0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2025-01-01 02:14:13 +01:00
construct/ircd/ctx.cc

3129 lines
62 KiB
C++

// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2018 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#include "ctx.h"
/// Dedicated log facility for the ircd::ctx subsystem.
decltype(ircd::ctx::log)
ircd::ctx::log
{
"ctx"
};
//
// ctx::ctx (internal)
//
/// Allocator instance for the ctx instance_list. This allocator will place
/// the std::list nodes in the ctx struct itself.
template<>
decltype(ircd::util::instance_list<ircd::ctx::ctx>::allocator)
ircd::util::instance_list<ircd::ctx::ctx>::allocator
{};
/// Instance list linkage for the list of all ctx instances. All ctxs can be
/// iterated through this list. The allocator makes the overhead of this list
/// negligible.
template<>
decltype(ircd::util::instance_list<ircd::ctx::ctx>::list)
ircd::util::instance_list<ircd::ctx::ctx>::list
{
allocator
};
/// Monotonic ctx id counter state. This counter is incremented for each
/// newly created context.
decltype(ircd::ctx::ctx::id_ctr)
ircd::ctx::ctx::id_ctr
{
0
};
/// This is a pseudo ircd::ios descriptor. We want to account for a ctx's
/// execution slice in the ircd::ios handler list. This posits the entire
/// ircd::ctx system as one ircd::ios handler type among all the others.
/// At this time it is unclear how to hook a context's execution slice in the ircd::ios system.
decltype(ircd::ctx::ctx::ios_desc)
ircd::ctx::ctx::ios_desc
{
"ircd::ctx::ctx"
};
/// Internal context struct ctor
ircd::ctx::ctx::ctx(const string_view &name,
const size_t &stack_max,
const context::flags &flags,
boost::asio::io_service &ios)
:name{name}
,flags{flags}
,strand{ios}
,alarm{ios}
,stack{stack_max}
{
}
ircd::ctx::ctx::~ctx()
noexcept
{
assert(yc == nullptr); // Check that the context isn't active.
}
void
IRCD_CTX_STACK_PROTECT
ircd::ctx::ctx::spawn(context::function func)
{
const boost::coroutines::attributes attrs
{
// Pass the requested stack size
stack.max,
// We ensure stack unwinding and cleanup out here instead.
boost::coroutines::no_stack_unwind,
};
auto bound
{
std::bind(&ctx::operator(), this, ph::_1, std::move(func))
};
mark(prof::event::SPAWN);
boost::asio::spawn(strand, std::move(bound), attrs);
}
/// Base frame for a context.
///
/// This function is the first thing executed on the new context's stack
/// and calls the user's function.
void
IRCD_CTX_STACK_PROTECT
ircd::ctx::ctx::operator()(boost::asio::yield_context yc,
const std::function<void ()> func)
noexcept try
{
assert(!ircd::ctx::current);
ircd::ctx::current = this;
this->yc = &yc;
notes = 1;
stack.base = uintptr_t(__builtin_frame_address(0));
mark(prof::event::ENTER);
const unwind atexit{[this]
{
mark(prof::event::LEAVE);
adjoindre.notify_all();
stack.max = 0;
stack.at = 0;
notes = 0;
this->yc = nullptr;
ircd::ctx::current = nullptr;
if(flags & context::DETACH && !std::uncaught_exceptions())
delete this;
}};
// Check for a precocious interrupt
interruption_point();
// Call the user's function.
func();
assert(!std::uncaught_exceptions());
}
catch(const ircd::ctx::interrupted &)
{
assert(!std::uncaught_exceptions());
if(flags & context::DETACH)
delete this;
}
catch(const ircd::ctx::terminated &)
{
assert(!std::uncaught_exceptions());
if(flags & context::DETACH)
delete this;
}
catch(const std::exception &e)
{
log::critical
{
log, "ctx('%s' id:%u): unhandled: %s",
name,
id,
e.what()
};
assert(!std::uncaught_exceptions());
if(flags & context::DETACH)
delete this;
}
/// Direct context switch to this context.
///
/// This currently doesn't work yet because the suspension state of this
/// context has to be ready to be jumped to and that isn't implemented yet.
void
IRCD_CTX_STACK_PROTECT
ircd::ctx::ctx::jump()
{
assert(this->yc);
assert(current != this); // can't jump to self
auto &yc(*this->yc);
auto &target(*yc.coro_.lock());
// Jump from the currently running context (source) to *this (target)
// with continuation of source after target
current->notes = 0; // Unconditionally cleared here
continuation
{
continuation::false_predicate, continuation::noop_interruptor, [&target]
(auto &yield)
{
target();
}
};
assert(current != this);
assert(current->notes == 1); // notes = 1; set by continuation dtor on wakeup
}
/// Yield (suspend) this context until notified.
///
/// This context must be currently running otherwise bad things. Returns false
/// if the context was notified before actually suspending; the note is then
/// considered handled an another attempt to `wait()` can be made. Returns true
/// if the context suspended and was notified. When a context wakes up the
/// note counter is reset.
bool
IRCD_CTX_STACK_PROTECT
ircd::ctx::ctx::wait()
{
namespace errc = boost::system::errc;
assert(this->yc);
assert(current == this);
if(--notes > 0)
return false;
// Save the return address on the stack here so we can reference it in
// a closure below shortly after resuming from the context switch. The
// return stack buffer may not have our return address anymore so we'll
// issue a prefetch instruction manually soon after the context switch.
const void *const return_address
{
__builtin_return_address(0)
};
// An interrupt invokes this closure to force the alarm to return.
const interruptor &interruptor{[this]
(ctx *const &interruptor) noexcept
{
wake();
}};
// This is currently a dummy predicate; this is where we can take the
// user's real wakeup condition (i.e from a ctx::dock) and use it with
// an internal scheduler.
const predicate &predicate{[this]
{
return notes > 0;
}};
// The construction of the arguments to the call on this stack comprise
// our final control before the context switch. The destruction of the
// arguments comprise the initial control after the context switch.
boost::system::error_code ec; continuation
{
predicate, interruptor, [this, &ec, &return_address]
(auto &yield)
{
alarm.async_wait(yield[ec]);
__builtin_prefetch(return_address, 0, 3);
}
};
assert(ec == errc::operation_canceled || ec == errc::success);
assert(current == this);
assert(notes == 1); // notes = 1; set by continuation dtor on wakeup
return true;
}
/// Notifies this context to resume (wake up from waiting).
///
/// Returns true if this note was the first note received by this context
/// while it's been suspended or false if it's already been notified.
[[gnu::hot]]
bool
ircd::ctx::ctx::note()
noexcept
{
if(notes++ > 0)
return false;
if(this == current)
return true;
return wake();
}
/// Wakes a context without a note (internal)
bool
ircd::ctx::ctx::wake()
noexcept try
{
alarm.cancel();
return true;
}
catch(const std::exception &e)
{
log::critical
{
log, "ctx::wake(%p): %s", this, e.what()
};
return false;
}
/// Throws if this context has been flagged for interruption and clears
/// the flag.
[[gnu::hot]]
void
ircd::ctx::ctx::interruption_point()
{
if(unlikely(interruption()))
{
if(termination_point(std::nothrow))
throw terminated{};
if(likely(interruption_point(std::nothrow)))
throw interrupted
{
"ctx:%lu '%s'", id, name
};
}
}
/// Returns true if this context has been flagged for termination. Does not
/// clear the flag. Sets the NOINTERRUPT flag so the context cannot be further
// interrupted which simplifies the termination process.
[[gnu::hot]]
bool
ircd::ctx::ctx::termination_point(std::nothrow_t)
noexcept
{
if(unlikely(flags & context::TERMINATED))
{
assert(~flags & context::NOINTERRUPT);
flags |= context::NOINTERRUPT;
mark(prof::event::TERMINATE);
return true;
}
else return false;
}
/// Returns true if this context has been flagged for interruption and
/// clears the flag.
