mirror of
https://github.com/matrix-construct/construct
synced 2024-11-29 10:12:39 +01:00
1176 lines
27 KiB
C++
1176 lines
27 KiB
C++
/*
|
|
* charybdis: 21st Century IRC++d
|
|
* util.h: Miscellaneous utilities
|
|
*
|
|
* Copyright (C) 2016 Charybdis Development Team
|
|
* Copyright (C) 2016 Jason Volk <jason@zemos.net>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice is present in all copies.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#pragma once
|
|
#define HAVE_IRCD_UTIL_H
|
|
|
|
/// Tools for developers
|
|
namespace ircd::util
|
|
{
|
|
}
|
|
|
|
namespace ircd {
|
|
inline namespace util {
|
|
|
|
#define IRCD_EXPCAT(a, b) a ## b
|
|
#define IRCD_CONCAT(a, b) IRCD_EXPCAT(a, b)
|
|
#define IRCD_UNIQUE(a) IRCD_CONCAT(a, __COUNTER__)
|
|
|
|
|
|
#define IRCD_OVERLOAD(NAME) \
|
|
static constexpr struct NAME##_t {} NAME {};
|
|
|
|
#define IRCD_USING_OVERLOAD(ALIAS, ORIGIN) \
|
|
static constexpr const auto &ALIAS{ORIGIN}
|
|
|
|
|
|
#define IRCD_WEAK_TYPEDEF(TYPE, NAME) \
|
|
struct NAME \
|
|
:TYPE \
|
|
{ \
|
|
using TYPE::TYPE; \
|
|
};
|
|
|
|
#define IRCD_STRONG_TYPEDEF(TYPE, NAME) \
|
|
struct NAME \
|
|
{ \
|
|
TYPE val; \
|
|
\
|
|
explicit operator const TYPE &() const { return val; } \
|
|
explicit operator TYPE &() { return val; } \
|
|
};
|
|
|
|
#define IRCD_WEAK_T(TYPE) \
|
|
IRCD_WEAK_TYPEDEF(TYPE, IRCD_UNIQUE(weak_t))
|
|
|
|
// ex: using foo_t = IRCD_STRONG_T(int)
|
|
#define IRCD_STRONG_T(TYPE) \
|
|
IRCD_STRONG_TYPEDEF(TYPE, IRCD_UNIQUE(strong_t))
|
|
|
|
|
|
/* Output the sizeof a structure at compile time.
|
|
* This stops the compiler with an error (good) containing the size of the target
|
|
* in the message.
|
|
*
|
|
* example: struct foo {}; IRCD_TEST_SIZEOF(foo)
|
|
*/
|
|
|
|
template<size_t SIZE>
|
|
struct _TEST_SIZEOF_;
|
|
|
|
#define IRCD_TEST_SIZEOF(name) \
|
|
ircd::util::_TEST_SIZEOF_<sizeof(name)> _test_;
|
|
|
|
|
|
// for complex static initialization (try to avoid this though)
|
|
enum class init_priority
|
|
{
|
|
FIRST = 101,
|
|
STD_CONTAINER = 102,
|
|
};
|
|
|
|
#define IRCD_INIT_PRIORITY(name) \
|
|
__attribute__((init_priority(int(ircd::init_priority::name))))
|
|
|
|
|
|
///
|
|
/// C++14 user defined literals
|
|
///
|
|
/// These are very useful for dealing with space. Simply write 8_MiB and it's
|
|
/// as if a macro turned that into (8 * 1024 * 1024) at compile time.
|
|
///
|
|
|
|
/// (Internal) Defines a unit literal with an unsigned long long basis.
