BUFSIZE];
const string_view what{fmt::sprintf
{
buf, "(#%d) %s :%s :%s",
int(type),
message,
reason,
description,
}};
log::derror
{
log, "%s %s",
loghead(job::cur),
what,
};
if(reason == "terminated"_sv)
throw ctx::terminated{};
if(reason == "interrupted"_sv)
throw ctx::interrupted
{
"%s", what
};
throw error
{
"%s", what
};
}