0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2025-01-09 22:36:00 +01:00
construct/ircd/json.cc

4898 lines
92 KiB
C++

// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2018 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma GCC visibility push(internal)
BOOST_FUSION_ADAPT_STRUCT
(
ircd::json::member,
( decltype(ircd::json::member::first), first )
( decltype(ircd::json::member::second), second )
)
#pragma GCC visibility pop
#pragma GCC visibility push(internal)
BOOST_FUSION_ADAPT_STRUCT
(
ircd::json::object::member,
( decltype(ircd::json::object::member::first), first )
( decltype(ircd::json::object::member::second), second )
)
#pragma GCC visibility pop
namespace ircd::json::parser
{
using namespace ircd::spirit;
template<class T = unused_type,
class... A>
struct [[clang::internal_linkage]] rule
:qi::rule<const char *, T, A...>
{
using qi::rule<const char *, T, A...>::rule;
};
const expr NUL { lit('\0') ,"nul" };
// insignificant whitespaces
const expr SP { lit('\x20') ,"space" };
const expr HT { lit('\x09') ,"horizontal tab" };
const expr CR { lit('\x0D') ,"carriage return" };
const expr LF { lit('\x0A') ,"line feed" };
// whitespace skipping
const expr WS { SP | HT | CR | LF ,"whitespace" };
const expr ws { *(WS) ,"whitespace monoid" };
const expr wsp { +(WS) ,"whitespace semigroup" };
// structural
const expr object_begin { lit('{') ,"object begin" };
const expr object_end { lit('}') ,"object end" };
const expr array_begin { lit('[') ,"array begin" };
const expr array_end { lit(']') ,"array end" };
const expr name_sep { lit(':') ,"name sep" };
const expr value_sep { lit(',') ,"value sep" };
const expr escape { lit('\\') ,"escape" };
const expr quote { lit('"') ,"quote" };
// literal
const expr lit_false { lit("false") ,"literal false" };
const expr lit_true { lit("true") ,"literal true" };
const expr lit_null { lit("null") ,"null" };
const expr boolean { lit_true | lit_false ,"boolean" };
const expr literal { lit_true | lit_false | lit_null ,"literal" };
// numerical
const expr number_int
{
(char_('1', '9') >> repeat(0,18)[char_('0', '9')]) | lit('0')
,"integer"
};
const expr number_frac
{
lit('.') >> repeat(1, 19)[char_('0', '9')] >> -char_('1', '9')
,"fraction"
};
const expr number_exp
{
(lit('e') | lit('E')) >> -(lit('+') | lit('-')) >> repeat(1, 4)[char_('0', '9')]
,"exponent"
};
const expr number
{
-lit('-') >> number_int >> -number_frac >> -number_exp
,"number"
};
const expr number_begin
{
char_('0', '9') | lit('-')
,"first character of number"
};
// string
const expr utf16_surrogate
{
qi::uint_parser
<
uint16_t, // 16 bit width
16U, // base-16 (hex)
4U, // minimum digits
4U // maximum digits
>{}
,"UTF-16 surrogate"
};
const expr unicode
{
lit('u') >> utf16_surrogate
,"escaped unicode"
};
const expr control
{
char_('\x00', '\x1F')
,"control character"
};
// characters that must be escaped
const expr escaped
{
quote | escape | control
,"escaped character"
};
// characters that should appear after an escaping solidus
const expr escaper
{
char_("btnfr0\"\\") | unicode
,"escaper"
};
// escapers supersetting the rule above with addl non-canonical chars
const expr escaper_nc
{
escaper | lit('/')
,"escaper"
};
const expr chars
{
//raw[*((char_ - escaped) | (escape >> escaper_nc))]
raw[*((~char_('\x00', '\x1F') - char_("\x22\x5C")) | (escape >> escaper_nc))]
,"characters"
};
// optimized string
template<class block_t>
static u64x2 string_content_block(const block_t, const block_t) noexcept;
const custom_parser<0> string_content;
const rule<string_view> string
{
//quote >> chars >> (!escape >> quote)
string_content
,"string"
};
// container
const rule<string_view> name
{
//string.alias()
string_content
,"name"
};
// recursion depth
[[noreturn]] static void throws_exceeded();
using recursive = unused_type (uint);
static _r1_type depth;
[[clang::internal_linkage]]
extern const rule<recursive> value;
const rule<recursive> member
{
name >> ws >> name_sep >> ws >> value(depth)
,"member"
};
const rule<recursive> object
{
(eps(depth < json::object::max_recursion_depth) | eps[throws_exceeded]) >>
object_begin >> -((ws >> member(depth)) % (ws >> value_sep)) >> ws >> object_end
,"object"
};
const rule<recursive> array
{
(eps(depth < json::array::max_recursion_depth) | eps[throws_exceeded]) >>
array_begin >> -((ws >> value(depth)) % (ws >> value_sep)) >> ws >> array_end
,"array"
};
// primary recursive rule
const rule<recursive> value
{
(&quote >> string)
| (&object_begin >> object(depth + 1))
| (&array_begin >> array(depth + 1))
| (&number_begin >> number)
| literal
,"value"
};
template<class gen,
class... attr>
static bool parse(const char *&start, const char *const &stop, gen&&, attr&&...);
template<class gen,
class... attr>
static bool parse(const char *const &start, const char *const &stop, gen&&, attr&&...);
}
namespace ircd::json::printer
{
using namespace ircd::spirit;
template<class T = unused_type,
class... A>
struct [[clang::internal_linkage]] rule
:karma::rule<char *, T, A...>
{
using karma::rule<char *, T, A...>::rule;
};
const expr NUL { lit('\0') ,"nul" };
// insignificant whitespaces
const expr SP { lit('\x20') ,"space" };
const expr HT { lit('\x09') ,"horizontal tab" };
const expr CR { lit('\x0D') ,"carriage return" };
const expr LF { lit('\x0A') ,"line feed" };
// whitespace skipping
const expr WS { SP | HT | CR | LF ,"whitespace" };
const expr ws { *(WS) ,"whitespace monoid" };
const expr wsp { +(WS) ,"whitespace semigroup" };
// structural
const expr object_begin { lit('{') ,"object begin" };
const expr object_end { lit('}') ,"object end" };
const expr array_begin { lit('[') ,"array begin" };
const expr array_end { lit(']') ,"array end" };
const expr name_sep { lit(':') ,"name separator" };
const expr value_sep { lit(',') ,"value separator" };
const expr quote { lit('"') ,"quote" };
const expr escape { lit('\\') ,"escape" };
// literal
const rule<string_view> lit_true { karma::string("true") ,"literal true" };
const rule<string_view> lit_false { karma::string("false") ,"literal false" };
const rule<string_view> lit_null { karma::string("null") ,"literal null" };
const rule<string_view> boolean { lit_true | lit_false ,"boolean" };
const rule<string_view> literal { lit_true | lit_false | lit_null ,"literal" };
// number
const rule<string_view> number
{
double_
,"number"
};
// string
using string_context = boost::spirit::context
<
fusion::cons<const string_view &>, fusion::vector<>
>;
static void string_generate(unused_type, string_context &, bool &) noexcept;
const rule<string_view()> string
{
quote << eps[std::bind(&printer::string_generate, ph::_1, ph::_2, ph::_3)] << quote
,"string"
};
const rule<string_view()> name
{
string.alias()
,"name"
};
// primary recursive rule
[[clang::internal_linkage]]
extern const rule<string_view> value;
const rule<json::object::member> member
{
name << name_sep << value
,"member"
};
const rule<json::object> object
{
object_begin << -(member % value_sep) << object_end
,"object"
};
const rule<json::array> array
{
array_begin << -(value % value_sep) << array_end
,"array"
};
const rule<string_view> value
{
(&object << object)
| (&array << array)
| (&literal << literal)
| (&number << number)
| string
};
template<class it_a,
class it_b,
class closure>
static void list_protocol(mutable_buffer &, it_a begin, const it_b &end, closure&&);
template<class gen,
class... attr>
static void print(mutable_buffer &out, gen&&, attr&&...);
}
decltype(ircd::json::stats)
ircd::json::stats;
template<class gen,
class... attr>
[[gnu::always_inline]]
inline void
ircd::json::printer::print(mutable_buffer &out,
gen&& g,
attr&&... a)
{
#ifdef IRCD_JSON_PRINTER_STATS
++stats.print_calls;
const prof::scope_cycles timer{stats.print_cycles};
#endif
if(unlikely(!ircd::generate(out, std::forward<gen>(g), std::forward<attr>(a)...)))
throw print_error
{
"Failed to generate JSON"
};
}
template<class it_a,
class it_b,
class closure>
[[gnu::always_inline]]
inline void
ircd::json::printer::list_protocol(mutable_buffer &out,
it_a it,
const it_b &end,
closure&& lambda)
{
if(likely(it != end))
{
lambda(out, *it);
for(++it; it != end; ++it)
{
print(out, value_sep);
lambda(out, *it);
}
}
}
inline void
ircd::json::printer::string_generate(unused_type,
string_context &g,
bool &ret)
noexcept
{
assume(ret == true);
assert(generator_state);
auto &state
{
*generator_state
};
const string_view &input
{
attr_at<0>(g)
};
const size_t output_length
{
json::string::stringify(state.out, input)
};
const size_t consumed
{
std::min(output_length, size(state.out))
};
state.consumed += consume(state.out, consumed);
state.generated += output_length;
ret = state.generated == state.consumed;
}
template<class gen,
class... attr>
[[gnu::always_inline]]
inline bool
ircd::json::parser::parse(const char *const &start_,
const char *const &stop,
gen&& g,
attr&&...a)
{
const char *start(start_);
return parser::parse(start, stop, std::forward<gen>(g), std::forward<attr>(a)...);
}
template<class gen,
class... attr>
[[gnu::always_inline]]
inline bool
ircd::json::parser::parse(const char *&start,
const char *const &stop,
gen&& g,
attr&&...a)
{
#ifdef IRCD_JSON_PARSER_STATS
++stats.parse_calls;
const prof::scope_cycles timer{stats.parse_cycles};
#endif
return ircd::parse<parse_error>(start, stop, std::forward<gen>(g), std::forward<attr>(a)...);
}
/// The input covers everything from the alleged start of our alleged string
/// to the end of whatever the user provided. Returns true if successful and
/// the result string_view is set in the context attribute; the iterator is
/// advanced.
template<>
template<class iterator,
class context,
class skipper,
class attr>
inline bool
ircd::json::parser::custom_parser<0>::parse(iterator &__restrict__ start,
const iterator &__restrict__ stop,
context &g,
const skipper &,
attr &)
const
{
// Clang scales between 128bit and 256bit systems when we use the 256 bit
// type (note that performance even improves on some 128 bit systems). GCC
// falls back to scalar instead, so we have to case 128bit systems on GCC.