[[gnu::hot]]
bool
ircd::ctx::ctx::interruption_point(std::nothrow_t)
noexcept
{
if(unlikely(flags & context::INTERRUPTED))
{
assert(~flags & context::NOINTERRUPT);
flags &= ~context::INTERRUPTED;
mark(prof::event::INTERRUPT);
return true;
}
else return false;
}
/// True if this context has been flagged for interruption or termination
/// and interrupts are not blocked.
[[gnu::hot]]
bool
ircd::ctx::ctx::interruption()
const noexcept
{
static const auto &flags
{
context::TERMINATED | context::INTERRUPTED
};
// Fast test-and-bail for the very likely case there is no interrupt.
if(likely((this->flags & flags) == 0))
return false;
// The NOINTERRUPT flag works by pretending there is no interrupt flag
// set and also does not clear the flag. This allows the interrupt
// to remain pending until the uninterruptible section is complete.
if(this->flags & context::NOINTERRUPT)
return false;
return true;
}
[[gnu::hot]]
bool
ircd::ctx::ctx::started()
const noexcept
{
return stack.base != 0;
}
[[gnu::hot]]
bool
ircd::ctx::ctx::finished()
const noexcept
{
return started() && yc == nullptr;
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx/ctx.h
//
[[gnu::hot]]
const uint64_t &
ircd::ctx::epoch()
noexcept
{
return prof::get(prof::event::YIELD);
}
bool
ircd::ctx::for_each(const std::function<bool (ctx &)> &closure)
{
for(auto &ctx : ctx::list)
if(!closure(*ctx))
return false;
return true;
}
/// Yield to context `ctx`.
///
///
void
ircd::ctx::yield(ctx &ctx)
{
assert(current);
//ctx.jump();
// !!! TODO !!!
// XXX: We can't jump directly to a context if it's waiting on its alarm, and
// we don't know whether it's waiting on its alarm. We can add another flag to
// inform us of that, but most contexts are usually waiting on their alarm anyway.
//
// Perhaps a better way to do this would be to centralize the alarms into a single
// context with the sole job of waiting on a single alarm. Then it can schedule
// things allowing for more direct jumps until all work is complete.
// !!! TODO !!!
notify(ctx);
}
/// Notifies `ctx` to wake up from another std::thread
void
ircd::ctx::notify(ctx &ctx,
threadsafe_t)
{
signal(ctx, [&ctx]
{
notify(ctx);
});
}
/// Notifies `ctx` to wake up. This will enqueue the resumption, not jump
/// directly to `ctx`.
bool
ircd::ctx::notify(ctx &ctx)
noexcept
{
return ctx.note();
}
/// Executes `func` sometime between executions of `ctx` with thread-safety
/// so `func` and `ctx` are never executed concurrently no matter how many
/// threads the io_service has available to execute events on.
void
ircd::ctx::signal(ctx &ctx,
std::function<void ()> func)
{
ctx.strand.post(std::move(func));
}
/// Marks `ctx` for termination. Terminate is similar to interrupt() but the
/// exception thrown is ctx::terminate which does not participate in the
/// std::exception hierarchy. Project code is unlikely to catch this.
void
ircd::ctx::terminate(ctx &ctx)
{
if(finished(ctx))
return;
if(termination(ctx))
return;
ctx.flags |= context::TERMINATED;
if(!interruptible(ctx))
return;
if(likely(&ctx != current && ctx.cont != nullptr))
(*ctx.cont->intr)(current);
}
/// Marks `ctx` for interruption and enqueues it for resumption to receive the
/// interrupt which will be an exception coming out of the point where the
/// `ctx` was yielding.
///
/// NOTE: If the IRCd run::level is QUIT, an interrupt() becomes a terminate().
void
ircd::ctx::interrupt(ctx &ctx)
{
if(unlikely(run::level == run::level::QUIT))
return terminate(ctx);
if(finished(ctx))
return;
if(interruption(ctx))
return;
ctx.flags |= context::INTERRUPTED;
if(!interruptible(ctx))
return;
if(likely(&ctx != current && ctx.cont != nullptr))
(*ctx.cont->intr)(current);
}
/// Marks `ctx` for whether to allow or suppress interruption. Suppression
/// does not ignore an interrupt itself, it only ignores the interruption
/// points. Thus when a suppression ends if the interrupt flag was ever set
/// the next interruption point will throw as expected.
[[gnu::hot]]
void
ircd::ctx::interruptible(ctx &ctx,
const bool &b)
{
if(b)
ctx.flags &= ~context::NOINTERRUPT;
else
ctx.flags |= context::NOINTERRUPT;
}
/// !running() && notes > 0
[[gnu::hot]]
bool
ircd::ctx::queued(const ctx &ctx)
noexcept
{
return !running(ctx) && notes(ctx) > 0;
}
/// started() && !finished() && !running
[[gnu::hot]]
bool
ircd::ctx::waiting(const ctx &ctx)
noexcept
{
return started(ctx) && !finished(ctx) && !running(ctx);
}
/// Indicates if `ctx` is the current ctx
[[gnu::hot]]
bool
ircd::ctx::running(const ctx &ctx)
noexcept
{
return &ctx == current;
}
/// Indicates if `ctx` was ever jumped to
[[gnu::hot]]
bool
ircd::ctx::started(const ctx &ctx)
noexcept
{
return ctx.started();
}
/// Indicates if the base frame for `ctx` returned
[[gnu::hot]]
bool
ircd::ctx::finished(const ctx &ctx)
noexcept
{
return ctx.finished();
}
/// Indicates if `ctx` was terminated; does not clear the flag
[[gnu::hot]]
bool
ircd::ctx::termination(const ctx &c)
noexcept
{
return c.flags & context::TERMINATED;
}
/// Indicates if `ctx` was interrupted; does not clear the flag
[[gnu::hot]]
bool
ircd::ctx::interruption(const ctx &c)
noexcept
{
return c.flags & context::INTERRUPTED;
}
/// Indicates if `ctx` will suppress any interrupts.
[[gnu::hot]]
bool
ircd::ctx::interruptible(const ctx &c)
noexcept
{
return ~c.flags & context::NOINTERRUPT;
}
/// Returns the cycle count for `ctx`
[[gnu::hot]]
const ulong &
ircd::ctx::cycles(const ctx &ctx)
noexcept
{
return prof::get(ctx, prof::event::CYCLES);
}
/// Returns the yield count for `ctx`
[[gnu::hot]]
const uint64_t &
ircd::ctx::epoch(const ctx &ctx)
noexcept
{
return prof::get(ctx, prof::event::YIELD);
}
/// Returns the notification count for `ctx`
[[gnu::hot]]
const int32_t &
ircd::ctx::notes(const ctx &ctx)
noexcept
{
return ctx.notes;
}
/// Returns the notification count for `ctx`
[[gnu::hot]]
const size_t &
ircd::ctx::stack_at(const ctx &ctx)
noexcept
{
return ctx.stack.at;
}
/// Returns the notification count for `ctx`
[[gnu::hot]]
const size_t &
ircd::ctx::stack_max(const ctx &ctx)
noexcept
{
return ctx.stack.max;
}
/// Returns the developer's optional name literal for `ctx`
[[gnu::hot]]
ircd::string_view
ircd::ctx::name(const ctx &ctx)
noexcept
{
return ctx.name;
}
/// Returns a reference to unique ID for `ctx` (which will go away with `ctx`)
[[gnu::hot]]
const uint64_t &
ircd::ctx::id(const ctx &ctx)
noexcept
{
return ctx.id;
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx/this_ctx.h
//
// set by the continuation object and the base frame.
__thread ircd::ctx::ctx *
ircd::ctx::current;
/// Yield the currently running context until `time_point` ignoring notes
void
ircd::ctx::this_ctx::sleep_until(const system_point &tp)
{
while(!wait_until(tp, std::nothrow));
}
/// Yield the currently running context for `duration` or until notified.