|
|
///
|
|
#define IRCD_UNIT_LITERAL_UL(name, morphism) \
|
|
constexpr auto \
|
|
operator"" _ ## name(const unsigned long long val) \
|
|
{ \
|
|
return (morphism); \
|
|
}
|
|
|
|
/// (Internal) Defines a unit literal with a signed long long basis
|
|
///
|
|
#define IRCD_UNIT_LITERAL_LL(name, morphism) \
|
|
constexpr auto \
|
|
operator"" _ ## name(const long long val) \
|
|
{ \
|
|
return (morphism); \
|
|
}
|
|
|
|
/// (Internal) Defines a unit literal with a long double basis
|
|
///
|
|
#define IRCD_UNIT_LITERAL_LD(name, morphism) \
|
|
constexpr auto \
|
|
operator"" _ ## name(const long double val) \
|
|
{ \
|
|
return (morphism); \
|
|
}
|
|
|
|
// IEC unit literals
|
|
IRCD_UNIT_LITERAL_UL( B, val )
|
|
IRCD_UNIT_LITERAL_UL( KiB, val * 1024LL )
|
|
IRCD_UNIT_LITERAL_UL( MiB, val * 1024LL * 1024LL )
|
|
IRCD_UNIT_LITERAL_UL( GiB, val * 1024LL * 1024LL * 1024LL )
|
|
IRCD_UNIT_LITERAL_UL( TiB, val * 1024LL * 1024LL * 1024LL * 1024LL )
|
|
IRCD_UNIT_LITERAL_UL( PiB, val * 1024LL * 1024LL * 1024LL * 1024LL * 1024LL )
|
|
IRCD_UNIT_LITERAL_UL( EiB, val * 1024LL * 1024LL * 1024LL * 1024LL * 1024LL * 1024LL )
|
|
|
|
IRCD_UNIT_LITERAL_LD( B, val )
|
|
IRCD_UNIT_LITERAL_LD( KiB, val * 1024.0L )
|
|
IRCD_UNIT_LITERAL_LD( MiB, val * 1024.0L * 1024.0L )
|
|
IRCD_UNIT_LITERAL_LD( GiB, val * 1024.0L * 1024.0L * 1024.0L )
|
|
IRCD_UNIT_LITERAL_LD( TiB, val * 1024.0L * 1024.0L * 1024.0L * 1024.0L )
|
|
IRCD_UNIT_LITERAL_LD( PiB, val * 1024.0L * 1024.0L * 1024.0L * 1024.0L * 1024.0L )
|
|
IRCD_UNIT_LITERAL_LD( EiB, val * 1024.0L * 1024.0L * 1024.0L * 1024.0L * 1024.0L * 1024.0L )
|
|
|
|
// SI unit literals
|
|
IRCD_UNIT_LITERAL_UL( KB, val * 1000LL )
|
|
IRCD_UNIT_LITERAL_UL( MB, val * 1000LL * 1000LL )
|
|
IRCD_UNIT_LITERAL_UL( GB, val * 1000LL * 1000LL * 1000LL )
|
|
IRCD_UNIT_LITERAL_UL( TB, val * 1000LL * 1000LL * 1000LL * 1000LL )
|
|
IRCD_UNIT_LITERAL_UL( PB, val * 1000LL * 1000LL * 1000LL * 1000LL * 1000LL )
|
|
IRCD_UNIT_LITERAL_UL( EB, val * 1000LL * 1000LL * 1000LL * 1000LL * 1000LL * 1000LL )
|
|
|
|
IRCD_UNIT_LITERAL_LD( KB, val * 1000.0L )
|
|
IRCD_UNIT_LITERAL_LD( MB, val * 1000.0L * 1000.0L )
|
|
IRCD_UNIT_LITERAL_LD( GB, val * 1000.0L * 1000.0L * 1000.0L )
|
|
IRCD_UNIT_LITERAL_LD( TB, val * 1000.0L * 1000.0L * 1000.0L * 1000.0L )
|
|
IRCD_UNIT_LITERAL_LD( PB, val * 1000.0L * 1000.0L * 1000.0L * 1000.0L * 1000.0L )
|
|
IRCD_UNIT_LITERAL_LD( EB, val * 1000.0L * 1000.0L * 1000.0L * 1000.0L * 1000.0L * 1000.0L )
|
|
|
|
|
|
///
|
|
/// Fundamental scope-unwind utilities establishing actions during destruction
|
|
///
|
|
|
|
/// Unconditionally executes the provided code when the object goes out of scope.
|
|
///
|
|
struct unwind
|
|
{
|
|
struct nominal;
|
|
struct exceptional;
|
|
|
|
const std::function<void ()> func;
|
|
|
|
template<class F>
|
|
unwind(F &&func)
|
|
:func{std::forward<F>(func)}
|
|
{}
|
|
|
|
unwind(const unwind &) = delete;
|
|
unwind &operator=(const unwind &) = delete;
|
|
~unwind() noexcept
|
|
{
|
|
func();
|
|
}
|
|
};
|
|
|
|
/// Executes function only if the unwind takes place without active exception
|
|
///
|
|
/// The function is expected to be executed and the likely() should pipeline
|
|
/// that branch and make this device cheaper to use under normal circumstances.