#if defined(__AVX__) || defined(__clang__)
using block_t = u8x32;
#else
using block_t = u8x16;
#endif
assert(start <= stop);
const size_t input_max
{
size_t(std::distance(start, stop))
};
// The input is a priori invalid if the length is not greater than "" or
// the first character is not quote.
const bool input_valid
{
input_max >= 2 && start[0] == '"'
};
// When the input is valid subtract one for the new max length. Otherwise
// we mask this length to zero to void the remainder of this frame.
const u64x2 max
{
0, (input_max - 1) & boolmask<u64>(input_valid)
};
static const auto each_block
{
json::parser::string_content_block<block_t>
};
const auto count
{
simd::for_each<block_t>(start + 1, max, each_block)
};
const bool ok
{
count[0] == 1
};
// Set the result in the context attribute. This covers the string content
// without surrounding quotes.
attr_at<0>(g) = string_view
{
start + ok, count[1] & boolmask<u64>(ok)
};
// Advance the iterator the length of the full string including quotes
// iff this parser was successful.
start += (1 + count[1] + 1) & boolmask<u64>(ok);
return ok;
}
template<class block_t>
inline ircd::u64x2
ircd::json::parser::string_content_block(const block_t block,
const block_t block_mask)
noexcept
{
assert(block_mask[0] == 0xff);
const block_t is_esc
(
block == '\\'
);
const block_t is_quote
(
block == '"'
);
const block_t is_ctrl
(
block < 0x20
);
const block_t is_special
{
is_esc | is_quote | is_ctrl
};
if(likely(simd::all(~is_special)))
return u64x2
{
0, sizeof(block)
};
const u64 regular_prefix_count
{
simd::lzcnt(is_special | ~block_mask) / 8
};
if(likely(regular_prefix_count))
return u64x2
{
0, regular_prefix_count
};
const u64 err
{
popmask<u64>(is_quote[0])
| boolmask<u64>(is_ctrl[0])
| boolmask<u64>(is_esc[0] & ~block_mask[1])
};
const u64 add
{
1UL + popmask<u64>(is_esc[0] & (is_quote[1] | is_esc[1]) & block_mask[1])
};
return u64x2
{
err, add & boolmask<u64>(err == 0)
};
}
[[gnu::noinline, gnu::cold, noreturn]]
void
ircd::json::parser::throws_exceeded()
{
throw recursion_limit
{
"Maximum recursion depth exceeded"
};
}
///////////////////////////////////////////////////////////////////////////////
//
// json/tool.h
//
namespace ircd::json
{
static thread_local std::array<member, iov::max_size> member_buffer;
static thread_local std::array<object::member, iov::max_size> object_member_buffer;
static thread_local std::array<string_view, iov::max_size> value_buffer;
}
ircd::json::strung
ircd::json::replace(const object &s,
const json::members &r)
{
static const auto in
{
[](const json::members &r, const object::member &m)
{
return std::any_of(begin(r), end(r), [&m]
(const json::member &r)
{
return string_view{r.first} == m.first;
});
}
};
if(unlikely(!empty(s) && type(s) != type::OBJECT))
throw type_error
{
"Cannot replace member into JSON of type %s",
reflect(type(s))
};
size_t mctr {0};
auto &mb(member_buffer);
for(const object::member &m : object{s})
if(!in(r, m))
mb.at(mctr++) = member{m};
for(const json::member &m : r)
mb.at(mctr++) = m;
return strung
{
mb.data(), mb.data() + mctr
};
}
ircd::json::strung
ircd::json::replace(const object &s,
const json::member &m_)
{
if(unlikely(!empty(s) && type(s) != type::OBJECT))
throw type_error
{
"Cannot replace member into JSON of type %s",
reflect(type(s))
};
size_t mctr {0};
auto &mb(member_buffer);
for(const object::member &m : object{s})
if(m.first != string_view{m_.first})
mb.at(mctr++) = member{m};
mb.at(mctr++) = m_;
return strung
{
mb.data(), mb.data() + mctr
};
}
ircd::json::strung
ircd::json::insert(const object &s,
const json::member &m)
{
if(unlikely(!empty(s) && type(s) != type::OBJECT))
throw type_error
{
"Cannot insert member into JSON of type %s",
reflect(type(s))
};
size_t mctr {0};
auto &mb(member_buffer);
for(const object::member &m : object{s})
mb.at(mctr++) = member{m};
mb.at(mctr++) = m;
return strung
{
mb.data(), mb.data() + mctr
};
}
ircd::json::strung
ircd::json::remove(const object &s,
const string_view &key)
{
if(empty(s))
return s;
if(unlikely(type(s) != type::OBJECT))
throw type_error
{
"Cannot remove object member '%s' from JSON of type %s",
key,
reflect(type(s))
};
size_t mctr {0};
auto &mb(object_member_buffer);
for(const object::member &m : object{s})
if(m.first != key)
mb.at(mctr++) = m;
return strung
{
mb.data(), mb.data() + mctr
};
}
ircd::json::strung
ircd::json::remove(const object &s,
const size_t &idx)
{
if(empty(s))
return s;
if(unlikely(type(s) != type::ARRAY))
throw type_error
{
"Cannot remove array element [%zu] from JSON of type %s",
idx,
reflect(type(s))
};
size_t mctr{0}, i{0};
auto &mb(value_buffer);
for(const string_view &m : array{s})
if(i++ != idx)
mb.at(mctr++) = m;
return strung
{
mb.data(), mb.data() + mctr
};
}
void
ircd::json::merge(stack::object &out,
const vector &v)
{
struct val
{
//TODO: optimize with std::pmr::monotonic_buffer_resource et al
std::map<string_view, val, std::less<>> o;
std::vector<string_view> a;
string_view v;
void _merge_object(const json::object &o)
{
for(const auto &m : o)
{
val &v(this->o[m.first]);
v.merge(m.second);
}
}
void _merge_array(const json::array &a)
{
for(const auto &v : a)
this->a.emplace_back(v);
}
void merge(const string_view &v)
{
switch(json::type(v))
{
case json::OBJECT: _merge_object(v); break;
case json::ARRAY: _merge_array(v); break;
default: this->v = v; break;
}
}
void _compose_object(json::stack &out, json::stack::object &object) const
{
for(const auto &m : o)
{
json::stack::member member{object, m.first};
m.second.compose(out);
}
}
void _compose_object(json::stack &out, json::stack::member &member) const
{
json::stack::object object{member};
_compose_object(out, object);
}
void _compose_object(json::stack &out) const
{
json::stack::chase c{out, true};
if(c.m)
_compose_object(out, *c.m);
else if(c.o)
_compose_object(out, *c.o);
}
void _compose_array(json::stack &out) const
{
json::stack::array array{out};
for(const auto &v : a)
array.append(v);
}
void _compose_value(json::stack &out) const
{
json::stack::chase c{out, true};
if(c.a)
c.a->append(v);
else if(c.m)
c.m->append(v);
else
assert(0);
}
void compose(json::stack &out) const
{
if(!o.empty())
_compose_object(out);
else if(!a.empty())
_compose_array(out);
else if(!v.empty())
_compose_value(out);
}
val() = default;
val(const string_view &v)
{
merge(v);
}
};
val top;
for(const auto &o : v)
top.merge(o);
assert(out.s);
top.compose(*out.s);
}
ircd::json::strung
ircd::json::prepend(const array &s,
const string_view &val)
{
if(unlikely(!empty(s) && type(s) != type::ARRAY))
throw type_error
{
"Cannot prepend value into JSON of type %s",
reflect(type(s))
};
size_t ctr{0}, i{0};
auto &b(value_buffer);
b.at(ctr++) = val;
for(const string_view &v : s)
b.at(ctr++) = v;
return strung
{
b.data(), b.data() + ctr
};
}
ircd::json::strung
ircd::json::append(const array &s,
const string_view &val)
{
if(unlikely(!empty(s) && type(s) != type::ARRAY))
throw type_error
{
"Cannot append value into JSON of type %s",
reflect(type(s))
};
size_t ctr{0}, i{0};
auto &b(value_buffer);
for(const string_view &v : s)
b.at(ctr++) = v;
b.at(ctr++) = val;
return strung
{
b.data(), b.data() + ctr
};
}
///////////////////////////////////////////////////////////////////////////////
//
// json/stack.h
//
ircd::json::stack::stack(const mutable_buffer &buf,
flush_callback flusher,
const size_t &hiwat,
const size_t &lowat)
:buf{buf}
,flusher{std::move(flusher)}
,hiwat{hiwat}
,lowat{lowat}
{
}
ircd::json::stack::stack(stack &&other)
noexcept
:buf{std::move(other.buf)}
,flusher{std::move(other.flusher)}
,eptr{std::move(other.eptr)}
,cp{std::move(other.cp)}
,appended{std::move(other.appended)}
,flushed{std::move(other.flushed)}
,level{std::move(other.level)}
,hiwat{std::move(other.hiwat)}
,lowat{std::move(other.lowat)}
,co{std::move(other.co)}
,ca{std::move(other.ca)}
{
other.cp = nullptr;
other.co = nullptr;
other.ca = nullptr;
if(cp)
{
assert(cp->s == &other);
cp->s = this;
}
if(co)
{
assert(co->s == &other);
co->s = this;
}
if(ca)
{
assert(ca->s == &other);
ca->s = this;
}
}
ircd::json::stack::~stack()
noexcept
{
assert(closed());
if(buf.consumed())
flush(true);
assert(clean() || done());
}
void
ircd::json::stack::append(const char &c)
noexcept
{
append(1, [&c]
(const mutable_buffer &buf)
noexcept
{
buf[0] = c;
return 1;
});
}
void
ircd::json::stack::append(const string_view &s)
noexcept
{
append(s.size(), [&s]
(const mutable_buffer &buf)
noexcept
{
assert(ircd::size(buf) >= s.size());
return ircd::copy(buf, s);
});
}
void
ircd::json::stack::append(const size_t expect,
const window_buffer::closure &closure)
noexcept try
{
if(!expect || failed())
return;
// Minimum bytes we keep available all times to allow the JSON to close
// correctly without complication on the user's stack unwind; hinted by
// the recursion level.
const size_t buf_min
{
level + 8
};
// Calculated buffer bytes required.
const size_t buf_req
{
expect + buf_min
};
// Since all appends are atomic, we need to have buffer available to print
// the JSON without having to flush while doing so. If we're low on buffer,
// this branch triggers a flush. Afterward, if there is still not enough
// buffer that's an error so the user needs to flush enough when called.
if(buf_req > buf.remaining())
{
if(unlikely(!flusher))
throw print_panic
{
"Insufficient buffer. I need %zu more bytes; you only have %zu left (of %zu).",
buf_req,
buf.remaining(),
size(buf.base)
};
if(!flush(true))
return;
if(unlikely(buf_req > buf.remaining()))
throw print_error
{
"Insufficient flush. I still need %zu more bytes to buffer.",
buf_req - buf.remaining(),
};
}
// Print the JSON to the buffer and advance the window pointer
const const_buffer appended
{
buf([&expect, &closure](const mutable_buffer &buf)
{
const size_t appended
{
closure(buf)
};
assert(appended <= size(buf));
assert(appended == expect);
return const_buffer
{
data(buf), appended
};
})
};
this->appended += expect;
assert(size(appended) >= expect);
assert(this->appended >= size(appended));
// Conditions to courtesy flush after a sufficiently large dump; when
// there's no buffer remaining we'll inevitably have to flush; the call
// is force=true so the flusher must accomplish something.
if(!buf.remaining())
flush(true);
// The high-watermark feature triggers a flush when the buffer has exceeded
// the threshold from accumulated writes; force is not set to true.
else if(buf.consumed() >= hiwat)
flush();
}
catch(...)
{
assert(!this->eptr);
this->eptr = std::current_exception();
}
void
ircd::json::stack::rethrow_exception()
{
if(unlikely(eptr))
std::rethrow_exception(eptr);
}
bool
ircd::json::stack::flush(const bool force)
noexcept try
{
if(!flusher)
return false;
if(unlikely(failed()))
return false;
if(!force && buf.consumed() < lowat)
return false;
if(!force && cp)
return false;
if(unlikely(cp))
{
const size_t invalidated
{
invalidate_checkpoints()
};
if(invalidated)
log::dwarning
{
"Flushing json::stack(%p) bytes:%zu level:%zu checkpoints:%zu",
this,
size(buf.completed()),
level,
invalidated,
};
}
// The user returns the portion of the buffer they were able to flush
// rather than forcing them to wait on their sink to flush the whole
// thing, they can continue with us for a little while more.
const const_buffer flushed
{
flusher(buf.completed())
};
assert(data(flushed) == data(buf.completed())); // Can only flush front sry
this->flushed += size(flushed);
buf.shift(size(flushed));
return true;
}
catch(...)