///
/// Returns the duration remaining if notified, or <= 0 if suspended for
/// the full duration, or unchanged if no suspend ever took place.
ircd::microseconds
ircd::ctx::this_ctx::wait(const microseconds &duration,
const std::nothrow_t &)
{
const boost::posix_time::microseconds ptime_duration
{
duration.count()
};
auto &c(cur());
c.alarm.expires_from_now(ptime_duration);
c.wait(); // now you're yielding with portals
const auto &ret
{
c.alarm.expires_from_now()
};
// return remaining duration.
// this is > 0 if notified
// this is unchanged if a note prevented any wait at all
return microseconds(ret.total_microseconds());
}
/// Yield the currently running context until notified or `time_point`.
///
/// Returns true if this function returned because `time_point` was hit or
/// false because this context was notified.
bool
ircd::ctx::this_ctx::wait_until(const system_point &tp,
const std::nothrow_t &)
{
const auto &diff
{
tp - now<system_point>()
};
const boost::posix_time::microseconds duration
{
duration_cast<microseconds>(diff).count()
};
const auto &expires_at
{
boost::posix_time::microsec_clock::universal_time() + duration
};
auto &c(cur());
c.alarm.expires_at(expires_at);
c.wait(); // now you're yielding with portals
const auto &ret
{
c.alarm.expires_from_now()
};
return ret <= boost::posix_time::microseconds(0);
}
/// Yield the currently running context until notified.
void
ircd::ctx::this_ctx::wait()
{
auto &c(cur());
c.alarm.expires_at(boost::posix_time::pos_infin);
c.wait(); // now you're yielding with portals
}
/// Post the currently running context to the event queue and then suspend to
/// allow other contexts in the queue to run.
///
/// Until we have our own queue the ios queue makes no guarantees if the queue
/// is FIFO or LIFO etc :-/ It is generally bad practice to use this function,
/// as one should make the effort to devise a specific cooperative strategy for
/// how context switching occurs rather than this coarse/brute technique.
void
ircd::ctx::this_ctx::yield()
{
static ios::descriptor descriptor
{
"ircd::ctx courtesy yield"
};
ircd::defer
{
descriptor, ios::synchronous
};
}
size_t
ircd::ctx::this_ctx::stack_at_here()
{
assert(current);
return cur().stack.base - uintptr_t(__builtin_frame_address(0));
}
/// Throws interrupted if the currently running context was interrupted
/// and clears the interrupt flag.
void
ircd::ctx::this_ctx::interruptible(const bool &b)
{
const bool theirs
{
interruptible(cur())
};
if(theirs && !b)
interruption_point();
interruptible(cur(), b);
if(!theirs && b)
interruption_point();
}
void
ircd::ctx::this_ctx::interruptible(const bool &b,
std::nothrow_t)
noexcept
{
interruptible(cur(), b);
}
bool
ircd::ctx::this_ctx::interruptible()
noexcept
{
return interruptible(cur());
}
/// Throws interrupted if the currently running context was interrupted
/// and clears the interrupt flag.
void
ircd::ctx::this_ctx::interruption_point()
{
// Asserting to know if this call is useless as it's being made in
// an uninterruptible scope anyway. It's okay to relax this assertion.
//assert(interruptible());
return cur().interruption_point();
}
/// Returns true if the currently running context was interrupted and clears
/// the interrupt flag.
bool
ircd::ctx::this_ctx::interruption_requested()
noexcept
{
return interruption(cur()) || termination(cur());
}
/// Returns unique ID of currently running context
[[gnu::hot]]
const uint64_t &
ircd::ctx::this_ctx::id()
noexcept
{
static const uint64_t zero{0};
return current? id(cur()) : zero;
}
//
// uinterruptible
//
[[gnu::hot]]
ircd::ctx::this_ctx::uninterruptible::uninterruptible()
:theirs
{
interruptible(cur())
}
{
interruptible(false);
}
[[gnu::hot]]
ircd::ctx::this_ctx::uninterruptible::~uninterruptible()
noexcept(false)
{
interruptible(theirs);
}
//
// uninterruptible::nothrow
//
[[gnu::hot]]
ircd::ctx::this_ctx::uninterruptible::nothrow::nothrow()
noexcept
:theirs
{
interruptible(cur())
}
{
interruptible(false, std::nothrow);
}
[[gnu::hot]]
ircd::ctx::this_ctx::uninterruptible::nothrow::~nothrow()
noexcept
{
interruptible(theirs, std::nothrow);
}
//
// critical_assertion
//
namespace ircd::ctx
{
extern thread_local bool critical_asserted;
}
decltype(ircd::ctx::critical_asserted)
thread_local
ircd::ctx::critical_asserted;
#ifndef NDEBUG
ircd::ctx::this_ctx::critical_assertion::critical_assertion()
:theirs{critical_asserted}
{
critical_asserted = true;
}
#endif
#ifndef NDEBUG
ircd::ctx::this_ctx::critical_assertion::~critical_assertion()
noexcept
{
assert(critical_asserted);
critical_asserted = theirs;
}
#endif
#ifndef NDEBUG
void
ircd::ctx::assert_critical()
{
if(unlikely(critical_asserted))
throw panic
{
"%lu '%s' :Illegal context switch", id(), name()
};
}
#else
void
ircd::ctx::assert_critical()
{
}
#endif
//
// stack_usage_assertion
//
#ifndef NDEBUG
ircd::ctx::this_ctx::stack_usage_assertion::stack_usage_assertion()
{
const auto stack_usage(stack_at_here());
assert(stack_usage < cur().stack.max * double(prof::settings::stack_usage_assertion));
}
#endif
#ifndef NDEBUG
ircd::ctx::this_ctx::stack_usage_assertion::~stack_usage_assertion()
noexcept
{
const auto stack_usage(stack_at_here());
assert(stack_usage < cur().stack.max * double(prof::settings::stack_usage_assertion));
}
#endif
///////////////////////////////////////////////////////////////////////////////
//
// ctx/syscall_usage_warning.h
//
#ifndef NDEBUG
ircd::ctx::this_ctx::syscall_usage_warning::~syscall_usage_warning()
noexcept
{
const uint64_t total
{
timer.stopped?
timer.at():
timer.sample()
};
if(likely(!total))
return;
thread_local char buf[512];
const string_view reason
{
fmt::vsprintf{buf, fmt, ap}
};
thread_local char tmbuf[64];
log::dwarning
{
log, "[%s] context id:%lu watchdog :system call took %s :%s",
current?
name(cur()):
ios::handler::current?
name(*ios::handler::current):
"*"_sv,
current? id(cur()) : 0,
pretty_nanoseconds(tmbuf, total, true),
reason
};
}
#endif
///////////////////////////////////////////////////////////////////////////////
//
// ctx/slice_usage_warning.h
//
#ifndef NDEBUG
ircd::ctx::this_ctx::slice_usage_warning::slice_usage_warning(const string_view &fmt,
va_rtti &&ap)
:fmt
{
fmt
}
,ap
{
std::move(ap)
}
,start
{
// Set the start value to the total number of cycles accrued by this
// context including the current time slice.
