0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-27 01:02:46 +01:00
construct/include/ircd/util/tuple.h
2019-06-23 16:22:06 -06:00

420 lines
8.9 KiB
C++

// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2018 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_UTIL_TUPLE_H
//
// Utilities for std::tuple
//
namespace ircd {
inline namespace util {
template<class tuple>
constexpr bool
is_tuple()
{
return is_specialization_of<tuple, std::tuple>::value;
}
template<class tuple>
constexpr typename std::enable_if<is_tuple<tuple>(), size_t>::type
size()
{
return std::tuple_size<tuple>::value;
}
template<class... args>
constexpr size_t
size(const std::tuple<args...> &t)
{
return size<std::tuple<args...>>();
}
//
// Iteration of a tuple
//
// for_each(tuple, [](auto&& elem) { ... });
template<size_t i,
class func,
class... args>
constexpr typename std::enable_if<i == std::tuple_size<std::tuple<args...>>::value, void>::type
for_each(std::tuple<args...> &t,
func&& f)
{}
template<size_t i,
class func,
class... args>
constexpr
typename std::enable_if<i == std::tuple_size<std::tuple<args...>>::value, void>::type
for_each(const std::tuple<args...> &t,
func&& f)
{}
template<size_t i = 0,
class func,
class... args>
constexpr
typename std::enable_if<i < std::tuple_size<std::tuple<args...>>::value, void>::type
for_each(const std::tuple<args...> &t,
func&& f)
{
f(std::get<i>(t));
for_each<i+1>(t, std::forward<func>(f));
}
template<size_t i = 0,
class func,
class... args>
constexpr
typename std::enable_if<i < std::tuple_size<std::tuple<args...>>::value, void>::type
for_each(std::tuple<args...> &t,
func&& f)
{
f(std::get<i>(t));
for_each<i+1>(t, std::forward<func>(f));
}
//
// Circuits for reverse iteration of a tuple
//
// rfor_each(tuple, [](auto&& elem) { ... });
template<ssize_t i,
class func,
class... args>
constexpr
typename std::enable_if<i == 0, void>::type
rfor_each(const std::tuple<args...> &t,
func&& f)
{}
template<ssize_t i,
class func,
class... args>
constexpr
typename std::enable_if<i == 0, void>::type
rfor_each(std::tuple<args...> &t,
func&& f)
{}
template<ssize_t i,
class func,
class... args>
constexpr
typename std::enable_if<(i > 0), void>::type
rfor_each(const std::tuple<args...> &t,
func&& f)
{
f(std::get<i - 1>(t));
rfor_each<i - 1>(t, std::forward<func>(f));
}
template<ssize_t i,
class func,
class... args>
constexpr
typename std::enable_if<(i > 0), void>::type
rfor_each(std::tuple<args...> &t,
func&& f)
{
f(std::get<i - 1>(t));
rfor_each<i - 1>(t, std::forward<func>(f));
}
template<ssize_t i = -1,
class func,
class... args>
constexpr
typename std::enable_if<(i == -1), void>::type
rfor_each(const std::tuple<args...> &t,
func&& f)
{
constexpr const ssize_t size
{
std::tuple_size<std::tuple<args...>>::value
};
rfor_each<size>(t, std::forward<func>(f));
}
template<ssize_t i = -1,
class func,
class... args>
constexpr
typename std::enable_if<(i == -1), void>::type
rfor_each(std::tuple<args...> &t,
func&& f)
{
constexpr const ssize_t size
{
std::tuple_size<std::tuple<args...>>::value
};
rfor_each<size>(t, std::forward<func>(f));
}
//
// Iteration of a tuple until() style: your closure returns true to continue, false
// to break. until() then remains true to the end, or returns false if not.