|
|
///
|
|
struct unwind::nominal
|
|
{
|
|
const std::function<void ()> func;
|
|
|
|
template<class F>
|
|
nominal(F &&func)
|
|
:func{std::forward<F>(func)}
|
|
{}
|
|
|
|
~nominal() noexcept
|
|
{
|
|
if(likely(!std::uncaught_exception()))
|
|
func();
|
|
}
|
|
|
|
nominal(const nominal &) = delete;
|
|
};
|
|
|
|
/// Executes function only if unwind is taking place because exception thrown
|
|
///
|
|
/// The unlikely() intends for the cost of a branch misprediction to be paid
|
|
/// for fetching and executing this function. This is because we strive to
|
|
/// optimize the pipeline for the nominal path, making this device as cheap
|
|
/// as possible to use.
|
|
///
|
|
struct unwind::exceptional
|
|
{
|
|
const std::function<void ()> func;
|
|
|
|
template<class F>
|
|
exceptional(F &&func)
|
|
:func{std::forward<F>(func)}
|
|
{}
|
|
|
|
~exceptional() noexcept
|
|
{
|
|
if(unlikely(std::uncaught_exception()))
|
|
func();
|
|
}
|
|
|
|
exceptional(const exceptional &) = delete;
|
|
};
|
|
|
|
|
|
template<class T>
|
|
using custom_ptr = std::unique_ptr<T, std::function<void (T *) noexcept>>;
|
|
|
|
|
|
//
|
|
// Iteration of a tuple
|
|
//
|
|
// for_each(tuple, [](auto&& elem) { ... });
|
|
|
|
template<size_t i,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i == std::tuple_size<std::tuple<args...>>::value, void>::type
|
|
for_each(std::tuple<args...> &t,
|
|
func&& f)
|
|
{}
|
|
|
|
template<size_t i,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i == std::tuple_size<std::tuple<args...>>::value, void>::type
|
|
for_each(const std::tuple<args...> &t,
|
|
func&& f)
|
|
{}
|
|
|
|
template<size_t i = 0,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i < std::tuple_size<std::tuple<args...>>::value, void>::type
|
|
for_each(const std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
f(std::get<i>(t));
|
|
for_each<i+1>(t, std::forward<func>(f));
|
|
}
|
|
|
|
template<size_t i = 0,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i < std::tuple_size<std::tuple<args...>>::value, void>::type
|
|
for_each(std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
f(std::get<i>(t));
|
|
for_each<i+1>(t, std::forward<func>(f));
|
|
}
|
|
|
|
//
|
|
// Circuits for reverse iteration of a tuple
|
|
//
|
|
// rfor_each(tuple, [](auto&& elem) { ... });
|
|
|
|
template<ssize_t i,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i == 0, void>::type
|
|
rfor_each(const std::tuple<args...> &t,
|
|
func&& f)
|
|
{}
|
|
|
|
template<ssize_t i,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i == 0, void>::type
|
|
rfor_each(std::tuple<args...> &t,
|
|
func&& f)
|
|
{}
|
|
|
|
template<ssize_t i,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<(i > 0), void>::type
|
|
rfor_each(const std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
f(std::get<i - 1>(t));
|
|
rfor_each<i - 1>(t, std::forward<func>(f));
|
|
}
|
|
|
|
template<ssize_t i,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<(i > 0), void>::type
|
|
rfor_each(std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
f(std::get<i - 1>(t));
|
|
rfor_each<i - 1>(t, std::forward<func>(f));
|
|
}
|
|
|
|
template<ssize_t i = -1,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<(i == -1), void>::type
|
|
rfor_each(const std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
constexpr const ssize_t size
|
|
{
|
|
std::tuple_size<std::tuple<args...>>::value
|
|
};
|
|
|
|
rfor_each<size>(t, std::forward<func>(f));
|
|
}
|
|
|
|
template<ssize_t i = -1,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<(i == -1), void>::type
|
|
rfor_each(std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
constexpr const ssize_t size
|
|
{
|
|
std::tuple_size<std::tuple<args...>>::value
|
|
};
|
|
|
|
rfor_each<size>(t, std::forward<func>(f));
|
|
}
|
|
|
|
//
|
|
// Iteration of a tuple until() style: your closure returns true to continue, false
|
|
// to break. until() then remains true to the end, or returns false if not.
