0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-30 02:32:43 +01:00
construct/ircd/ctx.cc

593 lines
11 KiB
C++

/*
* Copyright (C) 2016 Charybdis Development Team
* Copyright (C) 2016 Jason Volk <jason@zemos.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice is present in all copies.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <ircd/ctx/ctx.h>
using namespace ircd;
///////////////////////////////////////////////////////////////////////////////
//
// ctx.h
//
__thread ctx::ctx *ctx::current;
void
ctx::sleep_until(const std::chrono::steady_clock::time_point &tp)
{
while(!wait_until(tp, std::nothrow));
}
bool
ctx::wait_until(const std::chrono::steady_clock::time_point &tp,
const std::nothrow_t &)
{
auto &c(cur());
c.alarm.expires_at(tp);
c.wait(); // now you're yielding with portals
return std::chrono::steady_clock::now() >= tp;
}
std::chrono::microseconds
ctx::wait(const std::chrono::microseconds &duration,
const std::nothrow_t &)
{
auto &c(cur());
c.alarm.expires_from_now(duration);
c.wait(); // now you're yielding with portals
const auto ret(c.alarm.expires_from_now());
// return remaining duration.
// this is > 0 if notified or interrupted
// this is unchanged if a note prevented any wait at all
return std::chrono::duration_cast<std::chrono::microseconds>(ret);
}
void
ctx::wait()
{
auto &c(cur());
c.alarm.expires_at(std::chrono::steady_clock::time_point::max());
c.wait(); // now you're yielding with portals
}
void
ctx::yield()
{
bool done(false);
const auto restore([&done, &me(cur())]
{
done = true;
notify(me);
});
// All spurious notifications are ignored until `done`
ios->post(restore); do
{
wait();
}
while(!done);
}
ircd::ctx::context::context(const size_t &stack_sz,
std::function<void ()> func,
const enum flags &flags)
:c{std::make_unique<ctx>(stack_sz, flags, ircd::ios)}
{
auto spawn([stack_sz, c(c.get()), func(std::move(func))]
{
auto bound(std::bind(&ctx::operator(), c, ph::_1, std::move(func)));
const boost::coroutines::attributes attrs
{
stack_sz,
boost::coroutines::stack_unwind
};
boost::asio::spawn(*ios, std::move(bound), attrs);
});
// The current context must be reasserted if spawn returns here
const scope recurrent([current(ircd::ctx::current)]
{
ircd::ctx::current = current;
});
// The profiler is told about the spawn request here, not inside the closure
// which is probably the same event-slice as event::CUR_ENTER and not as useful.
mark(prof::event::SPAWN);
if(flags & DEFER_POST)
ios->post(std::move(spawn));
else if(flags & DEFER_DISPATCH)
ios->dispatch(std::move(spawn));
else
spawn();
if(flags & SELF_DESTRUCT)
c.release();
}
ircd::ctx::context::context(std::function<void ()> func,
const enum flags &flags)
:context
{
DEFAULT_STACK_SIZE,
std::move(func),
flags
}
{
}
ircd::ctx::context::~context()
noexcept
{
if(!c)
return;
// Can't join to bare metal, only from within another context.
if(!current)
return;
interrupt();
join();
}
void
ircd::ctx::context::join()
{
if(joined())
return;
mark(prof::event::JOIN);
assert(!c->adjoindre);
c->adjoindre = &cur(); // Set the target context to notify this context when it finishes
wait();
mark(prof::event::JOINED);
}
ircd::ctx::ctx *
ircd::ctx::context::detach()
{
c->flags |= SELF_DESTRUCT;
return c.release();
}
bool
ircd::ctx::notify(ctx &ctx)
{
return ctx.note();
}
void
ircd::ctx::interrupt(ctx &ctx)
{
ctx.flags |= INTERRUPTED;
ctx.wake();
}
bool
ircd::ctx::started(const ctx &ctx)
{
return ctx.started();
}
bool
ircd::ctx::finished(const ctx &ctx)
{
return ctx.finished();
}
const enum ctx::flags &
ircd::ctx::flags(const ctx &ctx)
{
return ctx.flags;
}
const int64_t &
ircd::ctx::notes(const ctx &ctx)
{
return ctx.notes;
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx_ctx.h
//
ctx::ctx::ctx(const size_t &stack_max,
const enum flags &flags,
boost::asio::io_service *const &ios)
:alarm{*ios}
,yc{nullptr}
,stack_base{0}
,stack_max{stack_max}
,notes{1}
,adjoindre{nullptr}
,flags{flags}
{
}
void
ctx::ctx::operator()(boost::asio::yield_context yc,
const std::function<void ()> func)
noexcept
{
this->yc = &yc;
notes = 1;
stack_base = uintptr_t(__builtin_frame_address(0));
ircd::ctx::current = this;
mark(prof::event::CUR_ENTER);
const scope atexit([this]
{
if(adjoindre)
notify(*adjoindre);
mark(prof::event::CUR_LEAVE);
ircd::ctx::current = nullptr;
this->yc = nullptr;
if(flags & SELF_DESTRUCT)
delete this;
});
if(likely(bool(func)))
func();
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx_pool.h
//
ctx::pool::pool(const size_t &size,
const size_t &stack_size)
:stack_size{stack_size}
,available{0}
{
add(size);
}
ctx::pool::~pool()
noexcept
{
del(size());
}
void
ctx::pool::operator()(closure closure)
{
queue.emplace_back(std::move(closure));
dock.notify_one();
}
void
ctx::pool::del(const size_t &num)
{
const ssize_t requested(size() - num);