!current?
prof::cycles():
~cur().flags & context::SLICE_EXEMPT?
prof::get(cur(), prof::event::CYCLES) + prof::cur_slice_cycles():
0
}
{
}
#endif
#ifndef NDEBUG
ircd::ctx::this_ctx::slice_usage_warning::~slice_usage_warning()
noexcept
{
if(current && cur().flags & context::SLICE_EXEMPT)
return;
// Set the final value by first adding the total number of cycles ever
// for this context to the current time slice. Then subtract the start
// sample. This way we're only counting the execution time of this context
// and not counting any time while it's yielding. A simple difference of
// two rdtsc() samples would be insufficient.
const auto stop
{
current?
prof::get(cur(), prof::event::CYCLES) + prof::cur_slice_cycles():
prof::cycles()
};
assert(stop >= start);
const auto total(stop - start);
if(likely(!prof::slice_exceeded_warning(total)))
return;
thread_local char buf[256];
const string_view reason{fmt::vsprintf
{
buf, fmt, ap
}};
const ulong &threshold{prof::settings::slice_warning};
log::dwarning
{
log, "[%s] context id:%lu watchdog :timeslice excessive; lim:%lu this:%lu pct:%.2lf :%s",
current? name(cur()) : ""_sv,
current? id(cur()) : 0,
threshold,
total,
(double(total) / double(threshold)) * 100.0,
reason
};
}
#endif
///////////////////////////////////////////////////////////////////////////////
//
// ctx/continuation.h
//
decltype(ircd::ctx::continuation::true_predicate)
ircd::ctx::continuation::asio_predicate{[]
() -> bool
{
return false;
}};
decltype(ircd::ctx::continuation::true_predicate)
ircd::ctx::continuation::true_predicate{[]
() -> bool
{
return true;
}};
decltype(ircd::ctx::continuation::false_predicate)
ircd::ctx::continuation::false_predicate{[]
() -> bool
{
return false;
}};
decltype(ircd::ctx::continuation::noop_interruptor)
ircd::ctx::continuation::noop_interruptor{[]
(ctx *const &interruptor) -> void
{
return;
}};
//
// continuation
//
[[gnu::hot]]
ircd::ctx::continuation::continuation(const predicate &pred,
const interruptor &intr,
const yield_closure &closure)
:self
{
ircd::ctx::current
}
,pred
{
&pred
}
,intr
{
&intr
}
,frame_address
{
__builtin_frame_address(0)
}
,uncaught_exceptions
{
exception_handler::uncaught_exceptions(0)
}
{
assert(self != nullptr);
assert(self->notes <= 1);
// Check here if the developer has placed a critical assertion on the stack
// but this yield is still occuring under its scope. That's bad.
assert_critical();
assert(!critical_asserted);
// Confirming the uncaught exception count was saved and set to zero in the
// initializer list.
assert(!std::uncaught_exceptions());
// Note: Construct an instance of ctx::exception_handler to enable yielding
// in your catch block.
//
// GNU cxxabi uses a singly-linked forward list (aka the 'exception
// stack') for pending exception activities. Due to this limitation we
// cannot interleave _cxa_begin_catch() and __cxa_end_catch() by yielding
// the ircd::ctx in an exception handler.
assert(!std::current_exception());
// Check that we saved a valid context reference to this object for later.
assert(self->yc);
// Point to this continuation instance (which is on the context's stack)
// from the context's instance. This allows its features to be accessed
// while the context is asleep (i.e interruptor and predicate functions).
// NOTE that this pointer is not ever null'ed after being set here. It will
// remain invalid once the context resumes. You know if this is a valid
// pointer because the context is asleep; otherwise it's a trash value.
self->cont = this;
// Tell the profiler this is the point where the context has concluded
// its execution run and is now yielding.
mark(prof::event::YIELD);
// Null the fundamental current context register as the last operation
// during execution before yielding. When a context resumes it will
// restore this register; otherwise it remains null for executions on
// the program's main stack.
ircd::ctx::current = nullptr;
// Run the provided routine which performs the actual context switch.
// Everything happening in this closure is no longer considered part
// of this context, but it is technically operating on this stack.
std::exception_ptr eptr; try
{
closure(*self->yc);
}
catch(...)
{
eptr = std::current_exception();
}
// The branch predictor's return address buffer is likely useless now.
// We try to manually ensure the next return target is cached.
__builtin_prefetch(__builtin_return_address(0), 0, 3);
// Restore the current context register.
ircd::ctx::current = self;
// Unconditionally reset the notes counter to 1 because we're awake now.
self->notes = 1;
// Restore exception state
assert(std::uncaught_exceptions() == 0);
exception_handler::uncaught_exceptions(uncaught_exceptions);
// self->continuation is not null'ed here; it remains an invalid
// pointer while the context is awake.
// Tell the profiler this is the point where the context is now resuming.
mark(prof::event::CONTINUE);
// Check for an interrupt or termination that was sent while asleep.
if(unlikely(self->interruption()))
{
self->interruption_point();
__builtin_unreachable();
}
// Check if the operation failed; it's now safe to throw that.
if(unlikely(eptr))
std::rethrow_exception(eptr);
}
[[gnu::hot]]
ircd::ctx::continuation::operator
boost::asio::yield_context &()
noexcept
{
assert(self);
assert(self->yc);
return *self->yc;
}
[[gnu::hot]]
ircd::ctx::continuation::operator
const boost::asio::yield_context &()
const noexcept
{
assert(self);
assert(self->yc);
return *self->yc;
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx/context.h
//
decltype(ircd::ctx::DEFAULT_STACK_SIZE)
ircd::ctx::DEFAULT_STACK_SIZE
{
128_KiB
};
// Linkage here for default construction because ctx is internal.
ircd::ctx::context::context()
{
}
ircd::ctx::context::context(const string_view &name,
const size_t &stack_size,
function func,
const flags &flags)
:context
{
name, stack_size, flags, std::move(func)
}
{
}
ircd::ctx::context::context(const string_view &name,
const flags &flags,
function func)
:context
{
name, DEFAULT_STACK_SIZE, flags, std::move(func)
}
{
}
ircd::ctx::context::context(const string_view &name,
function func,
const flags &flags)
:context
{
name, DEFAULT_STACK_SIZE, flags, std::move(func)
}
{
}
ircd::ctx::context::context(function func,
const flags &flags)
:context
{
"<noname>", DEFAULT_STACK_SIZE, flags, std::move(func)
}
{
}
ircd::ctx::context::context(const string_view &name,
const size_t &stack_sz,
const flags &flags,
function func)
:c
{
std::make_unique<ctx>
(
name,
stack_sz,
!current? flags | POST : flags,
ios::get()
)
}
{
static ios::descriptor desc[3]
{
{ "ircd::ctx::spawn post" },
{ "ircd::ctx::spawn defer" },
{ "ircd::ctx::spawn dispatch" },
};
auto spawn
{
std::bind(&ctx::spawn, c.get(), std::move(func))
};
// When the user passes the DETACH flag we want to release the unique_ptr
// of the ctx if and only if that ctx is committed to freeing itself. Our
// commitment ends at the 180 of this function. If no exception was thrown
// we expect the context to be committed to entry. If the POST flag is
// supplied and it gets lost in the asio queue it will not be entered, and
// will not be able to free itself; that will leak.
const unwind::nominal release{[this]
{
assert(c);
if(c->flags & context::DETACH)
this->detach();
}};
if(c->flags & POST)
{
ios::post(desc[0], std::move(spawn));
return;
}
continuation
{
continuation::false_predicate, continuation::noop_interruptor, [&spawn, this]
(auto &yield)
{
if(c->flags & DISPATCH)
{
ios::dispatch(desc[2], std::move(spawn));
return;
}
if(c->flags & DEFER)
{
ios::defer(desc[1], std::move(spawn));
return;
}
spawn();
}
};
}
ircd::ctx::context::context(context &&other)
noexcept
:c{std::move(other.c)}
{
}
ircd::ctx::context &
ircd::ctx::context::operator=(context &&other)
noexcept
{
std::swap(this->c, other.c);
return *this;
}
ircd::ctx::context::~context()
noexcept
{
if(!c)
return;
// Can't join to bare metal, only from within another context.
if(current)
{
const uninterruptible::nothrow ui;
// When the WAIT_JOIN flag is given we wait for the context to
// complete cooperatively before this destructs.
if(~c->flags & context::WAIT_JOIN)
terminate();
join();
return;
}
// because *this uses unique_ptr's, if we dtor the ircd::ctx from
// right here and ircd::ctx hasn't been entered yet because the user
// passed the POST flag, the ctx::spawn() is still sitting in the ios
// queue.
if(!started(*c))
{
detach();
return;
}
// When this is bare metal the above join branch will not have been
// taken. In that case we should detach the context so it frees itself,
// but only if the context has not already finished.
