0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-30 02:32:43 +01:00
construct/include/ircd/string_view.h

356 lines
9.3 KiB
C++

// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2018 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_STRING_VIEW_H
namespace ircd
{
struct string_view;
constexpr size_t _constexpr_strlen(const char *) noexcept;
template<size_t N> constexpr size_t _constexpr_strlen(const char (&)[N]) noexcept;
constexpr bool _constexpr_equal(const char *a, const char *b) noexcept;
template<size_t N0, size_t N1> constexpr bool _constexpr_equal(const char (&)[N0], const char (&)[N1]) noexcept;
constexpr const char *data(const string_view &) noexcept;
constexpr size_t size(const string_view &) noexcept;
bool empty(const string_view &);
bool operator!(const string_view &);
bool defined(const string_view &);
bool null(const string_view &);
int cmp(const string_view &, const string_view &) noexcept;
constexpr string_view operator ""_sv(const char *const literal, const size_t size);
}
namespace std
{
template<> struct std::hash<ircd::string_view>;
template<> struct std::less<ircd::string_view>;
template<> struct std::equal_to<ircd::string_view>;
}
/// Customized std::string_view (experimental TS / C++17)
///
/// This class adds iterator-based (char*, char*) construction to std::string_view which otherwise
/// takes traditional (char*, size_t) arguments. This allows boost::spirit grammars to create
/// string_view's using the raw[] directive achieving zero-copy/zero-allocation parsing.
///
struct ircd::string_view
:std::string_view
{
// (non-standard)
explicit operator bool() const
{
return !empty();
}
/// CAREFUL. THIS IS ON PURPOSE. By relaxing this conversion we're reducing
/// the amount of explicit std::string() pollution when calling out to code
/// which doesn't support string_view *yet* (keyword: yet). When it does
/// support string_view then this conversion won't happen, and we don't
/// have to change anything in our code. The price here is that an
/// occasional regression analysis on where these conversions are occurring
/// should be periodically performed to make sure there are no unwanted
/// silent accidents.
operator std::string() const
{
return std::string(cbegin(), cend());
}
/// (non-standard) When data() != nullptr we consider the string defined
/// downstream in this project wrt JS/JSON. This is the bit of information
/// we're deciding on for defined|undefined. If this string_view is
/// constructed from a literal "" we must assert that inputs a valid pointer
/// in the std::string_view with length 0; stdlib can't optimize that with
/// a nullptr replacement.
bool undefined() const
{
return data() == nullptr;
}
bool defined() const
{
return !undefined();
}
/// (non-standard) string_view's have no guarantee to be null terminated
/// and most likely aren't. The std::string_view does not offer the
/// c_str() function because using it is overwhelmingly likely to be wrong.
/// Nevertheless if our developer is certain their view is of a null
/// terminated string where the terminator is one past the end they can
/// invoke this function rather than data() to assert their intent. Note
/// that this assertion is still not foolproof because reading beyond
/// size() might still be incorrect whether or not a null is found there
/// and there is nothing else we can do. The developer must be sure.
auto c_str() const
{
assert(!data() || data()[size()] == '\0');
return data();
}
/// (non-standard) After using data() == nullptr for undefined, we're fresh
/// out of legitimate bits here to represent the null type string. In this
/// case we expect a hack pointer of 0x1 which will mean JS null
bool null() const
{
return data() == reinterpret_cast<const char *>(0x1);
}
// (non-standard) our faux insert stub
// Tricks boost::spirit into thinking this is mutable string (hint: it's not).
// Instead, the raw[] directive in Qi grammar will use the iterator constructor only.
// __attribute__((error("string_view is not insertable (hint: use raw[] directive)")))
void insert(const iterator &, const char &)
{
assert(0);
}
// (non-standard) our iterator-based assign
string_view &assign(const char *const &begin, const char *const &end)
{
this->~string_view();
new (this) string_view{begin, end};
return *this;
}
// (non-standard) intuitive wrapper for remove_suffix.
// Unlike std::string, we can cheaply involve a reference to the removed character
// which still exists.
const char &pop_back()
{
const char &ret(back());
remove_suffix(1);
return ret;
}
// (non-standard) intuitive wrapper for remove_prefix.
