0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2025-01-19 02:51:51 +01:00
construct/ircd/aio.cc
2019-01-18 10:14:38 -08:00

870 lines
17 KiB
C++

// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2018 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#include <sys/syscall.h>
#include <sys/eventfd.h>
#include <ircd/asio.h>
#include "aio.h"
namespace ircd::fs::aio
{
static int reqprio(int);
}
///////////////////////////////////////////////////////////////////////////////
//
// fs/aio.h
//
// The contents of this section override weak symbols in ircd/fs.cc when this
// unit is conditionally compiled and linked on AIO-supporting platforms. On
// non-supporting platforms, or for items not listed here, the definitions in
// ircd/fs.cc are the default.
decltype(ircd::fs::aio::support)
ircd::fs::aio::support
{
true
};
/// True if IOCB_CMD_FSYNC is supported by AIO. If this is false then
/// fs::fsync_opts::async=true flag is ignored.
decltype(ircd::fs::aio::support_fsync)
ircd::fs::aio::support_fsync
{
false //TODO: get this info
};
/// True if IOCB_CMD_FDSYNC is supported by AIO. If this is false then
/// fs::fsync_opts::async=true flag is ignored.
decltype(ircd::fs::aio::support_fdsync)
ircd::fs::aio::support_fdsync
{
false //TODO: get this info
};
decltype(ircd::fs::aio::MAX_EVENTS)
ircd::fs::aio::MAX_EVENTS
{
128L //TODO: get this info
};
decltype(ircd::fs::aio::MAX_REQPRIO)
ircd::fs::aio::MAX_REQPRIO
{
info::aio_reqprio_max
};
//
// init
//
ircd::fs::aio::init::init()
{
assert(!system);
if(!bool(aio::enable))
return;
system = new struct aio::system
(
size_t(max_events),
size_t(max_submit)
);
}
ircd::fs::aio::init::~init()
noexcept
{
delete system;
system = nullptr;
}
///////////////////////////////////////////////////////////////////////////////
//
// ircd/aio.h
//
//
// request::fsync
//
ircd::fs::aio::request::fsync::fsync(const int &fd,
const sync_opts &opts)
:request{fd, &opts}
{
aio_reqprio = reqprio(opts.priority);
aio_lio_opcode = IOCB_CMD_FSYNC;
aio_buf = 0;
aio_nbytes = 0;
aio_offset = 0;
}
void
ircd::fs::aio::fsync(const fd &fd,
const sync_opts &opts)
{
aio::request::fsync request
{
fd, opts
};
request();
}
//
// request::fdsync
//
ircd::fs::aio::request::fdsync::fdsync(const int &fd,
const sync_opts &opts)
:request{fd, &opts}
{
aio_reqprio = reqprio(opts.priority);
aio_lio_opcode = IOCB_CMD_FDSYNC;
aio_buf = 0;
aio_nbytes = 0;
aio_offset = 0;
}
void
ircd::fs::aio::fdsync(const fd &fd,
const sync_opts &opts)
{
aio::request::fdsync request
{
fd, opts
};
request();
}
//
// request::read
//
ircd::fs::aio::request::read::read(const int &fd,
const const_iovec_view &iov,
const read_opts &opts)
:request{fd, &opts}
{
aio_reqprio = reqprio(opts.priority);
aio_lio_opcode = IOCB_CMD_PREADV;
aio_buf = uintptr_t(iov.data());
aio_nbytes = iov.size();
aio_offset = opts.offset;
}
size_t
ircd::fs::aio::read(const fd &fd,
const const_iovec_view &bufs,
const read_opts &opts)
{
aio::request::read request
{
fd, bufs, opts
};
stats.cur_reads++;
stats.max_reads = std::max(stats.max_reads, stats.cur_reads);
const unwind dec{[]
{
stats.cur_reads--;
}};
// Make request; blocks ircd::ctx until completed or throw.
const size_t bytes
{
request()
};
stats.bytes_read += bytes;
stats.reads++;
return bytes;
}
//
// request::write
//
ircd::fs::aio::request::write::write(const int &fd,
const const_iovec_view &iov,
const write_opts &opts)
:request{fd, &opts}
{
aio_reqprio = reqprio(opts.priority);
aio_lio_opcode = IOCB_CMD_PWRITEV;
aio_buf = uintptr_t(iov.data());
aio_nbytes = iov.size();
aio_offset = opts.offset;
}
size_t
ircd::fs::aio::write(const fd &fd,
const const_iovec_view &bufs,
const write_opts &opts)
{
aio::request::write request
{
fd, bufs, opts
};
#ifndef _NDEBUG
const size_t req_bytes
{
fs::bytes(request.iovec())
};
#endif
stats.cur_bytes_write += req_bytes;
stats.cur_writes++;
stats.max_writes = std::max(stats.max_writes, stats.cur_writes);
const unwind dec{[&req_bytes]
{
stats.cur_bytes_write -= req_bytes;
stats.cur_writes--;
}};
// Make the request; ircd::ctx blocks here. Throws on error
const size_t bytes
{
request()
};
// Does linux ever not complete all bytes for an AIO?