{
assert(!this->eptr);
this->eptr = std::current_exception();
return false;
}
size_t
ircd::json::stack::invalidate_checkpoints()
noexcept
{
size_t ret(0);
for(auto cp(this->cp); cp; cp = cp->pc)
{
ret += cp->s != nullptr;
cp->s = nullptr;
}
this->cp = nullptr;
return ret;
}
void
ircd::json::stack::clear()
noexcept
{
const size_t rewound
{
rewind(buf.consumed())
};
this->eptr = std::exception_ptr{};
}
size_t
ircd::json::stack::rewind(const size_t bytes)
noexcept
{
const size_t before
{
buf.consumed()
};
assert(appended >= before);
const size_t &amount
{
std::min(bytes, before)
};
assert(appended >= amount);
const size_t after
{
size(buf.rewind(amount))
};
assert(before >= after);
assert(before - after == amount);
appended -= amount;
assert(appended >= after);
return amount;
}
//
// object
//
ircd::json::stack::object &
ircd::json::stack::object::top(stack &s)
{
const chase t{s, true};
if(unlikely(!t.o))
throw type_error
{
"Top of stack is not of type object. (o:%b a:%b m:%b)",
bool(t.o),
bool(t.a),
bool(t.m),
};
return *t.o;
}
const ircd::json::stack::object &
ircd::json::stack::object::top(const stack &s)
{
const const_chase t{s, true};
if(unlikely(!t.o))
throw type_error
{
"Top of stack is not of type object. (o:%b a:%b m:%b)",
bool(t.o),
bool(t.a),
bool(t.m),
};
return *t.o;
}
ircd::json::stack::object::object(object &&other)
noexcept
:m{std::move(other.m)}
,s{std::move(other.s)}
,pm{std::move(other.pm)}
,pa{std::move(other.pa)}
,cm{std::move(other.cm)}
,mc{std::move(other.mc)}
{
other.s = nullptr;
if(s)
{
assert(s->co == &other);
s->co = this;
}
if(pm)
{
assert(pm->co == &other);
pm->co = this;
}
else if(pa)
{
assert(pa->co == &other);
pa->co = this;
}
if(cm)
{
assert(cm->po == &other);
cm->po = this;
}
}
ircd::json::stack::object::object(stack &s)
:s{&s}
{
const chase t{s, true};
if(t.a)
{
new (this) object{*t.a};
return;
}
else if(t.m)
{
new (this) object{*t.m};
return;
}
else if(t.o)
{
assert(0);
return;
}
assert(s.clean());
s.co = this;
s.append('{');
s.level++;
}
ircd::json::stack::object::object(stack &s,
const string_view &name)
:object{object::top(s), name}
{
}
ircd::json::stack::object::object(object &po,
const string_view &name)
:m{po, name}
,s{po.s}
,pm{&m}
{
assert(s->opened());
s->rethrow_exception();
assert(pm->co == nullptr);
assert(pm->ca == nullptr);
pm->co = this;
s->append('{');
pm->vc |= true;
s->level++;
}
ircd::json::stack::object::object(member &pm)
:s{pm.s}
,pm{&pm}
{
assert(s->opened());
s->rethrow_exception();
assert(pm.co == nullptr);
assert(pm.ca == nullptr);
pm.co = this;
s->append('{');
pm.vc |= true;
s->level++;
}
ircd::json::stack::object::object(array &pa)
:s{pa.s}
,pa{&pa}
{
assert(s->opened());
s->rethrow_exception();
assert(pa.co == nullptr);
assert(pa.ca == nullptr);
pa.co = this;
if(pa.vc)
s->append(',');
s->append('{');
s->level++;
}
void
ircd::json::stack::object::append(const json::object &object)
{
for(const auto &kv : object)
json::stack::member
{
*this, kv.first, kv.second
};
}
#if defined(__GNUC__) && !defined(__clang__)
__attribute__((optimize("no-lifetime-dse")))
#endif
ircd::json::stack::object::~object()
noexcept
{
if(!s)
{
assert(!m.s);
return; // std::move()'ed away
}
const unwind _{[this]
{
// Allows ~dtor to be called to close the JSON manually
s = nullptr;
}};
assert(cm == nullptr);
s->append('}');
s->level--;
if(pm) // branch taken if member of object
{
assert(pa == nullptr);
assert(pm->ca == nullptr);
assert(pm->co == this);
pm->co = nullptr;
return;
}
if(pa) // branch taken if value in array
{
assert(pm == nullptr);
assert(pa->ca == nullptr);
assert(pa->co == this);
pa->vc++;
pa->co = nullptr;
return;
}
// branch taken if top of stack::
assert(s->co == this);
assert(s->ca == nullptr);
assert(pm == nullptr && pa == nullptr);
s->co = nullptr;
assert(s->closed());
}
//
// array
//
ircd::json::stack::array &
ircd::json::stack::array::top(stack &s)
{
const chase t{s, true};
if(unlikely(!t.a))
throw type_error
{
"Top of stack is not of type array. (o:%b a:%b m:%b)",
bool(t.o),
bool(t.a),
bool(t.m),
};
return *t.a;
}
const ircd::json::stack::array &
ircd::json::stack::array::top(const stack &s)
{
const const_chase t{s, true};
if(unlikely(!t.a))
throw type_error
{
"Top of stack is not of type array. (o:%b a:%b m:%b)",
bool(t.o),
bool(t.a),
bool(t.m),
};
return *t.a;
}
ircd::json::stack::array::array(array &&other)
noexcept
:m{std::move(other.m)}
,s{std::move(other.s)}
,pm{std::move(other.pm)}
,pa{std::move(other.pa)}
,co{std::move(other.co)}
,ca{std::move(other.ca)}
,vc{std::move(other.vc)}
{
other.s = nullptr;
if(s)
{
assert(s->ca == &other);
s->ca = this;
}
if(pm)
{
assert(pm->ca == &other);
pm->ca = this;
}
else if(pa)
{
assert(pa->ca == &other);
pa->ca = this;
}
if(co)
{
assert(co->pa == &other);
co->pa = this;
}
else if(ca)
{
assert(ca->pa == &other);
ca->pa = this;
}
}
ircd::json::stack::array::array(stack &s)
:s{&s}
{
const chase t{s, true};
if(t.a)
{
new (this) array{*t.a};
return;
}
else if(t.m)
{
new (this) array{*t.m};
return;
}
else if(t.o)
{
assert(0);
return;
}
assert(s.clean());
s.ca = this;
s.append('[');
s.level++;
}
ircd::json::stack::array::array(stack &s,
const string_view &name)
:array{object::top(s), name}
{
}
ircd::json::stack::array::array(object &po,
const string_view &name)
:m{po, name}
,s{po.s}
,pm{&m}
{
assert(s->opened());
s->rethrow_exception();
assert(pm->co == nullptr);
assert(pm->ca == nullptr);
pm->ca = this;
s->append('[');
pm->vc |= true;
s->level++;
}
ircd::json::stack::array::array(array &pa)
:s{pa.s}
,pa{&pa}
{
assert(s->opened());
s->rethrow_exception();
assert(pa.co == nullptr);
assert(pa.ca == nullptr);
pa.ca = this;
if(pa.vc)
s->append(',');
s->append('[');
s->level++;
}
ircd::json::stack::array::array(member &pm)
:s{pm.s}
,pm{&pm}
{
assert(s->opened());
s->rethrow_exception();
assert(pm.co == nullptr);
assert(pm.ca == nullptr);
pm.ca = this;
s->append('[');
pm.vc |= true;
s->level++;
}
#if defined(__GNUC__) && !defined(__clang__)
__attribute__((optimize("no-lifetime-dse")))
#endif
ircd::json::stack::array::~array()
noexcept
{
if(!s)
{
assert(!m.s);
return; // std::move()'ed away
}
const unwind _{[this]
{
// Allows ~dtor to be called to close the JSON manually
s = nullptr;
}};
assert(co == nullptr);
assert(ca == nullptr);
s->append(']');
s->level--;
if(pm) // branch taken if member of object
{
assert(pa == nullptr);
assert(pm->ca == this);
assert(pm->co == nullptr);
pm->ca = nullptr;
return;
}
if(pa) // branch taken if value in array
{
assert(pm == nullptr);
assert(pa->ca == this);
assert(pa->co == nullptr);
pa->vc++;
pa->ca = nullptr;
return;
}
// branch taken if top of stack::
assert(s->ca == this);
assert(s->co == nullptr);
assert(pm == nullptr && pa == nullptr);
s->ca = nullptr;
assert(s->closed());
}
void
ircd::json::stack::array::append(const json::value &value)
{
assert(s);
_pre_append();
const unwind_nominal post{[this]
{
_post_append();
}};
s->append(serialized(value), [&value]
(mutable_buffer buf)
{
return size(stringify(buf, value));
});
}
void
ircd::json::stack::array::_pre_append()
{
if(vc)
s->append(',');
s->rethrow_exception();
}
//
// member
//
ircd::json::stack::member &
ircd::json::stack::member::top(stack &s)
{
const chase t{s, true};
if(unlikely(!t.m))
throw type_error
{
"Top of stack is not of type member. (o:%b a:%b m:%b)",
bool(t.o),
bool(t.a),
bool(t.m),
};
return *t.m;
}
const ircd::json::stack::member &
ircd::json::stack::member::top(const stack &s)
{
const const_chase t{s, true};
if(unlikely(!t.m))
throw type_error
{
"Top of stack is not of type member. (o:%b a:%b m:%b)",
bool(t.o),
bool(t.a),
bool(t.m),
};
return *t.m;
}
ircd::json::stack::member::member(member &&other)
noexcept
:s{std::move(other.s)}
,po{std::move(other.po)}
,name{std::move(other.name)}
,co{std::move(other.co)}
,ca{std::move(other.ca)}
,vc{std::move(other.vc)}
{
other.s = nullptr;
if(po)
{
assert(po->cm == &other);
po->cm = this;
}
if(co)
{
assert(co->pm == &other);
co->pm = this;
}
else if(ca)
{
assert(ca->pm == &other);
ca->pm = this;
}
}
ircd::json::stack::member::member(stack &s,
const string_view &name)
:member
{
object::top(s), name
}
{
}
namespace ircd::json::printer
{
const rule<string_view> member_name
{
name << name_sep
};
}
ircd::json::stack::member::member(object &po,
const string_view &name)
:s{po.s}
,po{&po}
,name{name}
{
assert(s->opened());
s->rethrow_exception();
assert(po.cm == nullptr);
po.cm = this;
if(po.mc)
s->append(',');
char tmp[512];
mutable_buffer buf{tmp};
printer::print(buf, printer::member_name, name);
assert(data(buf) >= tmp);
s->append(string_view{tmp, size_t(data(buf) - tmp)});
}
ircd::json::stack::member::member(stack &s,
const string_view &name,
const json::value &value)
:member
{
object::top(s), name, value
}
{
}
ircd::json::stack::member::member(object &po,
const string_view &name,
const json::value &value)
:member{po, name}
{
append(value);
}
#if defined(__GNUC__) && !defined(__clang__)
__attribute__((optimize("no-lifetime-dse")))
#endif
ircd::json::stack::member::~member()
noexcept
{
if(!s)
return; // std::move()'ed away
const unwind _{[this]
{
// Allows ~dtor to be called to close the JSON manually
s = nullptr;
}};
if(!vc)
s->append("null");
assert(co == nullptr);
assert(ca == nullptr);
assert(po);
assert(po->cm == this);
po->mc++;
po->cm = nullptr;
}
void
ircd::json::stack::member::append(const json::value &value)
{
assert(s);
_pre_append();
const unwind_nominal post{[this]
{
_post_append();
}};
s->append(serialized(value), [&value]
(mutable_buffer buf)
{
return size(stringify(buf, value));
});
}
//
// stack::checkpoint
//
ircd::json::stack::checkpoint::checkpoint(stack &s,
const bool committed,
const bool exception_rollback)
:s{&s}
,pc{s.cp}
,point
{
s.buf.consumed()
}
,vc{[&s]
{
const chase top
{
s, true
};
return
top.o?