|
|
|
|
template<size_t i,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i == std::tuple_size<std::tuple<args...>>::value, bool>::type
|
|
until(std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
template<size_t i,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i == std::tuple_size<std::tuple<args...>>::value, bool>::type
|
|
until(const std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
template<size_t i = 0,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i < std::tuple_size<std::tuple<args...>>::value, bool>::type
|
|
until(std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
using value_type = typename std::tuple_element<i, std::tuple<args...>>::type;
|
|
return f(static_cast<value_type &>(std::get<i>(t)))? until<i+1>(t, f) : false;
|
|
}
|
|
|
|
template<size_t i = 0,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i < std::tuple_size<std::tuple<args...>>::value, bool>::type
|
|
until(const std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
using value_type = typename std::tuple_element<i, std::tuple<args...>>::type;
|
|
return f(static_cast<const value_type &>(std::get<i>(t)))? until<i+1>(t, f) : false;
|
|
}
|
|
|
|
//
|
|
// Circuits for reverse iteration of a tuple
|
|
//
|
|
// runtil(tuple, [](auto&& elem) -> bool { ... });
|
|
|
|
template<ssize_t i,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i == 0, bool>::type
|
|
runtil(const std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
template<ssize_t i,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i == 0, bool>::type
|
|
runtil(std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
template<ssize_t i,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<(i > 0), bool>::type
|
|
runtil(const std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
return f(std::get<i - 1>(t))? runtil<i - 1>(t, f) : false;
|
|
}
|
|
|
|
template<ssize_t i,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<(i > 0), bool>::type
|
|
runtil(std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
return f(std::get<i - 1>(t))? runtil<i - 1>(t, f) : false;
|
|
}
|
|
|
|
template<ssize_t i = -1,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<(i == -1), bool>::type
|
|
runtil(const std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
constexpr const auto size
|
|
{
|
|
std::tuple_size<std::tuple<args...>>::value
|
|
};
|
|
|
|
return runtil<size>(t, std::forward<func>(f));
|
|
}
|
|
|
|
template<ssize_t i = -1,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<(i == -1), bool>::type
|
|
runtil(std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
constexpr const auto size
|
|
{
|
|
std::tuple_size<std::tuple<args...>>::value
|
|
};
|
|
|
|
return runtil<size>(t, std::forward<func>(f));
|
|
}
|
|
|
|
//
|
|
// Kronecker delta
|
|
//
|
|
|
|
template<size_t j,
|
|
size_t i,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i == j, void>::type
|
|
kronecker_delta(const std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
using value_type = typename std::tuple_element<i, std::tuple<args...>>::type;
|
|
f(static_cast<const value_type &>(std::get<i>(t)));
|
|
}
|
|
|
|
template<size_t i,
|
|
size_t j,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<i == j, void>::type
|
|
kronecker_delta(std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
using value_type = typename std::tuple_element<i, std::tuple<args...>>::type;
|
|
f(static_cast<value_type &>(std::get<i>(t)));
|
|
}
|
|
|
|
template<size_t j,
|
|
size_t i = 0,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<(i < j), void>::type
|
|
kronecker_delta(const std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
kronecker_delta<j, i + 1>(t, std::forward<func>(f));
|
|
}
|
|
|
|
template<size_t j,
|
|
size_t i = 0,
|
|
class func,
|
|
class... args>
|
|
constexpr
|
|
typename std::enable_if<(i < j), void>::type
|
|
kronecker_delta(std::tuple<args...> &t,
|
|
func&& f)
|
|
{
|
|
kronecker_delta<j, i + 1>(t, std::forward<func>(f));
|
|
}
|
|
|
|
|
|
// For conforming enums include a _NUM_ as the last element,
|
|
// then num_of<my_enum>() works
|
|
template<class Enum>
|
|
constexpr
|
|
typename std::underlying_type<Enum>::type
|
|
num_of()
|
|
{
|
|
return static_cast<typename std::underlying_type<Enum>::type>(Enum::_NUM_);
|
|
}
|
|
|
|
// Iteration of a num_of() conforming enum
|
|
template<class Enum>
|
|
typename std::enable_if<std::is_enum<Enum>::value, void>::type
|
|
for_each(const std::function<void (const Enum &)> &func)
|
|
{
|
|
for(size_t i(0); i < num_of<Enum>(); ++i)
|
|
func(static_cast<Enum>(i));
|
|
}
|
|
|
|
/**
|
|
* flag-enum utilities
|
|
*
|
|
* This relaxes the strong typing of enums to allow bitflags with operations on the elements
|
|
* with intuitive behavior.
|
|
*
|
|
* If the project desires absolute guarantees on the strong enum typing then this can be tucked
|
|
* away in some namespace and imported into select scopes instead.