template<size_t i,
class func,
class... args>
constexpr
typename std::enable_if<i == std::tuple_size<std::tuple<args...>>::value, bool>::type
until(std::tuple<args...> &t,
func&& f)
{
return true;
}
template<size_t i,
class func,
class... args>
constexpr
typename std::enable_if<i == std::tuple_size<std::tuple<args...>>::value, bool>::type
until(const std::tuple<args...> &t,
func&& f)
{
return true;
}
template<size_t i = 0,
class func,
class... args>
constexpr
typename std::enable_if<i < std::tuple_size<std::tuple<args...>>::value, bool>::type
until(std::tuple<args...> &t,
func&& f)
{
using value_type = typename std::tuple_element<i, std::tuple<args...>>::type;
return f(static_cast<value_type &>(std::get<i>(t)))? until<i+1>(t, f) : false;
}
template<size_t i = 0,
class func,
class... args>
constexpr
typename std::enable_if<i < std::tuple_size<std::tuple<args...>>::value, bool>::type
until(const std::tuple<args...> &t,
func&& f)
{
using value_type = typename std::tuple_element<i, std::tuple<args...>>::type;
return f(static_cast<const value_type &>(std::get<i>(t)))? until<i+1>(t, f) : false;
}
//
// Circuits for reverse iteration of a tuple
//
// runtil(tuple, [](auto&& elem) -> bool { ... });
template<ssize_t i,
class func,
class... args>
constexpr
typename std::enable_if<i == 0, bool>::type
runtil(const std::tuple<args...> &t,
func&& f)
{
return true;
}
template<ssize_t i,
class func,
class... args>
constexpr
typename std::enable_if<i == 0, bool>::type
runtil(std::tuple<args...> &t,
func&& f)
{
return true;
}
template<ssize_t i,
class func,
class... args>
constexpr
typename std::enable_if<(i > 0), bool>::type
runtil(const std::tuple<args...> &t,
func&& f)
{
return f(std::get<i - 1>(t))? runtil<i - 1>(t, f) : false;
}
template<ssize_t i,
class func,
class... args>
constexpr typename std::enable_if<(i > 0), bool>::type
runtil(std::tuple<args...> &t,
func&& f)
{
return f(std::get<i - 1>(t))? runtil<i - 1>(t, f) : false;
}
template<ssize_t i = -1,
class func,
class... args>
constexpr typename std::enable_if<(i == -1), bool>::type
runtil(const std::tuple<args...> &t,
func&& f)
{
constexpr const auto size
{
std::tuple_size<std::tuple<args...>>::value
};
return runtil<size>(t, std::forward<func>(f));
}
template<ssize_t i = -1,
class func,
class... args>
constexpr typename std::enable_if<(i == -1), bool>::type
runtil(std::tuple<args...> &t,
func&& f)
{
constexpr const auto size
{
std::tuple_size<std::tuple<args...>>::value
};
return runtil<size>(t, std::forward<func>(f));
}
//
// test() is a logical inversion of until() for intuitive find()-like
// boolean semantics.
//
template<size_t i,
class func,
class... args>
constexpr auto
test(std::tuple<args...> &t,
func&& f)
{
return !until(t, [&f](auto&& arg)
{
return !f(arg);
});
}
template<size_t i,
class func,
class... args>
constexpr auto
rtest(std::tuple<args...> &t,
func&& f)
{
return !runtil(t, [&f](auto&& arg)
{
return !f(arg);
});
}
//
// Kronecker delta
//
template<size_t j,
size_t i,
class func,
class... args>
constexpr
typename std::enable_if<i == j, void>::type
kronecker_delta(const std::tuple<args...> &t,
func&& f)
{
using value_type = typename std::tuple_element<i, std::tuple<args...>>::type;
f(static_cast<const value_type &>(std::get<i>(t)));
}
template<size_t i,
size_t j,
class func,
class... args>
constexpr
typename std::enable_if<i == j, void>::type
kronecker_delta(std::tuple<args...> &t,
func&& f)
{
using value_type = typename std::tuple_element<i, std::tuple<args...>>::type;
f(static_cast<value_type &>(std::get<i>(t)));
}
template<size_t j,
size_t i = 0,
class func,
class... args>
constexpr
typename std::enable_if<(i < j), void>::type
kronecker_delta(const std::tuple<args...> &t,
func&& f)
{
kronecker_delta<j, i + 1>(t, std::forward<func>(f));
}
template<size_t j,
size_t i = 0,
class func,
class... args>
constexpr
typename std::enable_if<(i < j), void>::type
kronecker_delta(std::tuple<args...> &t,
func&& f)
{
kronecker_delta<j, i + 1>(t, std::forward<func>(f));
}
//
// Get the index of a tuple element by address at runtime
//
template<class tuple>
size_t
indexof(tuple &t, const void *const &ptr)
{
size_t ret(0);
const auto closure([&ret, &ptr]
(auto &elem)
{
if(reinterpret_cast<const void *>(std::addressof(elem)) == ptr)
return false;
++ret;
return true;
});
if(unlikely(until(t, closure)))
throw std::out_of_range("no member of this tuple with that address");
return ret;
}
//
// Tuple layouts are not standard layouts; we can only do this at runtime
//
template<size_t index,
class tuple>
off_t
tuple_offset(const tuple &t)
{
return off_t
{
reinterpret_cast<const uint8_t *>(std::addressof(std::get<index>(t))) -
reinterpret_cast<const uint8_t *>(std::addressof(t))
};
}
} // namespace util
} // namespace ircd