top.o->mc:
top.a?
top.a->vc:
top.m?
top.m->vc:
0;
}()}
,committed
{
committed
}
,exception_rollback
{
exception_rollback
}
{
s.cp = this;
}
ircd::json::stack::checkpoint::~checkpoint()
noexcept
{
if(std::uncaught_exceptions() && exception_rollback)
committing(false);
if(!committing())
rollback();
if(!s)
return;
assert(s->cp == this);
s->cp = pc;
// Certain uses of json::stack in loops might create and destroy
// checkpoints without any appends between their lifetimes. This results
// in the buffer filling up and inevitably force-flushing under an unlucky
// checkpoint (which is bad). This non-forced flush here prevents that once
// the buffer reaches the low-watermark and there is no parent checkpoint.
if(committing())
s->flush();
}
bool
ircd::json::stack::checkpoint::rollback()
{
if(!s)
{
log::dwarning
{
"Attempting rollback of invalidated checkpoint(%p).",
this,
};
return false;
}
assert(point <= s->buf.consumed());
s->rewind(s->buf.consumed() - point);
const chase top
{
*s, true
};
if(top.o)
top.o->mc = vc;
else if(top.a)
top.a->vc = vc;
else if(top.m)
top.m->vc = vc;
committing(true);
return true;
}
//
// chase
//
namespace ircd::json
{
template<class chase> static bool _next(chase &) noexcept;
template<class chase> static bool _prev(chase &) noexcept;
}
ircd::json::stack::chase::chase(stack &s,
const bool prechase)
noexcept
:a{s.ca}
,o{s.co}
,m{nullptr}
{
if(prechase)
while(next());
}
bool
ircd::json::stack::chase::next()
noexcept
{
return _next(*this);
}
bool
ircd::json::stack::chase::prev()
noexcept
{
return _prev(*this);
}
//
// const_chase
//
ircd::json::stack::const_chase::const_chase(const stack &s,
const bool prechase)
noexcept
:a{s.ca}
,o{s.co}
,m{nullptr}
{
if(prechase)
while(next());
}
bool
ircd::json::stack::const_chase::next()
noexcept
{
return _next(*this);
}
bool
ircd::json::stack::const_chase::prev()
noexcept
{
return _prev(*this);
}
//
// chase internal
//
template<class chase>
bool
ircd::json::_next(chase &c)
noexcept
{
if(c.o)
{
if(!c.o->cm)
return false;
c.m = c.o->cm;
c.a = nullptr;
c.o = nullptr;
return true;
}
else if(c.a)
{
if(!c.a->co && !c.a->ca)
return false;
c.m = nullptr;
c.o = c.a->co;
c.a = c.a->ca;
return true;
}
else if(c.m)
{
if(!c.m->co && !c.m->ca)
return false;
c.o = c.m->co;
c.a = c.m->ca;
c.m = nullptr;
return true;
}
else return false;
}
template<class chase>
bool
ircd::json::_prev(chase &c)
noexcept
{
if(c.o)
{
if(!c.o->pa && !c.o->pm)
return false;
c.a = c.o->pa;
c.m = c.o->pm;
c.o = nullptr;
return true;
}
else if(c.a)
{
if(!c.a->pa && !c.a->pm)
return false;
c.m = c.a->pm;
c.a = c.a->pa;
c.o = nullptr;
return true;
}
else if(c.m)
{
assert(c.m->po);
c.o = c.m->po;
c.a = nullptr;
c.m = nullptr;
return true;
}
else return false;
}
///////////////////////////////////////////////////////////////////////////////
//
// json/iov.h
//
namespace ircd::json
{
static thread_local const member *member_pointer_buffer[iov::max_size];
}
std::ostream &
ircd::json::operator<<(std::ostream &s, const iov &iov)
{
s << json::strung(iov);
return s;
}
ircd::string_view
ircd::json::stringify(mutable_buffer &buf,
const iov &iov)
{
static const auto addressof //TODO: XXX
{
[](const member &m) noexcept
{
return std::addressof(m);
}
};
static const auto less_member
{
[](const member *const &a, const member *const &b) noexcept
{
return *a < *b;
}
};
static const auto print_member
{
[](mutable_buffer &buf, const member *const &m)
{
printer::print(buf, printer::name << printer::name_sep, m->first);
stringify(buf, m->second);
}
};
const ctx::critical_assertion ca;
auto &m(member_pointer_buffer);
if(unlikely(size_t(iov.size()) > iov.max_size))
throw iov::oversize
{
"IOV has %zd members but maximum is %zu",
iov.size(),
iov.max_size
};
const auto start(begin(buf));
std::transform(std::begin(iov), std::end(iov), m, addressof);
std::sort(m, m + iov.size(), less_member);
printer::print(buf, printer::object_begin);
printer::list_protocol(buf, m, m + iov.size(), print_member);
printer::print(buf, printer::object_end);
const string_view ret
{
start, begin(buf)
};
assert(serialized(iov) == size(ret));
return ret;
}
size_t
ircd::json::serialized(const iov &iov)
{
const size_t ret
{
1U + iov.empty()
};
return std::accumulate(std::begin(iov), std::end(iov), ret, []
(auto ret, const auto &member)
{
return ret += serialized(member) + 1;
});
}
ircd::json::value &
ircd::json::iov::at(const string_view &key)
{
const auto it
{
std::find_if(std::begin(*this), std::end(*this), [&key]
(const auto &member)
{
return string_view{member.first} == key;
})
};
if(it == std::end(*this))
throw not_found
{
"key '%s' not found", key
};
return it->second;
}
const ircd::json::value &
ircd::json::iov::at(const string_view &key)
const
{
const auto it
{
std::find_if(std::begin(*this), std::end(*this), [&key]
(const auto &member)
{
return string_view{member.first} == key;
})
};
if(it == std::end(*this))
throw not_found
{
"key '%s' not found", key
};
return it->second;
}
bool
ircd::json::iov::has(const string_view &key)
const
{
return std::any_of(std::begin(*this), std::end(*this), [&key]
(const auto &member)
{
return string_view{member.first} == key;
});
}
ircd::json::iov::push::push(iov &iov,
member member)
:node
{
iov, std::move(member)
}
{
}
ircd::json::iov::push::push(iov &iov,
const bool &b,
const conditional_member &cp)
:node
{
b?
&iov:
nullptr,
b?
member{cp.first, cp.second()}:
member{}
}
{
}
ircd::json::iov::add::add(iov &iov,
member member)
:node
{
iov, [&iov, &member]
{
if(iov.has(member.first))
throw exists
{
"member '%s' already exists",
string_view{member.first}
};
return std::move(member);
}()
}
{
}
ircd::json::iov::add::add(iov &iov,
const bool &b,
const conditional_member &cp)
:node
{
b?
&iov:
nullptr,
[&iov, &b, &cp]
{
if(!b)
return member{};
if(iov.has(cp.first))
throw exists
{
"member '%s' already exists",
string_view{cp.first}
};
return member
{
cp.first, cp.second()
};
}()
}
{
}
ircd::json::iov::set::set(iov &iov,
member member)
:node
{
iov, [&iov, &member]
{
iov.remove_if([&member](const auto &existing)
{
return string_view{existing.first} == string_view{member.first};
});
return std::move(member);
}()
}
{
}
ircd::json::iov::set::set(iov &iov,
const bool &b,
const conditional_member &cp)
:node
{
b?
&iov:
nullptr,
[&iov, &b, &cp]
{
if(!b)
return member{};
iov.remove_if([&cp](const auto &existing)
{
return string_view{existing.first} == cp.first;
});
return member
{
cp.first, cp.second()
};
}()
}
{
}
ircd::json::iov::defaults::defaults(iov &iov,
member member)
:node
{
!iov.has(member.first)?
&iov:
nullptr,
std::move(member)
}
{
}
ircd::json::iov::defaults::defaults(iov &iov,
bool b,
const conditional_member &cp)
:node
{
[&iov, &b, &cp]() -> json::iov *
{
if(!b)
return nullptr;
if(!iov.has(cp.first))
return &iov;
b = false;
return nullptr;
}(),
[&iov, &b, &cp]
{
if(!b)
return member{};
return member
{
cp.first, cp.second()
};
}()
}
{
}
///////////////////////////////////////////////////////////////////////////////
//
// json/vector.h
//
size_t
ircd::json::vector::count()
const
{
return std::distance(begin(), end());
}
ircd::json::vector::value_type
ircd::json::vector::operator[](const size_t i)
const
{
const auto it(find(i));
return it != end()?
*it:
object{};
}
ircd::json::vector::value_type
ircd::json::vector::at(const size_t i)
const
{
const auto it(find(i));
if(unlikely(it == end()))
throw not_found
{
"indice %zu", i
};
return *it;
}
ircd::json::vector::const_iterator
ircd::json::vector::find(size_t i)
const
{
auto it(begin());
for(; it != end() && i; ++it, i--);
return it;
}
namespace ircd::json::parser
{
const rule<string_view> vector_object
{
raw[object(0)]
,"vector object"
};
const rule<string_view> vector_begin_parse
{
expect[ws >> (eoi | (vector_object >> ws))]
,"object vector element"
};
}
ircd::json::vector::const_iterator
ircd::json::vector::begin()
const
{
const_iterator ret
{
string_view::begin(), string_view::end()
};
string_view &state(ret.state);
parser::parse(ret.start, ret.stop, parser::vector_begin_parse, state);
return ret;
}
//
// vector::const_iterator::const_iterator
//
namespace ircd::json::parser
{
const rule<string_view> vector_next_parse
{
expect[eoi | (vector_object >> ws)]
,"next object vector element or end"
};
}
ircd::json::vector::const_iterator &
ircd::json::vector::const_iterator::operator++()
{
this->state = {};
string_view &state(this->state);
parser::parse(start, stop, parser::vector_next_parse, state);
return *this;
}
///////////////////////////////////////////////////////////////////////////////
//
// json/object.h
//
namespace ircd::json
{
using object_member_array_type = std::array<object::member, object::max_sorted_members>;
using object_member_arrays_type = std::array<object_member_array_type, object::max_recursion_depth>;
static_assert(sizeof(object_member_arrays_type) == 3_MiB); // yay reentrance .. joy :/
static thread_local object_member_arrays_type object_member_arrays;
static thread_local size_t object_member_arrays_ctr;
static string_view _stringify(mutable_buffer &buf, const object::member *const &b, const object::member *const &e);
}
std::ostream &
ircd::json::operator<<(std::ostream &s, const object &object)
{
s << json::strung(object);
return s;
}
ircd::string_view
ircd::json::stringify(mutable_buffer &buf,
const object &object)
try
{
const size_t mc(object_member_arrays_ctr);
assert(mc < object_member_arrays.size());
const scope_count _mc(object_member_arrays_ctr);
auto &m(object_member_arrays.at(object_member_arrays_ctr));
size_t i(0);
for(auto it(begin(object)); it != end(object); ++it, ++i)
m.at(i) = *it;
std::sort(begin(m), begin(m) + i, []
(const object::member &a, const object::member &b) noexcept
{
return a.first < b.first;
});
return _stringify(buf, m.data(), m.data() + i);
}
catch(const std::out_of_range &e)
{
throw print_error
{
"Too many members (%zu) for stringifying JSON object",
size(object)
};
}
size_t
ircd::json::serialized(const object &object)
{
const auto b(begin(object));
const auto e(end(object));
assert(!empty(object) || b == e);
const size_t ret(1 + (b == e));
return std::accumulate(b, e, ret, []
(auto ret, const object::member &member)
{
return ret += serialized(member) + 1;
});
}
bool
ircd::json::sorted(const object &object)
{
auto it(begin(object));
if(it == end(object))
return true;
string_view last{it->first};
for(++it; it != end(object); last = it->first, ++it)
if(it->first < last)
return false;
return true;
}
//
// object
//
ircd::string_view
ircd::json::object::operator[](const string_view &key)
const
{
const auto it
{
find(key)
};
return it != end()?