|
|
*/
|
|
|
|
template<class Enum>
|
|
constexpr
|
|
typename std::enable_if<std::is_enum<Enum>::value, Enum>::type
|
|
operator~(const Enum &a)
|
|
{
|
|
using enum_t = typename std::underlying_type<Enum>::type;
|
|
|
|
return static_cast<Enum>(~static_cast<enum_t>(a));
|
|
}
|
|
|
|
template<class Enum>
|
|
constexpr
|
|
typename std::enable_if<std::is_enum<Enum>::value, bool>::type
|
|
operator!(const Enum &a)
|
|
{
|
|
using enum_t = typename std::underlying_type<Enum>::type;
|
|
|
|
return !static_cast<enum_t>(a);
|
|
}
|
|
|
|
template<class Enum>
|
|
constexpr
|
|
typename std::enable_if<std::is_enum<Enum>::value, Enum>::type
|
|
operator|(const Enum &a, const Enum &b)
|
|
{
|
|
using enum_t = typename std::underlying_type<Enum>::type;
|
|
|
|
return static_cast<Enum>(static_cast<enum_t>(a) | static_cast<enum_t>(b));
|
|
}
|
|
|
|
template<class Enum>
|
|
constexpr
|
|
typename std::enable_if<std::is_enum<Enum>::value, Enum>::type
|
|
operator&(const Enum &a, const Enum &b)
|
|
{
|
|
using enum_t = typename std::underlying_type<Enum>::type;
|
|
|
|
return static_cast<Enum>(static_cast<enum_t>(a) & static_cast<enum_t>(b));
|
|
}
|
|
|
|
template<class Enum>
|
|
constexpr
|
|
typename std::enable_if<std::is_enum<Enum>::value, Enum>::type
|
|
operator^(const Enum &a, const Enum &b)
|
|
{
|
|
using enum_t = typename std::underlying_type<Enum>::type;
|
|
|
|
return static_cast<Enum>(static_cast<enum_t>(a) ^ static_cast<enum_t>(b));
|
|
}
|
|
|
|
template<class Enum>
|
|
constexpr
|
|
typename std::enable_if<std::is_enum<Enum>::value, Enum &>::type
|
|
operator|=(Enum &a, const Enum &b)
|
|
{
|
|
using enum_t = typename std::underlying_type<Enum>::type;
|
|
|
|
return (a = (a | b));
|
|
}
|
|
|
|
template<class Enum>
|
|
constexpr
|
|
typename std::enable_if<std::is_enum<Enum>::value, Enum &>::type
|
|
operator&=(Enum &a, const Enum &b)
|
|
{
|
|
using enum_t = typename std::underlying_type<Enum>::type;
|
|
|
|
return (a = (a & b));
|
|
}
|
|
|
|
template<class Enum>
|
|
constexpr
|
|
typename std::enable_if<std::is_enum<Enum>::value, Enum &>::type
|
|
operator^=(Enum &a, const Enum &b)
|
|
{
|
|
using enum_t = typename std::underlying_type<Enum>::type;
|
|
|
|
return (a = (a ^ b));
|
|
}
|
|
|
|
template<class Enum,
|
|
class it>
|
|
typename std::enable_if<std::is_enum<Enum>::value, typename std::underlying_type<Enum>::type>::type
|
|
combine_flags(const it &begin,
|
|
const it &end)
|
|
{
|
|
using type = typename std::underlying_type<Enum>::type;
|
|
|
|
return std::accumulate(begin, end, type(0), []
|
|
(auto ret, const auto &val)
|
|
{
|
|
return ret |= type(val);
|
|
});
|
|
}
|
|
|
|
template<class Enum>
|
|
typename std::enable_if<std::is_enum<Enum>::value, typename std::underlying_type<Enum>::type>::type
|
|
combine_flags(const std::initializer_list<Enum> &list)
|
|
{
|
|
return combine_flags<Enum>(begin(list), end(list));
|
|
}
|
|
|
|
|
|
inline size_t
|
|
size(std::ostream &s)
|
|
{
|
|
const auto cur(s.tellp());
|
|
s.seekp(0, std::ios::end);
|
|
const auto ret(s.tellp());
|
|
s.seekp(cur, std::ios::beg);
|
|
return ret;
|
|
}
|
|
|
|
|
|
template<class T>
|
|
auto
|
|
string(const T &s)
|
|
{
|
|
std::stringstream ss;
|
|
return static_cast<std::stringstream &>(ss << s).str();
|
|
}
|
|
|
|
inline auto
|
|
string(const char *const &buf, const size_t &size)
|
|
{
|
|
return std::string{buf, size};
|
|
}
|
|
|
|
inline auto
|
|
string(const uint8_t *const &buf, const size_t &size)
|
|
{
|
|
return string(reinterpret_cast<const char *>(buf), size);
|
|
}
|
|
|
|
|
|
/* This is a template alternative to nothrow overloads, which
|
|
* allows keeping the function arguments sanitized of the thrownness.