if(!current && !finished(*c))
{
detach();
return;
}
}
void
ircd::ctx::context::join()
{
if(joined())
return;
assert(bool(c));
mark(prof::event::JOIN);
c->adjoindre.wait([this]
{
return joined();
});
mark(prof::event::JOINED);
}
ircd::ctx::ctx *
ircd::ctx::context::detach()
{
assert(bool(c));
c->flags |= DETACH;
return c.release();
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx_pool.h
//
const ircd::string_view &
ircd::ctx::name(const pool &pool)
{
return pool.name;
}
decltype(ircd::ctx::pool::default_name)
ircd::ctx::pool::default_name
{
"<unnamed pool>"
};
decltype(ircd::ctx::pool::default_opts)
ircd::ctx::pool::default_opts
{};
//
// pool::pool
//
ircd::ctx::pool::pool(const string_view &name,
const opts &opt)
:name{name}
,opt{&opt}
{
// Can't spawn contexts when the ios isn't available. This may be the
// case for some static instances of pool: initial_ctxs value is ignored.
if(ircd::ios::available())
add(this->opt->initial_ctxs);
}
ircd::ctx::pool::~pool()
noexcept
{
terminate();
join();
assert(ctxs.empty());
assert(q.empty());
}
void
ircd::ctx::pool::join()
{
set(0);
}
void
ircd::ctx::pool::interrupt()
{
for(auto &context : ctxs)
context.interrupt();
}
void
ircd::ctx::pool::terminate()
{
for(auto &context : ctxs)
context.terminate();
}
void
ircd::ctx::pool::min(const size_t &num)
{
if(size() < num)
set(num);
}
void
ircd::ctx::pool::set(const size_t &num)
{
if(size() > num)
del(size() - num);
else
add(num - size());
}
void
ircd::ctx::pool::del(const size_t &num)
{
const auto requested
{
ssize_t(size()) - ssize_t(num)
};
const auto target
{
size_t(std::max(requested, 0L))
};
while(ctxs.size() > target)
ctxs.pop_back();
}
void
ircd::ctx::pool::add(const size_t &num)
{
assert(opt);
for(size_t i(0); i < num; ++i)
ctxs.emplace_back(name, opt->stack_size, context::POST, std::bind(&pool::main, this));
}
void
ircd::ctx::pool::operator()(closure closure)
{
assert(opt);
if(!avail() && q.size() > size_t(opt->queue_max_soft) && opt->queue_max_dwarning)
log::dwarning
{
log, "pool(%p '%s') ctx(%p): size:%zu active:%zu queue:%zu exceeded soft max:%zu",
this,
name,
current,
size(),
active(),
q.size(),
opt->queue_max_soft
};
if(current && opt->queue_max_soft >= 0 && opt->queue_max_blocking)
q_max.wait([this]
{
return !wouldblock();
});
if(unlikely(q.size() >= size_t(opt->queue_max_hard)))
throw error
{
"pool(%p '%s') ctx(%p): size:%zu avail:%zu queue:%zu exceeded hard max:%zu",
this,
name,
current,
size(),
avail(),
q.size(),
opt->queue_max_hard
};
q.push(std::move(closure));
}
bool
ircd::ctx::pool::wouldblock()
const
{
if(q.size() < size_t(opt->queue_max_soft))
return false;
if(!opt->queue_max_soft && q.size() < avail())
return false;
return true;
}
/// Main execution loop for a pool.
void
ircd::ctx::pool::main()
noexcept try
{
const scope_count running
{
this->running
};
q_max.notify();
while(!termination(cur()))
work();
}
catch(const interrupted &e)
{
// log::debug
// {
// log, "pool(%p) ctx(%p): %s", this, &cur(), e.what()
// };
}
catch(const terminated &e)
{
// log::debug
// {
// log, "pool(%p) ctx(%p): terminated", this, &cur()
// };
}
void
ircd::ctx::pool::work()
try
{
const auto func
{
q.pop()
};
const scope_count working
{
this->working
};
const unwind avail([this]
{
q_max.notify();
});
// Execute the user's function
func();
// Check for latent interruption to this ctx. If there's anything pending
// it's best to get rid of it sooner rather than later.
interruption_point();
}
catch(const interrupted &e)
{
// Interrupt is stopped here so this ctx can be reused for a new job.
return;
}
catch(const std::exception &e)
{
log::critical
{
log, "pool(%p '%s') ctx(%p '%s' id:%u): unhandled: %s",
this,
name,
current,
ircd::ctx::name(cur()),
ircd::ctx::id(cur()),
e.what()
};
}
void
ircd::ctx::debug_stats(const pool &pool)
{
log::debug
{
log, "pool '%s' total: %zu avail: %zu queued: %zu active: %zu pending: %zu",
pool.name,
pool.size(),
pool.avail(),
pool.queued(),
pool.active(),
pool.pending()
};
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx_prof.h
//
namespace ircd::ctx::prof
{
thread_local ulong _slice_start; // Current/last time slice started
thread_local ulong _slice_stop; // Last time slice ended
thread_local ticker _total; // Totals kept for all contexts.
static void check_stack();
static void check_slice();
static void slice_enter() noexcept;
static void slice_leave() noexcept;
static void handle_cur_continue();
static void handle_cur_yield();
static void handle_cur_leave();
static void handle_cur_enter();
static void inc_ticker(const event &e) noexcept;
}
// stack_usage_warning at 1/3 engineering tolerance
decltype(ircd::ctx::prof::settings::stack_usage_warning)
ircd::ctx::prof::settings::stack_usage_warning
{
{ "name", "ircd.ctx.prof.stack_usage_warning" },
{ "default", 0.33 },
};
// stack_usage_assertion at 1/2 engineering tolerance
decltype(ircd::ctx::prof::settings::stack_usage_assertion)
ircd::ctx::prof::settings::stack_usage_assertion
{
{ "name", "ircd.ctx.prof.stack_usage_assertion" },
{ "default", 0.50 },
};
// slice_warning after this number of tsc ticks...
decltype(ircd::ctx::prof::settings::slice_warning)
ircd::ctx::prof::settings::slice_warning
{
{ "name", "ircd.ctx.prof.slice_warning" },
{ "default", 280 * 1000000L },
};
// slice_interrupt after this number of tsc ticks...
decltype(ircd::ctx::prof::settings::slice_interrupt)
ircd::ctx::prof::settings::slice_interrupt
{
{ "name", "ircd.ctx.prof.slice_interrupt" },
{ "default", 0L },
{ "persist", false },
};
// slice_assertion after this number of tsc ticks...
decltype(ircd::ctx::prof::settings::slice_assertion)
ircd::ctx::prof::settings::slice_assertion
{
{ "name", "ircd.ctx.prof.slice_assertion" },
{ "default", 0L },
{ "persist", false },
};
[[gnu::hot]]
void
ircd::ctx::prof::mark(const event &e)
{
inc_ticker(e);
switch(e)
{
case event::ENTER: handle_cur_enter(); break;
case event::LEAVE: handle_cur_leave(); break;
case event::YIELD: handle_cur_yield(); break;
case event::CONTINUE: handle_cur_continue(); break;
default: break;
}
}
[[gnu::hot]]
void
ircd::ctx::prof::inc_ticker(const event &e)
noexcept
{
assert(uint8_t(e) < num_of<event>());
// Increment the ticker for all contexts.