it->second:
string_view{};
}
ircd::string_view
ircd::json::object::get(const string_view &key,
const string_view &def)
const
{
const auto it
{
find(key)
};
return it != end()?
it->second:
def;
}
ircd::json::object::operator std::string()
const
{
return json::strung(*this);
}
bool
ircd::json::object::has(const string_view &key,
const enum json::type &type)
const
{
const auto &it
{
find(key)
};
return it != end()?
json::type(it->second, type, strict):
false;
}
bool
ircd::json::object::has(const string_view &key)
const
{
return find(key) != end();
}
size_t
ircd::json::object::count()
const
{
return std::distance(begin(), end());
}
ircd::json::object::const_iterator
ircd::json::object::find(const name_hash_t &key)
const
{
return std::find_if(begin(), end(), [&key]
(const auto &member)
{
return name_hash(member.first) == key;
});
}
ircd::json::object::const_iterator
ircd::json::object::find(const string_view &key)
const
{
return std::find_if(begin(), end(), [&key]
(const auto &member)
{
return member.first == key;
});
}
namespace ircd::json::parser
{
const expr object_member
{
name >> ws >> name_sep >> ws >> raw[value(0)]
,"object member"
};
const expr begin_object
{
object_begin >> ws >> (object_end | object_member)
,"object"
};
const expr begin_object_parse
{
ws >> (eoi | (begin_object >> ws))
,"object begin"
};
const rule<object::member> parse_begin_object
{
expect[begin_object_parse]
,"object begin"
};
}
[[gnu::hot]]
ircd::json::object::const_iterator
ircd::json::object::begin()
const try
{
const_iterator ret
{
string_view::begin(), string_view::end()
};
parser::parse(ret.start, ret.stop, parser::parse_begin_object, ret.state);
return ret;
}
catch(const parser::expectation_failure<parse_error> &e)
{
const auto type
{
json::type(*this)
};
if(type != type::OBJECT)
throw type_error
{
"Expected JSON type OBJECT, not %s.",
reflect(type)
};
throw;
}
//
// object::const_iterator
//
namespace ircd::json::parser
{
const expr next_member
{
value_sep >> ws >> object_member
,"next member"
};
const expr end_object
{
object_end >> ws >> eoi
,"end of object"
};
const expr next_member_parse
{
(next_member | end_object) >> ws
,"object increment"
};
const rule<object::member> parse_next_member
{
expect[next_member_parse]
,"object increment"
};
}
[[gnu::hot]]
ircd::json::object::const_iterator &
ircd::json::object::const_iterator::operator++()
{
assert(start != stop);
state = {};
parser::parse(start, stop, parser::parse_next_member, state);
return *this;
}
//
// object::member
//
std::ostream &
ircd::json::operator<<(std::ostream &s, const object::member &member)
{
s << json::strung(member);
return s;
}
ircd::string_view
ircd::json::stringify(mutable_buffer &buf,
const object::member &member)
{
char *const start(begin(buf));
assert(!surrounds(member.first, '"'));
printer::print(buf, printer::name << printer::name_sep, member.first);
stringify(buf, member.second);
const string_view ret
{
start, begin(buf)
};
assert(serialized(member) == size(ret));
return ret;
}
size_t
ircd::json::serialized(const object::member &member)
{
const json::value key
{
member.first, json::STRING
};
return serialized(key) + 1 + serialized(member.second);
}
ircd::string_view
ircd::json::stringify(mutable_buffer &buf,
const object::member *const b,
const object::member *const e)
{
const size_t mc(object_member_arrays_ctr);
assert(mc < object_member_arrays.size());
const scope_count _mc(object_member_arrays_ctr);
auto &m(object_member_arrays.at(object_member_arrays_ctr));
size_t i(0);
for(auto it(b); it != e; ++it, ++i)
m.at(i) = *it;
std::sort(begin(m), begin(m) + i, []
(const object::member &a, const object::member &b) noexcept
{
return a.first < b.first;
});
return _stringify(buf, begin(m), begin(m) + i);
}
ircd::string_view
ircd::json::_stringify(mutable_buffer &buf,
const object::member *const &b,
const object::member *const &e)
{
static const auto stringify_member
{
[](mutable_buffer &buf, const object::member &member)
{
stringify(buf, member);
}
};
char *const start(begin(buf));
printer::print(buf, printer::object_begin);
printer::list_protocol(buf, b, e, stringify_member);
printer::print(buf, printer::object_end);
const string_view ret
{
start, begin(buf)
};
assert(serialized(b, e) == size(ret));
return ret;
}
size_t
ircd::json::serialized(const object::member *const begin,
const object::member *const end)
{
const size_t ret(1 + (begin == end));
return std::accumulate(begin, end, ret, []
(auto ret, const object::member &member)
{
return ret += serialized(member) + 1;
});
}
bool
ircd::json::sorted(const object::member *const begin,
const object::member *const end)
{
return std::is_sorted(begin, end, []
(const object::member &a, const object::member &b)
{
return a.first < b.first;
});
}
///////////////////////////////////////////////////////////////////////////////
//
// json/array.h
//
std::ostream &
ircd::json::operator<<(std::ostream &s, const array &a)
{
s << json::strung(a);
return s;
}
ircd::string_view
ircd::json::stringify(mutable_buffer &buf,
const array &v)
{
if(likely(!string_view{v}.empty()))
return array::stringify(buf, begin(v), end(v));
const char *const start{begin(buf)};
consume(buf, copy(buf, empty_array));
const string_view ret{start, begin(buf)};
assert(serialized(v) == size(ret));
return ret;
}
size_t
ircd::json::serialized(const array &v)
{
assert(!empty(v) || (begin(v) == end(v)));
return array::serialized(begin(v), end(v));
}
ircd::string_view
ircd::json::stringify(mutable_buffer &buf,
const std::string *const b,
const std::string *const e)
{
return array::stringify(buf, b, e);
}
size_t
ircd::json::serialized(const std::string *const b,
const std::string *const e)
{
return array::serialized(b, e);
}
ircd::string_view
ircd::json::stringify(mutable_buffer &buf,
const string_view *const b,
const string_view *const e)
{
return array::stringify(buf, b, e);
}
size_t
ircd::json::serialized(const string_view *const b,
const string_view *const e)
{
return array::serialized(b, e);
}
//
// array::array
//
template<class it>
ircd::string_view
ircd::json::array::stringify(mutable_buffer &buf,
const it &b,
const it &e)
{
static const auto print_element
{
[](mutable_buffer &buf, const string_view &element)
{
json::stringify(buf, element);
}
};
using ircd::buffer::begin;
char *const start(begin(buf));
printer::print(buf, printer::array_begin);
printer::list_protocol(buf, b, e, print_element);
printer::print(buf, printer::array_end);
const string_view ret
{
start, begin(buf)
};
using ircd::buffer::size;
assert(serialized(b, e) == size(ret));
return ret;
}
template<class it>
size_t
ircd::json::array::serialized(const it &b,
const it &e)
{
const size_t ret(1 + (b == e));
return std::accumulate(b, e, ret, []
(auto ret, const string_view &value)
{
return ret += json::serialized(value) + 1;
});
}
ircd::json::array::operator std::string()
const
{
return json::strung(*this);
}
namespace ircd::json::parser
{
const rule<string_view> array_value
{
raw[value(0)]
,"array element"
};
const expr begin_array
{
array_begin >> ws >> (array_end | array_value)
,"array begin element"
};
const expr begin_array_parse
{
ws >> (eoi | (begin_array >> ws))
,"array begin"
};
const rule<string_view> parse_begin_array
{
expect[begin_array_parse]
,"array begin"
};
}
[[gnu::hot]]
ircd::json::array::const_iterator
ircd::json::array::begin()
const
{
const_iterator ret
{
string_view::begin(), string_view::end()
};
parser::parse(ret.start, ret.stop, parser::parse_begin_array, ret.state);
return ret;
}
ircd::string_view
ircd::json::array::operator[](const size_t i)
const
{
const auto it(find(i));
return it != end()? *it : string_view{};
}
ircd::string_view
ircd::json::array::at(const size_t i)
const
{
const auto it(find(i));
if(unlikely(it == end()))
throw not_found
{
"indice %zu", i
};
return *it;
}
ircd::json::array::const_iterator
ircd::json::array::find(size_t i)
const
{
auto it(begin());
for(; it != end() && i; ++it, i--);
return it;
}
size_t
ircd::json::array::size()
const
{
return count();
}
size_t
ircd::json::array::count()
const
{
return std::distance(begin(), end());
}
//
// array::const_iterator
//
namespace ircd::json::parser
{
const expr array_next_value
{
value_sep >> ws >> array_value
,"array next value"
};
const expr array_next_parse
{
(array_end | array_next_value) >> ws
,"array end or next value"
};
const rule<string_view> parse_next_value
{
expect[array_next_parse]
,"array increment"
};
}
[[gnu::hot]]
ircd::json::array::const_iterator &
ircd::json::array::const_iterator::operator++()
{
assert(start != stop);
state = string_view{};
parser::parse(start, stop, parser::parse_next_value, state);
return *this;
}
///////////////////////////////////////////////////////////////////////////////
//
// json/member.h
//
namespace ircd::json
{
using member_array = std::array<const member *, object::max_sorted_members>;
using member_arrays = std::array<member_array, object::max_recursion_depth>;
static_assert(sizeof(member_arrays) == 768_KiB);
static thread_local member_arrays member_array_buffer;
static thread_local size_t member_array_counter;
}
ircd::string_view
ircd::json::stringify(mutable_buffer &buf,
const member *const b,
const member *const e)
{
static const auto less_member
{
[](const member *const &a, const member *const &b)
noexcept
{
return *a < *b;
}
};
static const auto print_member
{
[](mutable_buffer &buf, const member *const &m)
{
assert(type(m->first) == STRING);
stringify(buf, m->first);
printer::print(buf, printer::name_sep);
stringify(buf, m->second);
}
};
const size_t count(std::distance(b, e));
if(unlikely(count > object::max_sorted_members))
throw print_error
{
"json::member vector of %zu exceeds maximum %zu.",
count,
object::max_sorted_members,
};
const ctx::critical_assertion ca;
auto &mctr(member_array_counter);
auto &ma(member_array_buffer);
const size_t mc{mctr};
const scope_count _mc{mctr};
assert(mc < ma.size());
auto &m(ma.at(mc));
for(size_t i(0); i < count; ++i)
m[i] = b + i;
std::sort(begin(m), begin(m) + count, less_member);
const char *const start(begin(buf));
printer::print(buf, printer::object_begin);
printer::list_protocol(buf, begin(m), begin(m) + count, print_member);
printer::print(buf, printer::object_end);
const string_view ret
{
start, begin(buf)
};
assert(serialized(b, e) == size(ret));
return ret;
}
size_t
ircd::json::serialized(const member *const begin,
const member *const end)
{
const size_t ret(1 + (begin == end));
return std::accumulate(begin, end, ret, []
(auto ret, const auto &member)
{
return ret += serialized(member) + 1;
});
}
bool
ircd::json::sorted(const member *const begin,
const member *const end)
{
return std::is_sorted(begin, end, []
(const member &a, const member &b)
{
return a < b;
});
}
///////////////////////////////////////////////////////////////////////////////
//
// json/string.h
//
namespace ircd::json
{
extern const char ctrl_tab[0x20][16];
extern const int32_t ctrl_tab_len[0x20];
static u8x16 lookup_ctrl_tab_len(const u8x16 block);
static u64x2 string_serialized_ctrl(const u8x16 block, const u8x16 mask, const u8x16 ctrl_mask);
static u64x2 string_serialized_utf16(const u8x16 block, const u8x16 mask);
static u64x2 string_serialized(const u8x16 block, const u8x16 mask);
static u64x2 string_stringify_utf16(u8x16 &block, const u8x16 mask);
static u64x2 string_stringify(u8x16 &block, const u8x16 mask);
static u64x2 string_unescape_utf16(u8x16 &block, const u8x16 mask);
static u64x2 string_unescape(u8x16 &block, const u8x16 mask);
}
/// Escaped control character LUT.