// Unlike std::string, we can cheaply involve a reference to the removed character
// which still exists.
const char &pop_front()
{
const char &ret(front());
remove_prefix(1);
return ret;
}
/// (non-standard) resize viewer
void resize(const size_t &count)
{
*this = string_view{data(), data() + count};
}
// (non-standard) our iterator-based constructor
constexpr string_view(const char *const &begin, const char *const &end) noexcept
:string_view{begin, size_t(end - begin)}
{
assert(begin <= end);
}
// (non-standard) our iterator-based constructor
string_view(const std::string::const_iterator &begin, const std::string::const_iterator &end)
:string_view{&*begin, &*end}
{}
// (non-standard) our array based constructor
template<size_t SIZE> constexpr
__attribute__((always_inline))
string_view(const std::array<char, SIZE> &array) noexcept
:string_view
{
array.data(), std::find(array.begin(), array.end(), '\0')
}{}
// (non-standard) our buffer based constructor
template<size_t SIZE> constexpr
__attribute__((always_inline))
string_view(const char (&buf)[SIZE]) noexcept
:string_view
{
buf, std::find(buf, buf + SIZE, '\0')
}{}
constexpr string_view(const char *const &start, const size_t &size) noexcept
:std::string_view{start, size}
{}
constexpr string_view(const char *const &start) noexcept
:std::string_view{start, _constexpr_strlen(start)}
{}
string_view(const std::string &string) noexcept
:string_view{string.data(), string.size()}
{}
constexpr string_view(const std::string_view &sv)
:std::string_view{sv}
{}
/// Our default constructor sets the elements to 0 for best behavior by
/// defined() and null() et al.
constexpr string_view()
:std::string_view{}
{}
};
/// Specialization for std::hash<> participation
template<>
struct std::hash<ircd::string_view>
:std::hash<std::string_view>
{
using std::hash<std::string_view>::operator();
using std::hash<std::string_view>::hash;
};
/// Specialization for std::less<> participation
template<>
struct std::less<ircd::string_view>
:std::less<std::string_view>
{
using std::less<std::string_view>::operator();
using std::less<std::string_view>::less;
};
/// Specialization for std::equal_to<> participation
template<>
struct std::equal_to<ircd::string_view>
:std::equal_to<std::string_view>
{
using std::equal_to<std::string_view>::operator();
using std::equal_to<std::string_view>::equal_to;
};
/// Compile-time conversion from a string literal into a string_view.
constexpr ircd::string_view
ircd::operator ""_sv(const char *const literal, const size_t size)
{
return string_view{literal, size};
}
inline int
ircd::cmp(const string_view &a,
const string_view &b)
noexcept
{
const auto res
{
#if __has_builtin(__builtin_memcmp_inline) && !defined(RB_GENERIC)
__builtin_memcmp_inline(a.data(), b.data(), std::min(a.size(), b.size()))
#else
__builtin_memcmp(a.data(), b.data(), std::min(a.size(), b.size()))
#endif
};
const auto zf
{
boolmask<uint>(res == 0)
};
const auto lt
{
boolmask<uint>(a.size() < b.size())
};
const auto gt
{
boolmask<uint>(a.size() > b.size())
};
return (~zf & res) | (zf & lt & -1U) | (zf & gt & 1U);
}
inline bool
ircd::operator!(const string_view &str)
{
return empty(str);
}
inline bool
ircd::empty(const string_view &str)
{
return str.empty();
}
inline bool
ircd::null(const string_view &str)
{
return str.null();
}
inline bool
ircd::defined(const string_view &str)
{
return str.defined();
}
constexpr size_t
ircd::size(const string_view &str)
noexcept
{
return str.size();
}
constexpr const char *
ircd::data(const string_view &str)
noexcept
{
return str.data();
}
template<size_t N0,
size_t N1>
constexpr bool
ircd::_constexpr_equal(const char (&a)[N0],
const char (&b)[N1])
noexcept
{
if constexpr(_constexpr_strlen(a) != _constexpr_strlen(b))
return false;
for(size_t i(0); i < _constexpr_strlen(a); ++i)
if constexpr(a[i] != b[i])
return false;
return true;
}
constexpr bool
ircd::_constexpr_equal(const char *const a,
const char *const b)
noexcept
{
return *a == *b && (*a == '\0' || _constexpr_equal(a + 1, b + 1));
}
template<size_t N>
constexpr size_t
ircd::_constexpr_strlen(const char (&a)[N])
noexcept
{
size_t i(0);
while(i < N)
if constexpr(a[i] == '\0')
return i;
return N;
}
constexpr size_t
ircd::_constexpr_strlen(const char *const s)
noexcept
{
const char *e(s);
if(e) for(; *e; ++e);
return e - s;
}