|
|
*/
|
|
|
|
template<class exception_t>
|
|
constexpr bool
|
|
is_nothrow()
|
|
{
|
|
return std::is_same<exception_t, std::nothrow_t>::value;
|
|
}
|
|
|
|
template<class exception_t = std::nothrow_t,
|
|
class return_t = bool>
|
|
using nothrow_overload = typename std::enable_if<is_nothrow<exception_t>(), return_t>::type;
|
|
|
|
template<class exception_t,
|
|
class return_t = void>
|
|
using throw_overload = typename std::enable_if<!is_nothrow<exception_t>(), return_t>::type;
|
|
|
|
|
|
//
|
|
// Test if type is forward declared or complete
|
|
//
|
|
|
|
template<class T,
|
|
class = void>
|
|
struct is_complete
|
|
:std::false_type
|
|
{
|
|
};
|
|
|
|
template<class T>
|
|
struct is_complete<T, decltype(void(sizeof(T)))>
|
|
:std::true_type
|
|
{
|
|
};
|
|
|
|
|
|
//
|
|
// Convenience constexprs for iterators
|
|
//
|
|
|
|
template<class It>
|
|
constexpr auto
|
|
is_iterator()
|
|
{
|
|
return std::is_base_of<typename std::iterator_traits<It>::value_type, It>::value;
|
|
}
|
|
|
|
template<class It>
|
|
constexpr auto
|
|
is_forward_iterator()
|
|
{
|
|
return std::is_base_of<std::forward_iterator_tag, typename std::iterator_traits<It>::iterator_category>::value;
|
|
}
|
|
|
|
template<class It>
|
|
constexpr auto
|
|
is_input_iterator()
|
|
{
|
|
return std::is_base_of<std::forward_iterator_tag, typename std::iterator_traits<It>::iterator_category>::value;
|
|
}
|
|
|
|
|
|
|
|
// std::next with out_of_range exception
|
|
template<class It>
|
|
typename std::enable_if<is_forward_iterator<It>() || is_input_iterator<It>(), It>::type
|
|
at(It &&start,
|
|
It &&stop,
|
|
ssize_t i)
|
|
{
|
|
for(; start != stop; --i, std::advance(start, 1))
|
|
if(!i)
|
|
return start;
|
|
|
|
throw std::out_of_range("at(a, b, i): 'i' out of range");
|
|
}
|
|
|
|
|
|
//
|
|
// Some functors for STL
|
|
//
|
|
|
|
template<class container>
|
|
struct keys
|
|
{
|
|
auto &operator()(typename container::reference v) const
|
|
{
|
|
return v.first;
|
|
}
|
|
};
|
|
|
|
template<class container>
|
|
struct values
|
|
{
|
|
auto &operator()(typename container::reference v) const
|
|
{
|
|
return v.second;
|
|
}
|
|
};
|
|
|
|
|
|
//
|
|
// Error-checking closure for POSIX system calls. Note the usage is
|
|
// syscall(read, foo, bar, baz) not a macro like syscall(read(foo, bar, baz));
|
|
//
|
|
template<long ERROR_CODE = -1,
|
|
class function,
|
|
class... args>
|
|
auto
|
|
syscall(function&& f,
|
|
args&&... a)
|
|
-> typename std::enable_if<std::is_same<int, decltype(f(a...))>::value, int>::type
|
|
{
|
|
const int ret
|
|
{
|
|
f(std::forward<args>(a)...)