decltype(ircd::json::ctrl_tab)
ircd::json::ctrl_tab
alignas(32)
{
"\\u0000",
"\\u0001", "\\u0002", "\\u0003",
"\\u0004", "\\u0005", "\\u0006",
"\\u0007",
"\\b",
"\\t",
"\\n",
"\\u000b",
"\\f",
"\\r",
"\\u000e", "\\u000f", "\\u0010",
"\\u0011", "\\u0012", "\\u0013",
"\\u0014", "\\u0015", "\\u0016",
"\\u0017", "\\u0018", "\\u0019",
"\\u001a", "\\u001b", "\\u001c",
"\\u001d", "\\u001e", "\\u001f",
};
/// Escaped control character LUT length hints
decltype(ircd::json::ctrl_tab_len)
ircd::json::ctrl_tab_len
alignas(32)
{
6,
6, 6, 6,
6, 6, 6,
6,
2,
2,
2,
6,
2,
2,
6, 6, 6,
6, 6, 6,
6, 6, 6,
6, 6, 6,
6, 6, 6,
6, 6, 6,
};
/// Streaming transform of serialized (valid, escaped) JSON string content to
/// preimage content. The result may contain integrals and control codes
/// (including null characters) if the input contains their escaped rep.
///
/// Use this function with extreme care. Note that it is almost entirely
/// unnecessary to use this operation during the normal course of network
/// server operation with JSON in -> JSON out as the rest of this ircd::json
/// API (i.e stringify()) can rewrite/correct all inputs without performing
/// any unescape conversion at any point.
///
ircd::const_buffer
ircd::json::unescape(const mutable_buffer &dst,
const string &src)
{
using block_t = u8x16;
const u64x2 max
{
size(dst), size(src),
};
const u64x2 res // consumed [dst, src]
{
simd::transform<block_t>(data(dst), data(src), max, string_unescape)
};
return const_buffer
{
data(dst), res[0] // output pos (bytes written)
};
}
ircd::u64x2
ircd::json::string_unescape(u8x16 &block,
const u8x16 block_mask)
{
const u8x16 is_esc
(
block == '\\'
);
// Fastest-path; backward branch to count and consume all of the input.
if(likely(!simd::any(is_esc | ~block_mask)))
return u64x2
{
sizeof(block), sizeof(block)
};
const u64 regular_prefix_count
{
simd::lzcnt(is_esc | ~block_mask) / 8
};
// Fast-path; backward branch to count and consume uninteresting characters
// from the front of the input.
if(likely(regular_prefix_count))
return u64x2
{
regular_prefix_count, regular_prefix_count,
};
// Escape sequence case
assert(block[0] == '\\');
const u8x16 subject
{
simd::broad_cast(block, block[1]) &
simd::broad_cast(block_mask, block_mask[1])
};
// Legitimately escaped sequence bank
const u8x16 cases
{
'b', 't', 'n', 'f', 'r', '"', '\\',
'u',
};
// Unescaped replacements
const u8x16 integral
{
'\b', '\t', '\n', '\f', '\r', '"', '\\', // replacement integrals
'u', // not selected b/c utf16 branch taken
block[1], block[1], block[1], block[1], // filler for unnecessary escapes
block[1], block[1], block[1], block[1], // filler for unnecessary escapes
};
const u8x16 match
(
subject == cases
);
const u64 match_depth
{
simd::lzcnt(match) / 8
};
// Possible utf-16 surrogate(s)
if(match_depth == 7)
{
assert(block[1] == 'u');
return string_unescape_utf16(block, block_mask);
}
// Perform replacement of the escaped character.
assert(match_depth < sizeof(integral));
block[0] = integral[match_depth];
// Increment output by 1 and input by 2 because we lost the escaping
// solidus and left a replacement character
return u64x2
{
1UL, 2UL,
};
}
/// Unrestricted UTF-16 surrogate to UTF-8 integral conversion functor; this
/// will output any character including control codes, such as \u0000.
ircd::u64x2
ircd::json::string_unescape_utf16(u8x16 &block,
const u8x16 block_mask)
{
const u32x4 unicode
{
utf16::decode_surrogate_aligned_next(block & block_mask)
};
const u32x4 length
{
utf8::length(unicode)
};
const u8x16 pair_mask
(
length != 0 || shl<32>(length) == 4
);
const u8x16 is_surrogate
(
utf16::find_surrogate(block & block_mask) & pair_mask
);
const u32x4 encoded_sparse
{
utf8::encode_sparse(unicode)
};
const u8x16 encoded
(
encoded_sparse
);
size_t di(0), i(0);
for(; i < 2 && length[i] > 0; ++i)
for(size_t j(0); j < length[i]; ++j)
block[di++] = encoded[i * 4 + j];
const auto surrogates
{
simd::popcnt(u64x2(popmask(is_surrogate)))
};
assert(surrogates > 0 && surrogates <= 2);
assert(di == length[0] + length[1]);
assert(i >= 1 && i <= 2);
return u64x2
{
di, 6U * surrogates
};
}
ircd::json::string
ircd::json::escape(const mutable_buffer &buf,
const string_view &in)
{
mutable_buffer out{buf};
printer::print(out, printer::string, in);
const string_view ret
{
data(buf), data(out)
};
return ret;
}
/// Streaming transform for canonical JSON strings. This function takes
/// virtually any input and "always makes it right" i.e. always outputs
/// the application's so-called canonical JSON.
///
/// This involves a variable-length transformation where the output might
/// end up as significantly longer or shorter than the input; neither will
/// have any hope for aligned access, and most of the inputs are short and
/// already canonical. This is all tricky.
///
size_t
ircd::json::string::stringify(const mutable_buffer &buf,
const string_view &input)
noexcept
{
using block_t = u8x16;
const u64x2 max
{
ircd::size(buf), ircd::size(input),
};
const auto consumed
{
simd::transform<block_t>(ircd::data(buf), ircd::data(input), max, string_stringify)
};
return consumed[0]; // output pos (bytes written)
}
/// Returns two addends to the outer loop. The second advances the input string
/// pointer any number of bytes; the block for the next invocation will start
/// at the new offset. This function may want to advance the input less than
/// the full block width if there's a possibility something important is being
/// split between blocks (i.e. an escaped utf-16 surrogate pair of 12 chars);
/// next invocation will then encounter the contiguous sequence without issue.
/// The first value is added to the final return count to indicate the length
/// of the input string in serialized form after correction. Partial sequences
/// trailing off the block are not counted here so they can be pushed over to
/// the next invocation.
///
/// The input is a block of characters from the original string. When the block
/// cannot be filled at the end of a string (or a short string) the block_mask
/// will indicate 0 for any bytes past the end, otherwise -1 for valid chars;
/// note that null characters in the string are valid which we will escape.
///
ircd::u64x2
ircd::json::string_stringify(u8x16 &block,
const u8x16 block_mask)
{
const u8x16 is_esc
(
block == '\\'
);
const u8x16 is_quote
(
block == '"'
);
const u8x16 is_ctrl
(
block < 0x20
);
const u8x16 is_special
{
is_esc | is_quote | is_ctrl
};
// Fastest-path; backward branch to count and consume all of the input.
if(likely(!simd::any(is_special | ~block_mask)))
return u64x2
{
sizeof(u8x16), sizeof(u8x16)
};
// Count the number of uninteresting characters from the front of the
// block. With the special characters masked, we count leading zeroes.
// The inverted block_mask generates non-zero bits to terminate any
// counting past the end of the string.
const u64 regular_prefix_count
{
simd::lzcnt(is_special | ~block_mask) / 8
};
// Fast-path; backward branch to count and consume uninteresting characters
// from the front of the input.
if(likely(regular_prefix_count))
return u64x2
{
regular_prefix_count, regular_prefix_count,
};
// Unescaped quote case
if(is_quote[0])
{
block[0] = '\\';
block[1] = '"';
return u64x2
{
2, 1
};
}
// Control character case
if(is_ctrl[0])
{
static const auto tab
{
reinterpret_cast<const u128x1 *>(ctrl_tab)
};
const u8 idx
{
block[0]
};
block = tab[idx];
return u64x2
{
u64(ctrl_tab_len[idx]), 1
};
}
// Escape sequence case
assert(block[0] == '\\');
// Legitimately escaped sequence bank
const u8x16 cases
{
'b', 't', 'n', 'f', 'r', '"', '\\', 'u'
};
const u8x16 subject
{
simd::broad_cast(block, block[1]) &
simd::broad_cast(block_mask, block_mask[1])
};
const u8x16 match
(
subject == cases
);
const u64 match_depth
{
simd::lzcnt(match) / 8
};
// Legitimately escaped single char
if(match_depth < 7)
return u64x2
{
2, 2
};
// Unnecessary escape; unless it's the last char.
if(match_depth > 7)
{
block[0] = '\\';
block[1] = '\\';
return u64x2
{
block_mask[1]? 0UL: 2UL, 1
};
}
// Possible utf-16 surrogate(s)
assert(block[1] == 'u');
return string_stringify_utf16(block, block_mask);
}
ircd::u64x2
ircd::json::string_stringify_utf16(u8x16 &block,
const u8x16 block_mask)
{
const u32x4 unicode
{
utf16::decode_surrogate_aligned_next(block & block_mask)
};
const u32x4 length_encoded
{
utf8::length(unicode)
};
const u8x16 pair_mask
(
length_encoded != 0 || shl<32>(length_encoded) == 4
);
const u8x16 is_surrogate
(
utf16::find_surrogate(block & block_mask) & pair_mask
);
const u32x4 is_ctrl
(
unicode < 0x20
);
const u32x4 ctrl_idx
{
unicode & is_ctrl
};
const u32x4 length_surrogate
{
u32(ctrl_tab_len[ctrl_idx[0]]),
u32(ctrl_tab_len[ctrl_idx[1]]),
};
// Supplement the escaped surrogate length for excluded codepoints.
const u32x4 length
{
(length_encoded & ~is_ctrl) | (length_surrogate & is_ctrl)
};
const u32x4 encoded_sparse
{
utf8::encode_sparse(unicode)
};
const u8x16 encoded
(
encoded_sparse
);
size_t di(0);
for(size_t i(0); i < 2; ++i)
for(size_t j(0); j < length[i]; ++j)
block[di++] = is_ctrl[i]?