_total.event[uint8_t(e)]++;
// Increment the ticker for the context's instance
if(likely(current))
current->profile.event[uint8_t(e)]++;
}
[[gnu::hot]]
void
ircd::ctx::prof::handle_cur_enter()
{
slice_enter();
}
[[gnu::hot]]
void
ircd::ctx::prof::handle_cur_leave()
{
slice_leave();
check_slice();
}
[[gnu::hot]]
void
ircd::ctx::prof::handle_cur_yield()
{
slice_leave();
check_slice();
check_stack();
}
[[gnu::hot]]
void
ircd::ctx::prof::handle_cur_continue()
{
slice_enter();
}
[[gnu::hot]]
void
ircd::ctx::prof::slice_enter()
noexcept
{
assert(ctx::ios_desc.stats);
++ctx::ios_desc.stats->calls;
_slice_start = cycles();
assert(_slice_start >= _slice_stop);
}
[[gnu::hot]]
void
ircd::ctx::prof::slice_leave()
noexcept
{
_slice_stop = cycles();
// NOTE: will fail without constant_tsc;
// NOTE: may fail without nonstop_tsc after OS suspend mode
assert(_slice_stop >= _slice_start);
auto &c(cur());
const auto last_slice
{
_slice_stop - _slice_start
};
static constexpr auto pos
{
size_t(prof::event::CYCLES)
};
_total.event.at(pos) += last_slice;
c.profile.event.at(pos) += last_slice;
assert(c.ios_desc.stats);
c.ios_desc.stats->slice_total += last_slice;
c.ios_desc.stats->slice_last = last_slice;
c.stack.at = stack_at_here();
}
#ifndef NDEBUG
void
ircd::ctx::prof::check_slice()
{
auto &c(cur());
const auto &slice_exempt
{
c.flags & context::SLICE_EXEMPT
};
assert(_slice_stop >= _slice_start);
const auto last_slice
{
_slice_stop - _slice_start
};
// Slice warning
if(unlikely(slice_exceeded_warning(last_slice) && !slice_exempt))
log::dwarning
{
log, "[%s] context id:%lu watchdog :timeslice excessive; lim:%lu last:%lu pct:%.2lf",
name(c),
id(c),
ulong(settings::slice_warning),
last_slice,
((double(last_slice) / double(ulong(settings::slice_warning))) * 100.0)
};
// Slice assertion
assert(!slice_exceeded_assertion(last_slice) || slice_exempt);
// Slice interrupt
if(unlikely(slice_exceeded_interrupt(last_slice) && !slice_exempt))
throw interrupted
{
"[%s] context id:%lu watchdog interrupt; lim:%lu last:%lu total:%lu",
name(c),
id(c),
ulong(settings::slice_interrupt),
last_slice,
cycles(c),
};
}
#else
void
ircd::ctx::prof::check_slice()
{
}
#endif // NDEBUG
#ifndef NDEBUG
void
ircd::ctx::prof::check_stack()
{
auto &c(cur());
const auto &stack_exempt
{
c.flags & context::STACK_EXEMPT
};
const auto &stack_at
{
c.stack.at
};
// Stack warning
if(unlikely(!stack_exempt && stack_exceeded_warning(stack_at)))
log::dwarning
{
log, "[%s] id:%lu watchdog :stack used %zu of %zu bytes",
name(c),
id(c),
stack_at,
c.stack.max
};
// Stack assertion
assert(stack_exempt || !stack_exceeded_assertion(stack_at));
}
#else
void
ircd::ctx::prof::check_stack()
{
}
#endif // NDEBUG
bool
ircd::ctx::prof::stack_exceeded_assertion(const size_t &stack_at)
noexcept
{
const auto &c(cur());
const auto &stack_max(c.stack.max);
const double &stack_usage_assertion(settings::stack_usage_assertion);
return stack_usage_assertion > 0.0?
stack_at >= c.stack.max * settings::stack_usage_assertion:
false;
}
bool
ircd::ctx::prof::stack_exceeded_warning(const size_t &stack_at)
noexcept
{
const auto &c(cur());
const auto &stack_max(c.stack.max);
const double &stack_usage_warning(settings::stack_usage_warning);
return stack_usage_warning > 0.0?
stack_at >= c.stack.max * stack_usage_warning:
false;
}
bool
ircd::ctx::prof::slice_exceeded_interrupt(const ulong &cycles)
noexcept
{
const ulong &threshold(settings::slice_interrupt);
return threshold > 0 && cycles >= threshold;
}
bool
ircd::ctx::prof::slice_exceeded_assertion(const ulong &cycles)
noexcept
{
const ulong &threshold(settings::slice_assertion);
return threshold > 0 && cycles >= threshold;
}
bool
ircd::ctx::prof::slice_exceeded_warning(const ulong &cycles)
noexcept
{
const ulong &threshold(settings::slice_warning);
return threshold > 0 && cycles >= threshold;
}
[[gnu::hot]]
const ulong &
ircd::ctx::prof::cur_slice_start()
noexcept
{
return _slice_start;
}
[[gnu::hot]]
const uint64_t &
ircd::ctx::prof::get(const ctx &c,
const event &e)
{
return get(c).event.at(uint8_t(e));
}
[[gnu::hot]]
const ircd::ctx::prof::ticker &
ircd::ctx::prof::get(const ctx &c)
noexcept
{
return c.profile;
}
[[gnu::hot]]
const uint64_t &
ircd::ctx::prof::get(const event &e)
{
return get().event.at(uint8_t(e));
}
[[gnu::hot]]
const ircd::ctx::prof::ticker &
ircd::ctx::prof::get()
noexcept
{
return _total;
}
ircd::string_view
ircd::ctx::prof::reflect(const event &e)
{
switch(e)
{
case event::SPAWN: return "SPAWN";
case event::JOIN: return "JOIN";
case event::JOINED: return "JOINED";
case event::ENTER: return "ENTER";
case event::LEAVE: return "LEAVE";
case event::YIELD: return "YIELD";
case event::CONTINUE: return "CONTINUE";
case event::INTERRUPT: return "INTERRUPT";
case event::TERMINATE: return "TERMINATE";
case event::CYCLES: return "CYCLES";
case event::_NUM_: break;
}
return "?????";
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx/promise.h
//
namespace ircd::ctx
{
static void set_promises_state(shared_state_base &);
static void invalidate_promises(shared_state_base &);
static void append(shared_state_base &new_, shared_state_base &old);
static void update(shared_state_base &new_, shared_state_base &old);
static void remove(shared_state_base &);
static void notify(shared_state_base &);
static void set_futures_promise(promise_base &);
static void invalidate_futures(promise_base &);
static void append(promise_base &new_, promise_base &old);
static void update(promise_base &new_, promise_base &old);
static void remove(promise_base &);
}
//
// promise<void>
//
void
ircd::ctx::promise<void>::set_value()
{
if(!valid())
return;
check_pending();
make_ready();
}
ircd::ctx::shared_state<void> &
ircd::ctx::promise<void>::state()
{
return promise_base::state<void>();
}
const ircd::ctx::shared_state<void> &
ircd::ctx::promise<void>::state()
const
{
return promise_base::state<void>();
}
//
// promise_base::promise_base
//
ircd::ctx::promise_base::promise_base(promise_base &&o)
noexcept
:st{std::move(o.st)}
,next{std::move(o.next)}
{
update(*this, o);
}
ircd::ctx::promise_base::promise_base(const promise_base &o)
:st{o.st}
,next{nullptr}
{
append(*this, const_cast<promise_base &>(o));
}
ircd::ctx::promise_base &
ircd::ctx::promise_base::operator=(promise_base &&o)
noexcept
{
this->~promise_base();
st = std::move(o.st);
next = std::move(o.next);
update(*this, o);
return *this;
}
ircd::ctx::promise_base::~promise_base()
noexcept
{
if(promise_base::refcount(*this) == 1)
set_exception(make_exception_ptr<broken_promise>());
remove();
}
void
ircd::ctx::promise_base::set_exception(std::exception_ptr eptr)
{
if(!valid())
return;
check_pending();
for(auto *st(shared_state_base::head(*this)); st; st = st->next)
st->eptr = eptr;
make_ready();
}
void
ircd::ctx::promise_base::remove()
{
if(!valid())
return;
ircd::ctx::remove(*this);
assert(!valid());
}
void
ircd::ctx::promise_base::make_ready()
{
const critical_assertion ca;
assert(valid());
promise_base *p
{
promise_base::head(*this)
};
assert(p);
shared_state_base *next
{
shared_state_base::head(*p)
};
// First we have to chase the linked list of promises reachable
// from this shared_state. invalidate() will null their pointer
// to the shared_state indicating the promise was already satisfied.