|
|
};
|
|
|
|
if(unlikely(ret == ERROR_CODE))
|
|
throw std::system_error(errno, std::system_category());
|
|
|
|
return ret;
|
|
}
|
|
|
|
//
|
|
// Error-checking closure for POSIX system calls. Note the usage is
|
|
// syscall(read, foo, bar, baz) not a macro like syscall(read(foo, bar, baz));
|
|
//
|
|
template<long ERROR_CODE = -1,
|
|
class function,
|
|
class... args>
|
|
auto
|
|
uninterruptible_syscall(function&& f,
|
|
args&&... a)
|
|
-> typename std::enable_if<std::is_same<int, decltype(f(a...))>::value, int>::type
|
|
{
|
|
int ret; do
|
|
{
|
|
ret = f(std::forward<args>(a)...);
|
|
}
|
|
while(unlikely(ret == ERROR_CODE && errno == EINTR));
|
|
|
|
if(unlikely(ret == ERROR_CODE))
|
|
throw std::system_error(errno, std::system_category());
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
//
|
|
// Similar to a va_list, but conveying std-c++ type data acquired from a variadic template
|
|
// parameter pack acting as the ...) elipsis. This is used to implement fmt::snprintf(),
|
|
// exceptions and logger et al in their respective translation units rather than the header
|
|
// files.
|
|
//
|
|
// Limitations: The choice of a fixed array of N is because std::initializer_list doesn't
|
|
// work here and other containers may be heavy in this context. Ideas to improve this are
|
|
// welcome.
|
|
//
|
|
const size_t VA_RTTI_MAX_SIZE = 12;
|
|
struct va_rtti
|
|
:std::array<std::pair<const void *, const std::type_info *>, VA_RTTI_MAX_SIZE>
|
|
{
|
|
using base_type = std::array<value_type, VA_RTTI_MAX_SIZE>;
|
|
|
|
static constexpr size_t max_size()
|
|
{
|
|
return std::tuple_size<base_type>();
|
|
}
|
|
|
|
size_t argc;
|
|
const size_t &size() const
|
|
{
|
|
return argc;
|
|
}
|
|
|
|
template<class... Args>
|
|
va_rtti(Args&&... args)
|
|
:base_type
|
|
{{
|
|
std::make_pair(std::addressof(args), std::addressof(typeid(Args)))...
|
|
}}
|
|
,argc
|
|
{
|
|
sizeof...(args)
|
|
}
|
|
{
|
|
assert(argc <= max_size());
|
|
}
|
|
};
|
|
|
|
static_assert
|
|
(
|
|
sizeof(va_rtti) == (va_rtti::max_size() * 16) + 8,
|
|
"va_rtti should be (8 + 8) * N + 8;"
|
|
" where 8 + 8 are the two pointers carrying the argument and its type data;"
|
|
" where N is the max arguments;"
|
|
" where the final + 8 bytes holds the actual number of arguments passed;"
|
|
);
|
|
|
|
|
|
//
|
|
// To collapse pairs of iterators down to a single type
|
|
//
|
|
|
|
template<class T>
|
|
struct iterpair
|
|
:std::pair<T, T>
|
|
{
|
|
using std::pair<T, T>::pair;
|
|
};
|
|
|
|
template<class T>
|
|
T &
|
|
begin(iterpair<T> &i)
|
|
{
|
|
return std::get<0>(i);
|
|
}
|
|
|
|
template<class T>
|
|
T &
|
|
end(iterpair<T> &i)
|
|
{
|
|
return std::get<1>(i);
|
|
}
|
|
|
|
template<class T>
|
|
const T &
|
|
begin(const iterpair<T> &i)
|
|
{
|
|
return std::get<0>(i);
|
|
}
|
|
|
|
template<class T>
|
|
const T &
|
|
end(const iterpair<T> &i)
|
|
{
|
|
return std::get<1>(i);
|
|
}
|
|
|
|
//
|
|
// To collapse pairs of iterators down to a single type
|
|
// typed by an object with iterator typedefs.
|
|
//
|
|
|
|
template<class T>
|
|
using iterators = std::pair<typename T::iterator, typename T::iterator>;
|
|
|
|
template<class T>
|
|
using const_iterators = std::pair<typename T::const_iterator, typename T::const_iterator>;
|
|
|
|
template<class T>
|
|
typename T::iterator
|
|
begin(const iterators<T> &i)
|
|
{
|
|
return i.first;
|
|
}
|
|
|
|
template<class T>
|
|
typename T::iterator
|
|
end(const iterators<T> &i)
|
|
{
|
|
return i.second;
|
|
}
|
|
|
|
template<class T>
|
|
typename T::const_iterator
|
|
begin(const const_iterators<T> &ci)
|
|
{
|
|
return ci.first;
|
|
}
|
|
|
|
template<class T>
|
|
typename T::const_iterator
|
|
end(const const_iterators<T> &ci)
|
|
{
|
|
return ci.second;
|
|
}
|
|
|
|
|
|
//
|
|
// For objects using the pattern of adding their own instance to a container
|
|
// in their constructor, storing an iterator as a member, and then removing
|
|
// themselves using the iterator in their destructor. It is unsafe to do that.