ctrl_tab[ctrl_idx[i]][j]:
encoded[i * 4 + j];
const auto surrogates
{
simd::popcnt(u64x2(popmask(is_surrogate)))
};
assert(di == length[0] + length[1]);
return u64x2
{
di, std::max(6U * surrogates, 1U)
};
}
/// Determine the length of the JSON string value after canonization by
/// string::stringify() on the input. See the docs for string::stringify()
/// as most details are the same here, except this has no output stream
/// or transformation logic.
size_t
ircd::json::string::serialized(const string_view &input)
noexcept
{
using block_t = u8x16;
const u64x2 max
{
0, ircd::size(input)
};
const auto count
{
simd::for_each<block_t>(ircd::data(input), max, string_serialized)
};
return count[0];
}
ircd::u64x2
ircd::json::string_serialized(const u8x16 block,
const u8x16 block_mask)
{
assert(block_mask[0] == 0xff);
const u8x16 is_esc
(
block == '\\'
);
const u8x16 is_quote
(
block == '"'
);
const u8x16 is_ctrl
(
block < 0x20
);
const u8x16 is_special
{
is_esc | is_quote | is_ctrl
};
// Fastest-path; backward branch to count and consume all of the input.
if(likely(!simd::any(is_special | ~block_mask)))
return u64x2
{
sizeof(u8x16), sizeof(u8x16)
};
const u64 regular_prefix_count
{
simd::lzcnt(is_special | ~block_mask) / 8
};
// Fast-path; backward branch to count and consume uninteresting characters
// from the front of the input.
if(likely(regular_prefix_count))
return u64x2
{
regular_prefix_count, regular_prefix_count,
};
// Unescaped quote: +1
if(is_quote[0])
return u64x2
{
2, 1
};
// Covers the ctrl 0x00-0x20 range only; no other character here.
if(is_ctrl[0])
return string_serialized_ctrl(block, block_mask, is_ctrl);
// Escape sequence
assert(block[0] == '\\');
// Legitimate escape bank
const u8x16 cases
{
'b', 't', 'n', 'f', 'r', '"', '\\', 'u'
};
const u8x16 subject
{
simd::broad_cast(block, block[1]) &
simd::broad_cast(block_mask, block_mask[1])
};
const u8x16 match
(
subject == cases
);
const u64 match_depth
{
simd::lzcnt(match) / 8
};
// Legitimately escaped single char
if(match_depth < 7)
return u64x2
{
2, 2
};
// Unnecessary escape; unless it's the last char: -1
if(match_depth > 7)
return u64x2
{
block_mask[1]? 0UL: 2UL, 1
};
// Possible utf-16 surrogate(s)
assert(block[1] == 'u');
return string_serialized_utf16(block, block_mask);
}
ircd::u64x2
ircd::json::string_serialized_utf16(const u8x16 block,
const u8x16 block_mask)
{
const u32x4 unicode
{
utf16::decode_surrogate_aligned_next(block & block_mask)
};
const u32x4 length_encoded
{
utf8::length(unicode)
};
const u8x16 pair_mask
(
length_encoded != 0 || shl<32>(length_encoded) == 4
);
const u8x16 is_surrogate
(
utf16::find_surrogate(block & block_mask) & pair_mask
);
const u32x4 is_ctrl
(
unicode < 0x20
);
const u32x4 ctrl_idx
{
unicode & is_ctrl
};
const i32x4 length_surrogate
{
ctrl_tab_len[ctrl_idx[0]],
ctrl_tab_len[ctrl_idx[1]],
};
// Supplement the escaped surrogate length for excluded codepoints.
const u32x4 length
{
(length_encoded & ~is_ctrl) | (length_surrogate & is_ctrl)
};
const auto total_length
{
length[0] + length[1]
};
const auto surrogates
{
popcnt(u64x2(popmask(is_surrogate)))
};
return u64x2
{
total_length, std::max(6U * surrogates, 1U)
};
}
ircd::u64x2
ircd::json::string_serialized_ctrl(const u8x16 block,
const u8x16 block_mask,
const u8x16 is_ctrl)
{
assert(block[0] < 0x20);
const u8x16 ctrl_esc_len
{
lookup_ctrl_tab_len(block & is_ctrl)
};
const u64 ctrl_prefix_count
{
simd::lzcnt(~is_ctrl | ~block_mask) / 8
};
u64 ret(0);
for(size_t i(0); i < ctrl_prefix_count; ++i)
ret += ctrl_esc_len[i];
return u64x2
{
ret, ctrl_prefix_count
};
}
/// Performs a parallel transform of control characters in the input into
/// the length of their escape surrogate. The input character must be in
/// the control character range.
ircd::u8x16
ircd::json::lookup_ctrl_tab_len(const u8x16 in)
{
static const int32_t *const tab
{
ctrl_tab_len
};
size_t i, j, k(0);
i32x4 idx[4]
{
{ in[k++], in[k++], in[k++], in[k++] },
{ in[k++], in[k++], in[k++], in[k++] },
{ in[k++], in[k++], in[k++], in[k++] },
{ in[k++], in[k++], in[k++], in[k++] },
};
u8x16 ret{0};
i32x4 res[4];
for(k = 0, i = 0; i < 4; ++i)
for(j = 0; j < 4; ++j)
res[i][j] = tab[idx[i][j]],
ret[k++] = res[i][j];
return ret;
}
///////////////////////////////////////////////////////////////////////////////
//
// json/value.h
//
std::ostream &
ircd::json::operator<<(std::ostream &s, const value &v)
{
s << json::strung(v);
return s;
}
ircd::string_view
ircd::json::stringify(mutable_buffer &buf,
const value *const b,
const value *const e)
{
static const auto print_value
{
[](mutable_buffer &buf, const value &value)
{
stringify(buf, value);
}
};
char *const start(begin(buf));
printer::print(buf, printer::array_begin);
printer::list_protocol(buf, b, e, print_value);
printer::print(buf, printer::array_end);
const string_view ret
{
start, begin(buf)
};
assert(serialized(b, e) == size(ret));
return ret;
}
ircd::string_view
ircd::json::stringify(mutable_buffer &buf,
const value &v)
{
const auto start
{
begin(buf)
};
switch(v.type)
{
case STRING:
{
if(!v.string)
{
consume(buf, copy(buf, empty_string));
break;
}
if(unlikely(v.len > value::max_string_size))
throw print_error
{
"String value cannot have length:%zu which exceeds limit:%zu",
v.len,
value::max_string_size,
};
const string_view sv
{
v.string, v.len
};
if(v.serial)
printer::print(buf, printer::string, json::string(sv));
else
printer::print(buf, printer::string, sv);
break;
}
case LITERAL:
{
if(v.serial)
printer::print(buf, printer::literal, string_view{v});
else if(v.integer)
consume(buf, copy(buf, "true"_sv));
else
consume(buf, copy(buf, "false"_sv));
break;
}
case OBJECT:
{
if(v.serial)
stringify(buf, json::object{string_view{v}});
else if(v.object)
stringify(buf, v.object, v.object + v.len);
else
consume(buf, copy(buf, empty_object));
break;
}
case ARRAY:
{
if(v.serial)
stringify(buf, json::array{string_view{v}});
else if(v.array)
stringify(buf, v.array, v.array + v.len);
else
consume(buf, copy(buf, empty_array));
break;
}
case NUMBER:
{
if(v.serial)
//printer::print(buf, printer::number, string_view{v});
consume(buf, copy(buf, strip(string_view{v}, ' ')));
else if(v.floats)
consume(buf, copy(buf, lex_cast(v.floating)));
else
consume(buf, copy(buf, lex_cast(v.integer)));
break;
}
}
const string_view ret
{
start, begin(buf)
};
assert(serialized(v) == size(ret));
return ret;
}
size_t
ircd::json::serialized(const values &v)
{
return serialized(std::begin(v), std::end(v));
}
size_t
ircd::json::serialized(const value *const begin,
const value *const end)
{
// One opening '[' and either one ']' or comma count.
const size_t ret(1 + (begin == end));
return std::accumulate(begin, end, size_t(ret), []
(auto ret, const value &v)
{
return ret += serialized(v) + 1; // 1 comma
});
}
size_t
ircd::json::serialized(const value &v)
{
switch(v.type)
{
case OBJECT: return
v.serial?
serialized(json::object{v}):
serialized(v.object, v.object + v.len);
case ARRAY: return
v.serial?
serialized(json::array{v}):
serialized(v.array, v.array + v.len);
case LITERAL: return
v.serial?
v.len:
v.integer?
size(literal_true):
size(literal_false);
case NUMBER:
{
if(v.serial)
return size(strip(string_view{v}, ' '));
else if(v.floats)
return size(lex_cast(v.floating));
else
return size(lex_cast(v.integer));
}
case STRING:
{
if(!v.string)
return size(empty_string);
const string_view sv
{
v.string, v.len
};
const auto ret
{
v.serial?