assert(bytes == req_bytes);
stats.bytes_write += bytes;
stats.writes++;
return bytes;
}
//
// request::prefetch
//
void
ircd::fs::aio::prefetch(const fd &fd,
const size_t &size,
const read_opts &opts)
{
}
//
// request
//
ircd::fs::aio::request::request(const int &fd,
const struct opts *const &opts)
:iocb{0}
,opts{opts}
{
assert(system);
assert(ctx::current);
aio_flags = IOCB_FLAG_RESFD;
aio_resfd = system->resfd.native_handle();
aio_fildes = fd;
aio_data = uintptr_t(this);
}
ircd::fs::aio::request::~request()
noexcept
{
}
/// Cancel a request. The handler callstack is invoked directly from here
/// which means any callback will be invoked or ctx will be notified if
/// appropriate.
void
ircd::fs::aio::request::cancel()
{
assert(system);
system->cancel(*this);
stats.bytes_cancel += bytes(iovec());
stats.cancel++;
}
/// Submit a request and properly yield the ircd::ctx. When this returns the
/// result will be available or an exception will be thrown.
size_t
ircd::fs::aio::request::operator()()
{
assert(system);
assert(ctx::current);
assert(waiter == ctx::current);
const size_t submitted_bytes
{
bytes(iovec())
};
// Update stats for submission phase
stats.bytes_requests += submitted_bytes;
stats.requests++;
const auto &curcnt(stats.requests - stats.complete);
stats.max_requests = std::max(stats.max_requests, curcnt);
// Wait here until there's room to submit a request
system->dock.wait([]
{
return system->request_avail() > 0;
});
// Submit to system
system->submit(*this);
// Wait for completion
system->wait(*this);
assert(retval <= ssize_t(submitted_bytes));
// Update stats for completion phase.
stats.bytes_complete += submitted_bytes;
stats.complete++;
if(retval == -1)
{
stats.bytes_errors += submitted_bytes;
stats.errors++;
throw fs::error
{
make_error_code(errcode)
};
}
return size_t(retval);
}
ircd::fs::const_iovec_view
ircd::fs::aio::request::iovec()
const
{
return
{
reinterpret_cast<const ::iovec *>(aio_buf), aio_nbytes
};
}
//
// system
//
decltype(ircd::fs::aio::system::eventfd_flags)
ircd::fs::aio::system::eventfd_flags
{
EFD_CLOEXEC | EFD_NONBLOCK
};
//
// system::system
//
ircd::fs::aio::system::system(const size_t &max_events,
const size_t &max_submit)
try
:event
{
max_events
}
,queue
{
max_submit
}
,resfd
{
ios::get(), int(syscall(::eventfd, ecount, eventfd_flags))
}
{
syscall<SYS_io_setup>(this->max_events(), &idp);
log::debug
{
"Established AIO(%p) context (fd:%d max_events:%zu max_submit:%zu)",
this,
int(resfd.native_handle()),
this->max_events(),
this->max_submit(),
};
}
catch(const std::exception &e)
{
log::error
{
"Error starting AIO context %p :%s",
(const void *)this,
e.what()
};
}
ircd::fs::aio::system::~system()
noexcept try
{
assert(qcount == 0);
const ctx::uninterruptible::nothrow ui;
interrupt();
wait();
boost::system::error_code ec;
resfd.close(ec);
syscall<SYS_io_destroy>(idp);
}
catch(const std::exception &e)
{
log::critical
{
"Error shutting down AIO context %p :%s",
(const void *)this,
e.what()
};
}
bool
ircd::fs::aio::system::interrupt()
{
if(!resfd.is_open())
return false;
if(handle_set)
resfd.cancel();
else
ecount = -1;
return true;
}
bool
ircd::fs::aio::system::wait()
{
if(!resfd.is_open())
return false;
log::debug
{
"Waiting for AIO context %p", this
};
dock.wait([this]
{
return ecount == uint64_t(-1);
});
assert(request_count() == 0);
return true;
}
void
ircd::fs::aio::system::wait(request &request)
try
{
assert(ctx::current == request.waiter);
while(request.retval == std::numeric_limits<ssize_t>::min())
ctx::wait();
}
catch(const ctx::interrupted &e)
{
// When the ctx is interrupted we're obligated to cancel the request.