// This is done first because the set() to the READY writes to the
// same union as the promise pointer (see shared_state.h). Then
// chase the linked lists of futures and make_ready() each one.
assert(next);
invalidate_promises(*next); do
{
// Now set the shared_state to READY. We know the location of the
// shared state by saving it in this frame earlier, otherwise
// invalidate_promises() would have nulled it.
set(*next, future_state::READY);
// Finally call the notify() routine which will tell the future the promise
// was satisfied and the value/exception is ready for them. This call may
// notify an ircd::ctx and/or post a function to the ircd::ios for a then()
// callback etc.
notify(*next);
}
while((next = next->next));
// At this point the promise should no longer be considered valid; no longer
// referring to the shared_state.
this->st = nullptr;
assert(!valid());
}
/// If no shared state anymore: refcount=0; otherwise the promise
/// list head from p.st->p resolves to at least &p which means refcount>=1
size_t
ircd::ctx::promise_base::refcount(const promise_base &p)
{
const auto ret
{
p.st? refcount(*p.st): 0UL
};
assert((p.st && ret >= 1) || (!p.st && !ret));
return ret;
}
/// Internal use; returns the number of copies of the promise reachable from
/// the linked list headed by the shared state. This is used to indicate when
/// the last copy has destructed which may result in a broken_promise exception
/// being sent to the future.
size_t
ircd::ctx::promise_base::refcount(const shared_state_base &st)
{
size_t ret{0};
if(!is(st, future_state::PENDING))
return ret;
for(const auto *next(head(st)); next; next = next->next)
++ret;
return ret;
}
ircd::ctx::promise_base *
ircd::ctx::promise_base::head(promise_base &p)
{
return p.st && head(*p.st)?
head(*p.st):
std::addressof(p);
}
ircd::ctx::promise_base *
ircd::ctx::promise_base::head(shared_state_base &st)
{
return is(st, future_state::PENDING)?
st.p:
nullptr;
}
const ircd::ctx::promise_base *
ircd::ctx::promise_base::head(const promise_base &p)
{
return p.st && head(*p.st)?
head(*p.st):
std::addressof(p);
}
const ircd::ctx::promise_base *
ircd::ctx::promise_base::head(const shared_state_base &st)
{
return is(st, future_state::PENDING)?
st.p:
nullptr;
}
//
// internal
//
/// Internal semantics; removes the promise from the linked list of promises.
void
ircd::ctx::remove(promise_base &p)
{
promise_base *last
{
promise_base::head(p)
};
if(last == &p)
{
if(p.next)
set_futures_promise(*p.next);
else
invalidate_futures(p);
}
else if(last)
for(auto *next{last->next}; next; last = next, next = next->next)
if(next == &p)
{
last->next = next->next;
break;
}
p.st = nullptr;
p.next = nullptr;
}
/// Internal semantics; updates the location of a promise within the linked
/// list of related promises (for move semantic).
void
ircd::ctx::update(promise_base &new_,
promise_base &old)
{
new_.next = old.next;
promise_base *last
{
promise_base::head(old)
};
if(last == &old)
set_futures_promise(new_);
else if(last)
for(auto *next{last->next}; next; last = next, next = last->next)
if(next == &old)
{
last->next = &new_;
break;
}
old.st = nullptr;
old.next = nullptr;
}
/// Internal semantics; chases the linked list of promises and adds a reference
/// to a new copy at the end (for copy semantic).
void
ircd::ctx::append(promise_base &new_,
promise_base &old)
{
assert(new_.st);
assert(old.st);
if(!old.next)
{
old.next = &new_;
return;
}
promise_base *next{old.next};
for(; next->next; next = next->next);
assert(!next->next);
next->next = &new_;
}
void
ircd::ctx::set_futures_promise(promise_base &p)
{
auto *next
{
shared_state_base::head(p)
};
for(; next; next = next->next)
{
assert(is(*next, future_state::PENDING));
next->p = std::addressof(p);
}
}
void
ircd::ctx::invalidate_futures(promise_base &p)
{
auto *next
{
shared_state_base::head(p)
};
for(; next; next = next->next)
{
assert(is(*next, future_state::PENDING));
next->p = nullptr;
}
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx/shared_shared.h
//
/// Internal use; sets the state indicator within the shared_state object. Take
/// special note that this data is unionized. Setting a state here will clobber
/// the shared_state's reference to its promise.
void
ircd::ctx::set(shared_state_base &st,
const future_state &state)
{
switch(state)
{
case future_state::INVALID: assert(0); return;
case future_state::PENDING: assert(0); return;
case future_state::OBSERVED:
case future_state::READY:
case future_state::RETRIEVED:
default:
st.p = nullptr;
st.st = state;
return;
}
}
/// Internal; check if the current state is something; safe but unnecessary
/// for public use. Take special note here that the state value is unionized.
///
/// A PENDING state returned here does not mean the state contains the
/// enumerated PENDING value itself, but instead contains a valid pointer
/// to a promise.
///
/// An INVALID state shares a zero/null value in the unionized data.
bool
ircd::ctx::is(const shared_state_base &st,
const future_state &state_)
noexcept
{
switch(st.st)
{
case future_state::READY:
case future_state::OBSERVED:
case future_state::RETRIEVED:
return state_ == st.st;
default: switch(state_)
{
case future_state::INVALID:
return st.p == nullptr;
case future_state::PENDING:
return uintptr_t(st.p) >= ircd::info::page_size;
default:
return false;
}
}
}
/// Internal; get the current state of the shared_state; safe but unnecessary
/// for public use.
///
/// NOTE: This operates over a union of a pointer and an enum class. The
/// way we determine whether the data is a pointer or an enum value is
/// with a test of the value being >= the system's page size. This assumes
/// the system does not use the first page of a process's address space
/// to fault on null pointer dereference. This assumption may not hold on
/// all systems or in all environments.
///
/// Alternatively, we can switch this to checking whether the value is simply
/// above the few low-numbered enum values.
ircd::ctx::future_state
ircd::ctx::state(const shared_state_base &st)
noexcept
{
return uintptr_t(st.p) >= ircd::info::page_size?
future_state::PENDING:
st.st;
}
//
// shared_state_base::shared_state_base
//
ircd::ctx::shared_state_base::shared_state_base()
noexcept
{
}
ircd::ctx::shared_state_base::shared_state_base(already_t)
noexcept
{
set(*this, future_state::READY);
}
ircd::ctx::shared_state_base::shared_state_base(promise_base &p)
{
// assign the promise pointer in our new shared_state contained
// in the future. If the promise already has a shared_state, that
// means this is a shared future.
this->p = promise_base::head(p);
assert(!this->next);
// Add this future (shared_state) to the end of the list of futures. Else
// this is not a shared future, this is the head of the futures list told
// to all shared promises.