json::string::serialized(json::string(sv)):
json::string::serialized(sv)
};
return 1 + ret + 1;
}
};
throw type_error
{
"deciding the size of a type[%u] is undefined", int(v.type)
};
}
//
// value::value
//
ircd::json::value::value(const std::string &s,
const enum type &type)
:string{nullptr}
,len{0}
,type{type}
,serial{type == STRING? surrounds(s, '"') : true}
,alloc{true}
,floats{false}
{
const string_view sv{s};
create_string(serialized(sv), [&sv]
(mutable_buffer &buffer)
{
json::stringify(buffer, sv);
});
}
ircd::json::value::value(const json::members &members)
:string{nullptr}
,len{serialized(members)}
,type{OBJECT}
,serial{true}
,alloc{true}
,floats{false}
{
create_string(len, [&members]
(mutable_buffer &buffer)
{
json::stringify(buffer, members);
});
}
ircd::json::value::value(const value &other)
:integer{other.integer}
,len{other.len}
,type{other.type}
,serial{other.serial}
,alloc{other.alloc}
,floats{other.floats}
{
if(serial)
{
create_string(len, [&other]
(mutable_buffer &buffer)
{
json::stringify(buffer, other);
});
}
else switch(type)
{
case OBJECT:
{
if(!object)
break;
const size_t count(this->len);
create_string(serialized(object, object + count), [this, &count]
(mutable_buffer &buffer)
{
json::stringify(buffer, object, object + count);
});
break;
}
case ARRAY:
{
if(!array)
break;
const size_t count(this->len);
create_string(serialized(array, array + count), [this, &count]
(mutable_buffer &buffer)
{
json::stringify(buffer, array, array + count);
});
break;
}
case STRING:
{
if(!string)
break;
create_string(serialized(other), [&other]
(mutable_buffer &buffer)
{
json::stringify(buffer, other);
});
break;
}
case LITERAL:
case NUMBER:
break;
}
}
ircd::json::value &
ircd::json::value::operator=(value &&other)
noexcept
{
this->~value();
new (this) value(std::move(other));
assert(other.alloc == false);
return *this;
}
ircd::json::value &
ircd::json::value::operator=(const value &other)
{
this->~value();
new (this) value(other);
return *this;
}
[[gnu::hot]]
ircd::json::value::~value()
noexcept
{
if(alloc) switch(serial? STRING : static_cast<enum type>(type))
{
case STRING:
delete[] string;
break;
case OBJECT:
delete[] object;
break;
case ARRAY:
delete[] array;
break;
default:
break;
}
}
ircd::json::value::operator std::string()
const
{
return json::strung(*this);
}
ircd::json::value::operator string_view()
const
{
switch(type)
{
case STRING:
return unquote(string_view{string, len});
case NUMBER:
return serial? string_view{string, len}:
floats? byte_view<string_view>{floating}:
byte_view<string_view>{integer};
case ARRAY:
case OBJECT:
case LITERAL:
if(likely(serial))
return string_view{string, len};
else
break;
}
throw type_error
{
"value type[%d] is not a string", int(type)
};
}
ircd::json::value::operator int64_t()
const
{
switch(type)
{
case NUMBER:
return likely(!floats)? integer : floating;
case STRING:
return lex_cast<int64_t>(string_view{*this});
case ARRAY:
case OBJECT:
case LITERAL:
break;
}
throw type_error
{
"value type[%d] is not an int64_t", int(type)
};
}
ircd::json::value::operator double()
const
{
switch(type)
{
case NUMBER:
return likely(floats)? floating : integer;
case STRING:
return lex_cast<double>(string_view{*this});
case ARRAY:
case OBJECT:
case LITERAL:
break;
}
throw type_error
{
"value type[%d] is not a float", int(type)
};
}
bool
ircd::json::value::operator!()
const
{
switch(type)
{
case NUMBER:
return floats? !(floating > 0.0 || floating < 0.0):
!bool(integer);
case STRING:
return string? !len || (serial && string_view{string, len} == empty_string):
true;
case OBJECT:
return serial? !len || string_view{*this} == empty_object:
object? !len:
true;
case ARRAY:
return serial? !len || (string_view{*this} == empty_array):
array? !len:
true;
case LITERAL:
if(serial)
return string == nullptr ||
string_view{*this} == literal_false ||
string_view{*this} == literal_null;
else
return !bool(integer);
};
throw type_error
{
"deciding if a type[%u] is falsy is undefined", int(type)
};
}
bool
ircd::json::value::empty()
const
{
switch(type)
{
case NUMBER:
return serial? !len:
floats? !(floating > 0.0 || floating < 0.0):
!bool(integer);
case STRING:
return !string || !len || (serial && string_view{string, len} == empty_string);
case OBJECT:
return serial? !len || string_view{*this} == empty_object:
object? !len:
true;
case ARRAY:
return serial? !len || string_view{*this} == empty_array:
array? !len:
true;
case LITERAL:
return serial? !len:
false;
};
throw type_error
{
"deciding if a type[%u] is empty is undefined", int(type)
};
}
bool
ircd::json::value::null()
const
{
switch(type)
{
case NUMBER:
return floats? !(floating > 0.0 || floating < 0.0):
!bool(integer);
case STRING:
return string == nullptr ||
string_view{string, len}.null();
case OBJECT:
return serial? string == nullptr:
object? false:
true;
case ARRAY:
return serial? string == nullptr:
array? false:
true;
case LITERAL:
return serial? string == nullptr:
string? literal_null == string:
false;
};
throw type_error
{
"deciding if a type[%u] is null is undefined", int(type)
};
}
bool
ircd::json::value::undefined()
const
{
switch(type)
{
case NUMBER:
return integer == undefined_number;
case STRING:
return string_view{string, len}.undefined();
case OBJECT:
return serial? string == nullptr:
object? false:
true;
case ARRAY:
return serial? string == nullptr:
array? false:
true;
case LITERAL:
return serial? string == nullptr:
false;
};
throw type_error
{
"deciding if a type[%u] is undefined is undefined", int(type)
};
}
void
ircd::json::value::create_string(const size_t &len,
const create_string_closure &closure)
{
const size_t max
{
len + 1
};
if(unlikely(max > max_string_size))
throw print_panic
{
"Value cannot have string length:%zu which exceeds limit:%zu",
max,
max_string_size,
};
std::unique_ptr<char[]> string
{
new char[max]
};
mutable_buffer buffer
{
string.get(), len
};
closure(buffer);
(string.get())[len] = '\0';
this->alloc = true;
this->serial = true;
this->len = len;
this->string = string.release();
}
bool
ircd::json::operator<(const value &a, const value &b)
{
if(type(a) == type(b)) switch(type(b))
{
case NUMBER:
assert(!a.serial && !b.serial);
assert(a.floats == b.floats);
return b.floats?
a.floating < b.floating:
a.integer < b.integer;
case STRING:
return static_cast<string_view>(a) < static_cast<string_view>(b);
default:
break;
}
throw type_error
{
"Cannot compare type[%u] %s to type[%u] %s",
uint(type(a)),
reflect(type(a)),
uint(type(b)),
reflect(type(b)),
};
}
bool
ircd::json::operator==(const value &a, const value &b)
{
if(a.serial && b.serial)
return string_view(a) == string_view(b);
if(type(a) == type(b)) switch(type(b))
{
case NUMBER:
assert(!a.serial && !b.serial);
assert(!a.floats && !b.floats);
if(unlikely(a.floats || b.floats))
break;
return a.integer == b.integer;
case STRING:
return static_cast<string_view>(a) == static_cast<string_view>(b);
default:
break;
}
throw type_error
{
"Cannot compare type[%u] %s to type[%u] %s",
uint(type(a)),
reflect(type(a)),
uint(type(b)),
reflect(type(b)),
};
}
///////////////////////////////////////////////////////////////////////////////
//
// json/util.h
//
namespace ircd::json::parser
{
const expr validation
{
value(0) >> ws >> eoi
,"validation"
};
const expr validation_expect
{
expect[validation]
,"valid expectation"
};
}
const ircd::string_view
ircd::json::literal_null { "null" },
ircd::json::literal_true { "true" },
ircd::json::literal_false { "false" },
ircd::json::empty_string { "\"\"" },
ircd::json::empty_object { "{}" },
ircd::json::empty_array { "[]" };
decltype(ircd::json::undefined_number)
ircd::json::undefined_number
{
std::numeric_limits<decltype(ircd::json::undefined_number)>::min()
};
static_assert
(
ircd::json::undefined_number != 0
);
std::string
ircd::json::why(const string_view &s)
try
{
valid(s);
return {};
}
catch(const std::exception &e)
{
return e.what();
}
bool
ircd::json::valid(const string_view &s,
std::nothrow_t)
noexcept try
{
const char *start(begin(s)), *const stop(end(s));
return parser::parse(start, stop, parser::validation);
}
catch(...)
{
assert(false);
return false;
}
void
ircd::json::valid(const string_view &s)
{
const char *start(begin(s)), *const stop(end(s));
const bool ret
{
parser::parse(start, stop, parser::validation_expect)
};
assert(ret);
}
void
ircd::json::valid_output(const string_view &sv,
const size_t &expected)
{
if(unlikely(size(sv) != expected))
throw print_panic
{
"stringified:%zu != serialized:%zu :%s",
size(sv),
expected,
sv
};
if(unlikely(!valid(sv, std::nothrow))) //note: false alarm when T=json::member
throw print_panic
{
"strung %zu bytes :%s :%s",
size(sv),
why(sv),
sv
};
}
ircd::string_view
ircd::json::stringify(mutable_buffer &buf,
const string_view &v)
{
const json::value value(v);
if(v.empty() && defined(value))
{
const char *const start{begin(buf)};
consume(buf, copy(buf, empty_string));
const string_view ret{start, begin(buf)};
assert(serialized(v) == size(ret));
return ret;
}
return stringify(buf, value);
}
size_t
ircd::json::serialized(const string_view &v)
{
if(v.empty() && defined(v))
return size(empty_string);
// Query the json::type of the input string here in relaxed mode. The
// json::value ctor uses strict_t by default which is a full validation;
// we don't care about that for the serialized() suite.
const json::value value
{
v, json::type(v, std::nothrow)
};
return serialized(value);
}
///////////////////////////////////////////////////////////////////////////////
//
// json/type.h
//
namespace ircd::json::parser
{
const expr type_parse_is_string
{
ws >> quote
,"is string"
};
const expr type_parse_is_object
{
ws >> object_begin
,"is object"
};
const expr type_parse_is_array
{
ws >> array_begin
,"is array"
};
const expr type_parse_is_number
{
ws >> number_begin
,"is number"
};
const expr type_parse_is_literal
{
ws >> literal >> ws >> eoi
,"is literal"
};
const rule<> type_parse_is[]
{
{ &type_parse_is_string ,"is string" },
{ &type_parse_is_object ,"is object" },
{ &type_parse_is_array ,"is array" },
{ &type_parse_is_number ,"is number" },
{ &type_parse_is_literal ,"is literal" },
};
const rule<enum json::type> type_parse
{
(omit[type_parse_is_string] >> attr(json::STRING)) |
(omit[type_parse_is_object] >> attr(json::OBJECT)) |
(omit[type_parse_is_array] >> attr(json::ARRAY)) |
(omit[type_parse_is_number] >> attr(json::NUMBER)) |
(omit[type_parse_is_literal] >> attr(json::LITERAL))
,"type check"
};
}
bool
ircd::json::type(const string_view &buf,
const enum type &type)
{
const bool ret
{
parser::parse(begin(buf), end(buf), parser::type_parse_is[type])
};
return ret;
}
enum ircd::json::type
ircd::json::type(const string_view &buf)
{
enum type ret;
if(!parser::parse(begin(buf), end(buf), parser::type_parse, ret))
throw type_error
{
"Failed to derive JSON value type from input buffer."
};
return ret;
}
enum ircd::json::type
ircd::json::type(const string_view &buf,
std::nothrow_t)
{
enum type ret;
if(!parser::parse(begin(buf), end(buf), parser::type_parse, ret))
return STRING;
return ret;
}
namespace ircd::json::parser
{
const expr type_parse_is_string_strict
{
ws >> &quote >> string >> ws >> eoi
,"is string"
};
const expr type_parse_is_object_strict
{
ws >> &object_begin >> object(0) >> ws >> eoi
,"is object"
};
const expr type_parse_is_array_strict
{
ws >> &array_begin >> array(0) >> ws >> eoi
,"is array"
};
const expr type_parse_is_number_strict
{
ws >> &number_begin >> number >> ws >> eoi
,"is number"
};
const expr type_parse_is_literal_strict
{
ws >> literal >> ws >> eoi
,"is literal"
};
const rule<> type_parse_is_strict[]
{
{ &type_parse_is_string_strict ,"is string" },
{ &type_parse_is_object_strict ,"is object" },
{ &type_parse_is_array_strict ,"is array" },
{ &type_parse_is_number_strict ,"is number" },
{ &type_parse_is_literal_strict ,"is literal" },
};
const rule<enum json::type> type_parse_strict
{
(omit[type_parse_is_string_strict] >> attr(json::STRING)) |
(omit[type_parse_is_object_strict] >> attr(json::OBJECT)) |
(omit[type_parse_is_array_strict] >> attr(json::ARRAY)) |
(omit[type_parse_is_number_strict] >> attr(json::NUMBER)) |
(omit[type_parse_is_literal_strict] >> attr(json::LITERAL))
,"type check strict"
};
}
bool
ircd::json::type(const string_view &buf,
const enum type &type,
strict_t)
{
const bool ret
{
parser::parse(begin(buf), end(buf), parser::type_parse_is_strict[type])
};
return ret;
}
enum ircd::json::type
ircd::json::type(const string_view &buf,
strict_t)
{
enum type ret;
if(!parser::parse(begin(buf), end(buf), parser::type_parse_strict, ret))
throw type_error
{
"Failed to derive JSON value type from input buffer."
};
return ret;
}
enum ircd::json::type
ircd::json::type(const string_view &buf,
strict_t,
std::nothrow_t)
{
enum type ret;
if(!parser::parse(begin(buf), end(buf), parser::type_parse_strict, ret))
return STRING;
return ret;
}
ircd::string_view
ircd::json::reflect(const enum type &type)
{
switch(type)
{
case NUMBER: return "NUMBER";
case OBJECT: return "OBJECT";
case ARRAY: return "ARRAY";
case LITERAL: return "LITERAL";
case STRING: return "STRING";
}
throw type_error
{
"Unknown type %x", uint(type)
};
}