const size_t target(std::max(requested, ssize_t(0)));
while(ctxs.size() > target)
ctxs.pop_back();
}
void
ctx::pool::add(const size_t &num)
{
for(size_t i(0); i < num; ++i)
ctxs.emplace_back(stack_size, std::bind(&pool::main, this), DEFER_POST);
}
void
ctx::pool::main()
try
{
++available;
const scope avail([this]
{
--available;
});
while(1)
next();
}
catch(const interrupted &e)
{
log::debug("pool(%p) ctx(%p): %s",
this,
&cur(),
e.what());
}
void
ctx::pool::next()
try
{
dock.wait([this]
{
return !queue.empty();
});
--available;
const scope avail([this]
{
++available;
});
const auto func(std::move(queue.front()));
queue.pop_front();
func();
}
catch(const interrupted &e)
{
throw;
}
catch(const std::exception &e)
{
log::critical("pool(%p) ctx(%p): unhandled: %s",
this,
&cur(),
e.what());
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx_prof.h
//
namespace ircd {
namespace ctx {
namespace prof {
struct settings settings
{
0.66, // stack_usage_warning
0.87, // stack_usage_assertion
5000us, // slice_warning
0us, // slice_interrupt
0us, // slice_assertion
};
time_point cur_slice_start; // Time slice state
size_t stack_usage_here(const ctx &) __attribute__((noinline));
void check_stack();
void check_slice();
void slice_start();
void handle_cur_continue();
void handle_cur_yield();
void handle_cur_leave();
void handle_cur_enter();
} // namespace prof
} // namespace ctx
} // namespace ircd
void
ctx::prof::mark(const event &e)
{
switch(e)
{
case event::CUR_ENTER: handle_cur_enter(); break;
case event::CUR_LEAVE: handle_cur_leave(); break;
case event::CUR_YIELD: handle_cur_yield(); break;
case event::CUR_CONTINUE: handle_cur_continue(); break;
default: break;
}
}
void
ctx::prof::handle_cur_enter()
{
slice_start();
}
void
ctx::prof::handle_cur_leave()
{
check_slice();
}
void
ctx::prof::handle_cur_yield()
{
check_stack();
check_slice();
}
void
ctx::prof::handle_cur_continue()
{
slice_start();
}
void
ctx::prof::slice_start()
{
cur_slice_start = steady_clock::now();
}
void
ctx::prof::check_slice()
{
auto &c(cur());
const auto time_usage(steady_clock::now() - cur_slice_start);
if(unlikely(settings.slice_warning > 0us && time_usage >= settings.slice_warning))
{
log::warning("CONTEXT TIMESLICE EXCEEDED ctx(%p) last: %06ld microseconds",
(const void *)&c,
duration_cast<microseconds>(time_usage).count());
assert(settings.slice_assertion == 0us || time_usage < settings.slice_assertion);
}
if(unlikely(settings.slice_interrupt > 0us && time_usage >= settings.slice_interrupt))
throw interrupted("ctx(%p): Time slice exceeded (last: %06ld microseconds)",
(const void *)&c,
duration_cast<microseconds>(time_usage).count());
}
void
ctx::prof::check_stack()
{
auto &c(cur());
const double &stack_max(c.stack_max);
const auto stack_usage(stack_usage_here(c));
if(unlikely(stack_usage > stack_max * settings.stack_usage_warning))
{
log::warning("CONTEXT STACK USAGE ctx(%p) used %zu of %zu bytes",
(const void *)&c,
stack_usage,
c.stack_max);
assert(stack_usage < c.stack_max * settings.stack_usage_assertion);
}
}
size_t
ctx::prof::stack_usage_here(const ctx &ctx)
{
return ctx.stack_base - uintptr_t(__builtin_frame_address(0));
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx_ole.h
//
namespace ircd {
namespace ctx {
namespace ole {
using closure = std::function<void () noexcept>;
std::mutex mutex;
std::condition_variable cond;
std::deque<closure> queue;
bool interruption;
std::thread *thread;
closure pop();
void worker() noexcept;
void push(closure &&);
} // namespace ole
} // namespace ctx
} // namespace ircd
ctx::ole::init::init()
{
assert(!thread);
interruption = false;
thread = new std::thread(&worker);
}
ctx::ole::init::~init()
noexcept
{
if(!thread)
return;
mutex.lock();
interruption = true;
cond.notify_one();
mutex.unlock();
thread->join();
delete thread;
thread = nullptr;
}
void
ctx::ole::offload(const std::function<void ()> &func)
{
std::exception_ptr eptr;
auto &context(cur());
std::atomic<bool> done{false};
auto closure([&func, &eptr, &context, &done]
() noexcept
{
try
{
func();
}
catch(...)
{
eptr = std::current_exception();
}
done.store(true, std::memory_order_release);
notify(context);
});
push(std::move(closure)); do
{
wait();
}
while(!done.load(std::memory_order_consume));
if(eptr)
std::rethrow_exception(eptr);
}
void
ctx::ole::push(closure &&func)
{
const std::lock_guard<decltype(mutex)> lock(mutex);
queue.emplace_back(std::move(func));
cond.notify_one();
}
void
ctx::ole::worker()
noexcept try
{
while(1)
{
const auto func(pop());
func();
}
}
catch(const interrupted &)
{
return;
}
ctx::ole::closure
ctx::ole::pop()
{
std::unique_lock<decltype(mutex)> lock(mutex);
cond.wait(lock, []
{
if(!queue.empty())
return true;
if(unlikely(interruption))
throw interrupted();
return false;
});
auto c(std::move(queue.front()));
queue.pop_front();
return std::move(c);
}