|
|
// Use this instead.
|
|
//
|
|
template<class container,
|
|
class iterator = typename container::iterator>
|
|
struct unique_iterator
|
|
{
|
|
container *c;
|
|
iterator it;
|
|
|
|
unique_iterator(container &c, iterator it)
|
|
:c{&c}
|
|
,it{std::move(it)}
|
|
{}
|
|
|
|
unique_iterator()
|
|
:c{nullptr}
|
|
{}
|
|
|
|
unique_iterator(const unique_iterator &) = delete;
|
|
unique_iterator(unique_iterator &&o)
|
|
:c{std::move(o.c)}
|
|
,it{std::move(o.it)}
|
|
{
|
|
o.c = nullptr;
|
|
}
|
|
|
|
~unique_iterator() noexcept
|
|
{
|
|
if(c)
|
|
c->erase(it);
|
|
}
|
|
};
|
|
|
|
template<class container>
|
|
struct unique_const_iterator
|
|
:unique_iterator<container, typename container::const_iterator>
|
|
{
|
|
using iterator_type = typename container::const_iterator;
|
|
using unique_iterator<container, iterator_type>::unique_iterator;
|
|
};
|
|
|
|
|
|
//
|
|
// Get the index of a tuple element by address at runtime
|
|
//
|
|
template<class tuple>
|
|
size_t
|
|
indexof(tuple &t, const void *const &ptr)
|
|
{
|
|
size_t ret(0);
|
|
const auto closure([&ret, &ptr]
|
|
(auto &elem)
|
|
{
|
|
if(reinterpret_cast<const void *>(std::addressof(elem)) == ptr)
|
|
return false;
|
|
|
|
++ret;
|
|
return true;
|
|
});
|
|
|
|
if(unlikely(until(t, closure)))
|
|
throw std::out_of_range("no member of this tuple with that address");
|
|
|
|
return ret;
|
|
}
|
|
|
|
//
|
|
// Tuple layouts are not standard layouts; we can only do this at runtime
|
|
//
|
|
template<size_t index,
|
|
class tuple>
|
|
off_t
|
|
tuple_offset(const tuple &t)
|
|
{
|
|
return
|
|
{
|
|
reinterpret_cast<const uint8_t *>(std::addressof(std::get<index>(t))) -
|
|
reinterpret_cast<const uint8_t *>(std::addressof(t))
|
|
};
|
|
}
|
|
|
|
|
|
//
|
|
// Compile-time comparison of string literals
|
|
//
|
|
constexpr bool
|
|
_constexpr_equal(const char *a,
|
|
const char *b)
|
|
{
|
|
return *a == *b && (*a == '\0' || _constexpr_equal(a + 1, b + 1));
|
|
}
|
|
|
|
|
|
inline auto
|
|
operator!(const std::string &str)
|
|
{
|
|
return str.empty();
|
|
}
|
|
|
|
inline auto
|
|
operator!(const std::string_view &str)
|
|
{
|
|
return str.empty();
|
|
}
|
|
|
|
|
|
|
|
//
|
|
// Iterator based until() matching std::for_each except the function
|
|
// returns a bool to continue rather than void.
|
|
//
|
|
template<class it_a,
|
|
class it_b,
|
|
class boolean_function>
|
|
bool
|
|
until(it_a a,
|
|
const it_b &b,
|
|
boolean_function&& f)
|
|
{
|
|
for(; a != b; ++a)
|
|
if(!f(*a))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Convenience loop to test std::is* on a character sequence
|
|
template<int (&test)(int) = std::isprint>
|
|
ssize_t
|
|
ctype(const char *begin,
|
|
const char *const &end)
|
|
{
|
|
size_t i(0);
|
|
for(; begin != end; ++begin, ++i)
|
|
if(!test(static_cast<unsigned char>(*begin)))
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
template<class lockable>
|
|
struct unlock_guard
|
|
{
|
|
lockable &l;
|
|
|
|
unlock_guard(lockable &l)
|
|
:l{l}
|
|
{
|
|
l.unlock();
|
|
}
|
|
|
|
~unlock_guard() noexcept
|
|
{
|
|
l.lock();
|
|
}
|
|
};
|
|
|
|
|
|
struct is_zero
|
|
{
|
|
bool operator()(const size_t &value) const
|
|
{
|
|
return value == 0;
|
|
}
|
|
};
|
|
|
|
|
|
} // namespace util
|
|
} // namespace ircd
|