// The handler callstack is invoked directly from here by cancel() for
// what it's worth but we rethrow the interrupt anyway.
cancel(request);
throw;
}
catch(const ctx::terminated &)
{
cancel(request);
throw;
}
void
ircd::fs::aio::system::cancel(request &request)
{
const auto &cb
{
static_cast<iocb *>(&request)
};
const auto eit
{
std::remove(begin(queue), end(queue), cb)
};
const auto qcount
{
size_t(std::distance(begin(queue), eit))
};
// We know something was erased if the qcount no longer matches
const bool erased_from_queue
{
this->qcount > qcount
};
// Make the qcount accurate again after any erasure.
assert(!erased_from_queue || this->qcount == qcount + 1);
assert(erased_from_queue || this->qcount == qcount);
if(erased_from_queue)
{
this->qcount--;
dock.notify_one();
stats.cur_queued--;
}
// Setup an io_event result which we will handle as a normal event
// immediately on this stack. We create our own cancel result if
// the request was not yet submitted to the system so the handler
// remains agnostic to our userspace queues.
io_event result {0};
if(erased_from_queue)
{
result.data = cb->aio_data;
result.obj = uintptr_t(cb);
result.res = -1;
result.res2 = ECANCELED;
} else {
syscall_nointr<SYS_io_cancel>(idp, cb, &result);
in_flight--;
stats.cur_submits--;
dock.notify_one();
}
handle_event(result);
}
void
ircd::fs::aio::system::submit(request &request)
{
assert(request.opts);
assert(qcount < queue.size());
assert(qcount + in_flight < max_events());
assert(request.aio_data == uintptr_t(&request));
const ctx::critical_assertion ca;
queue.at(qcount++) = static_cast<iocb *>(&request);
stats.cur_queued++;
stats.max_queued = std::max(stats.max_queued, stats.cur_queued);
assert(stats.cur_queued == qcount);
// Determine whether this request will trigger a flush of the queue
// and be submitted itself as well.
const bool submit_now
{
// The nodelay flag is set by the user.
request.opts->nodelay
// The queue has reached its limits.
|| qcount >= max_submit()
};
const size_t submitted
{
submit_now? submit() : 0
};
// Only post the chaser when the queue has one item. If it has more
// items the chaser was already posted after the first item and will
// flush the whole queue down to 0.
if(qcount == 1)
ircd::post(std::bind(&system::chase, this));
}
/// The chaser is posted to the IRCd event loop after the first request is
/// Ideally more requests will queue up before the chaser reaches the front
/// of the IRCd event queue and executes.
void
ircd::fs::aio::system::chase()
noexcept try
{
if(!qcount)
return;
const auto submitted
{
submit()
};
stats.chases++;
assert(!qcount);
}
catch(const std::exception &e)
{
throw panic
{
"AIO(%p) system::chase() qcount:%zu :%s", this, qcount, e.what()
};
}
/// The submitter submits all queued requests and resets the count.
size_t
ircd::fs::aio::system::submit()
try
{
assert(qcount > 0);
assert(in_flight + qcount <= MAX_EVENTS);
assert(in_flight + qcount <= max_events());
const bool idle
{
in_flight == 0
};
const auto submitted
{
syscall<SYS_io_submit>(idp, qcount, queue.data())
};
in_flight += submitted;
qcount -= submitted;
assert(!qcount);
stats.submits++;
stats.cur_queued -= submitted;
stats.cur_submits += submitted;
stats.max_submits = std::max(stats.max_submits, stats.cur_submits);
assert(stats.cur_queued == qcount);
assert(stats.cur_submits == in_flight);
if(idle && submitted > 0 && !handle_set)
set_handle();
return submitted;
}
catch(const std::system_error &e)
{
using std::errc;
switch(e.code().value())
{
// EAGAIN may be thrown to prevent blocking. TODO: handle
case int(errc::resource_unavailable_try_again):
//throw;
// Manpages sez that EBADF is thrown if the fd in the FIRST iocb has
// an issue. TODO: handle this by tossing the first iocb and continue.
case int(errc::bad_file_descriptor):
//throw;
// All other errors unexpected.
default: ircd::terminate{ircd::error
{
"AIO(%p) system::submit() qcount:%zu :%s", this, qcount, e.what()
}};
}
}
void
ircd::fs::aio::system::set_handle()
try
{
assert(!handle_set);
handle_set = true;
ecount = 0;
const asio::mutable_buffers_1 bufs
{
&ecount, sizeof(ecount)
};
auto handler
{
std::bind(&system::handle, this, ph::_1, ph::_2)
};
resfd.async_read_some(bufs, std::move(handler));
}
catch(...)
{
handle_set = false;
throw;
}
/// Handle notifications that requests are complete.
void
ircd::fs::aio::system::handle(const boost::system::error_code &ec,
const size_t bytes)
noexcept try
{
namespace errc = boost::system::errc;
assert((bytes == 8 && !ec && ecount >= 1) || (bytes == 0 && ec));
assert(!ec || ec.category() == asio::error::get_system_category());
assert(handle_set);
handle_set = false;
switch(ec.value())
{
case errc::success:
handle_events();
break;
case errc::interrupted:
break;
case errc::operation_canceled:
throw ctx::interrupted();
default:
throw_system_error(ec);
}
if(in_flight > 0 && !handle_set)
set_handle();
}
catch(const ctx::interrupted &)
{
log::debug
{
"AIO context %p interrupted", this
};
ecount = -1;
dock.notify_all();
}
void
ircd::fs::aio::system::handle_events()
noexcept try
{
assert(!ctx::current);
// The number of completed requests available in events[]. This syscall
// is restarted by us on EINTR. After restart, it may or may not find any ready
// events but it never blocks to do so.
const auto count
{
syscall_nointr<SYS_io_getevents>(idp, 0, event.size(), event.data(), nullptr)
};
// The count should be at least 1 event. The only reason to return 0 might
// be related to an INTR; this assert will find out and may be commented.
//assert(count > 0);
assert(count >= 0);
in_flight -= count;
stats.cur_submits -= count;
stats.handles++;
if(likely(count))
dock.notify_one();
for(ssize_t i(0); i < count; ++i)
handle_event(event[i]);
}
catch(const std::exception &e)
{
log::error
{
"AIO(%p) handle_events: %s",
this,
e.what()
};
}
void
ircd::fs::aio::system::handle_event(const io_event &event)
noexcept try
{
// The kernel always references the iocb in `event.obj`
auto *const iocb
{
reinterpret_cast<struct ::iocb *>(event.obj)
};
// We referenced our request (which extends the same iocb anyway)
// for the kernel to carry through as an opaque in `event.data`.
auto &request
{
*reinterpret_cast<aio::request *>(event.data)
};
// Check that everything lines up.
assert(iocb == static_cast<struct ::iocb *>(&request));
assert(reinterpret_cast<aio::request *>(iocb->aio_data) == &request);
// Assert that we understand the return-value semantics of this interface.
assert(event.res2 >= 0);
assert(event.res == -1 || event.res2 == 0);
// Set result indicators
request.retval = std::max(event.res, -1LL);
request.errcode = event.res >= -1? event.res2 : std::abs(event.res);
// Notify the waiting context. Note that we are on the main async stack
// but it is safe to notify from here.
assert(request.waiter);
assert(ctx::current == nullptr);
ctx::notify(*request.waiter);
stats.events++;
}
catch(const std::exception &e)
{
log::critical
{
"Unhandled request(%lu) event(%p) error: %s",
event.data,
&event,
e.what()
};
}
size_t
ircd::fs::aio::system::request_avail()
const
{
assert(request_count() <= max_events());
return max_events() - request_count();
}
size_t
ircd::fs::aio::system::request_count()
const
{
return qcount + in_flight;
}
size_t
ircd::fs::aio::system::max_submit()
const
{
return queue.size();
}
size_t
ircd::fs::aio::system::max_events()
const
{
return event.size();
}
//
// internal util
//
/// Translate an ircd::fs opts priority integer to an AIO priority integer.
/// The ircd::fs priority integer is like a nice value. The AIO value is
/// positive [0, MAX_REQPRIO]. This function takes an ircd::fs value and
/// shifts it to the AIO value.
int
ircd::fs::aio::reqprio(int input)
{
static const auto median
{
int(MAX_REQPRIO / 2)
};
input = std::max(input, 0 - median);
input = std::min(input, median);
input = MAX_REQPRIO - (input + median);
assert(input >= 0 && input <= int(MAX_REQPRIO));
return input;
}