if(!p.st)
{
p.st = this;
set_promises_state(*this);
}
else append(*this, *p.st);
assert(p.valid());
assert(is(*this, future_state::PENDING));
}
ircd::ctx::shared_state_base::shared_state_base(shared_state_base &&o)
noexcept
:cond{std::move(o.cond)}
,eptr{std::move(o.eptr)}
,then{std::move(o.then)}
,next{std::move(o.next)}
,p{std::move(o.p)}
{
update(*this, o);
}
ircd::ctx::shared_state_base::shared_state_base(const shared_state_base &o)
:p{o.p}
{
append(*this, mutable_cast(o));
}
ircd::ctx::shared_state_base &
ircd::ctx::shared_state_base::operator=(promise_base &p)
{
this->~shared_state_base();
new (this) shared_state_base{p};
assert(p.valid());
assert(is(*this, future_state::PENDING));
return *this;
}
ircd::ctx::shared_state_base &
ircd::ctx::shared_state_base::operator=(shared_state_base &&o)
noexcept
{
this->~shared_state_base();
eptr = std::move(o.eptr);
then = std::move(o.then);
next = std::move(o.next);
p = std::move(o.p);
update(*this, o);
return *this;
}
ircd::ctx::shared_state_base &
ircd::ctx::shared_state_base::operator=(const shared_state_base &o)
{
this->~shared_state_base();
eptr = o.eptr;
then = o.then;
p = o.p;
append(*this, mutable_cast(o));
return *this;
}
ircd::ctx::shared_state_base::~shared_state_base()
noexcept
{
const auto refcount
{
shared_state_base::refcount(*this)
};
if(refcount == 1)
invalidate_promises(*this);
else if(refcount > 1)
remove(*this);
}
//
// util
//
/// Count the number of associated futures
size_t
ircd::ctx::shared_state_base::refcount(const shared_state_base &st)
{
size_t ret{0};
if(!is(st, future_state::PENDING))
return ret;
for(const auto *next(head(st)); next; next = next->next)
++ret;
return ret;
}
/// Get the head of the futures from any associated promise
ircd::ctx::shared_state_base *
ircd::ctx::shared_state_base::head(promise_base &p)
{
return p.st;
}
/// Get the head of the futures from any associated future
ircd::ctx::shared_state_base *
ircd::ctx::shared_state_base::head(shared_state_base &st)
{
return is(st, future_state::PENDING) && head(*st.p)?
head(*st.p):
std::addressof(st);
}
/// Get the head of the futures from any associated promise
const ircd::ctx::shared_state_base *
ircd::ctx::shared_state_base::head(const promise_base &p)
{
return p.st;
}
/// Get the head of the futures from any associated future
const ircd::ctx::shared_state_base *
ircd::ctx::shared_state_base::head(const shared_state_base &st)
{
return is(st, future_state::PENDING) && head(*st.p)?
head(*st.p):
std::addressof(st);
}
//
// internal
//
void
ircd::ctx::notify(shared_state_base &st)
{
if(!st.then)
{
st.cond.notify_all();
return;
}
if(!current)
{
st.cond.notify_all();
assert(bool(st.then));
st.then(st);
st.then = {};
return;
}
const stack_usage_assertion sua;
st.cond.notify_all();
assert(bool(st.then));
st.then(st);
st.then = {};
}
/// Remove the future from the list of futures.
void
ircd::ctx::remove(shared_state_base &st)
{
shared_state_base *last
{
shared_state_base::head(st)
};
assert(last);
if(last == &st && is(st, future_state::PENDING))
{
if(last->next)
set_promises_state(*last->next);
else
invalidate_promises(st);
}
else for(auto *next(last->next); next; last = next, next = next->next)
if(next == &st)
{
last->next = next->next;
break;
}
st.next = nullptr;
st.p = nullptr;
}
/// Replace associated future old with new_. This is used to implement the
/// object move semantics.
void
ircd::ctx::update(shared_state_base &new_,
shared_state_base &old)
{
shared_state_base *last
{
shared_state_base::head(old)
};
assert(last);
if(last == &old && is(*last, future_state::PENDING))
set_promises_state(new_);
new_.next = old.next;
for(auto *next{last->next}; next; last = next, next = last->next)
if(next == &old)
{
last->next = &new_;
break;
}
old.p = nullptr;
old.next = nullptr;
}
/// Add a new future sharing the list
void
ircd::ctx::append(shared_state_base &new_,
shared_state_base &old)
{
assert(!new_.next);
assert(is(new_, future_state::PENDING));
if(!old.next)
{
old.next = &new_;
return;
}
shared_state_base *next{old.next};
for(; next->next; next = next->next);
assert(!next->next);
next->next = &new_;
}
/// Internal use; chases the linked list of promises starting from the head in
/// the shared_state and updates the location of the shared_state within each
/// promise. This is used to tell the promises when the shared_state itself
/// has relocated.
void
ircd::ctx::set_promises_state(shared_state_base &st)
{
assert(is(st, future_state::PENDING));
promise_base *next
{
promise_base::head(st)
};
assert(next);
for(; next; next = next->next)
next->st = std::addressof(st);
}
/// Chases the linked list of promises starting from the head
/// in the shared_state and invalidates all of their references to the shared
/// state. This will cause the promise to no longer be valid().
///
void
ircd::ctx::invalidate_promises(shared_state_base &st)
{
promise_base *next
{
promise_base::head(st)
};
for(; next; next = next->next)
next->st = nullptr;
}
///////////////////////////////////////////////////////////////////////////////
//
// dock.h
//
/// Wake up the next context waiting on the dock
///
/// Unlike notify_one(), the next context in the queue is repositioned in the
/// back before being woken up for fairness.
void
ircd::ctx::dock::notify()
noexcept
{
ctx *c;
if(!(c = q.pop_front()))
return;
q.push_back(c);
notify(*c);
}
/// Wake up the next context waiting on the dock
void
ircd::ctx::dock::notify_one()
noexcept
{
if(!q.empty())
notify(*q.front());
}
/// Wake up all contexts waiting on the dock.
///
/// We post all notifications without requesting direct context
/// switches. This ensures everyone gets notified in a single
/// transaction without any interleaving during this process.
void
ircd::ctx::dock::notify_all()
noexcept
{
q.for_each([this](ctx &c)
{
notify(c);
});
}
void
ircd::ctx::dock::wait()
{
assert(current);
const unwind::exceptional renotify{[this]
{
notify_one();
}};
const unwind remove{[this]
{
q.remove(current);
}};
q.push_back(current);
ircd::ctx::wait();
}
void
ircd::ctx::dock::wait(const predicate &pred)
{
if(pred())
return;
assert(current);
const unwind::exceptional renotify{[this]
{
notify_one();
}};
const unwind remove{[this]
{
q.remove(current);
}};
q.push_back(current); do
{
ircd::ctx::wait();
}
while(!pred());
}
void
ircd::ctx::dock::notify(ctx &ctx)
noexcept
{
ircd::ctx::notify(ctx);
}
/// The number of contexts waiting in the queue.
bool
ircd::ctx::dock::waiting(const ctx &a)
const noexcept
{
// for_each returns false if a was found
return !q.for_each(list::closure_bool_const{[&a]
(const ctx &b)
{
// return false to break on equal
return std::addressof(a) != std::addressof(b);
}});
}
/// The number of contexts waiting in the queue.
size_t
ircd::ctx::dock::size()
const noexcept
{
return q.size();
}
/// The number of contexts waiting in the queue.
bool
ircd::ctx::dock::empty()
const noexcept
{
return q.empty();
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx_list.h
//
[[gnu::hot]]
void
ircd::ctx::list::remove(ctx *const &c)
noexcept
{
assert(c);
if(c == head)
{
pop_front();
return;
}
if(c == tail)
{
pop_back();
return;
}
assert(next(c) && prev(c));
prev(next(c)) = prev(c);
next(prev(c)) = next(c);
next(c) = nullptr;
prev(c) = nullptr;
}
[[gnu::hot]]
ircd::ctx::ctx *
ircd::ctx::list::pop_back()
noexcept
{
const auto tail
{
this->tail
};
if(!tail)
{
assert(!head);
return tail;
}
assert(head);
assert(!next(tail));
if(!prev(tail))
{
this->head = nullptr;
this->tail = nullptr;
} else {
assert(next(prev(tail)) == tail);
next(prev(tail)) = nullptr;
this->tail = prev(tail);
}
prev(tail) = nullptr;
next(tail) = nullptr;
return tail;
}
[[gnu::hot]]
ircd::ctx::ctx *
ircd::ctx::list::pop_front()
noexcept
{
const auto head
{
this->head
};
if(!head)
{
assert(!tail);
return head;
}
assert(tail);
assert(!prev(head));
if(!next(head))
{
this->head = nullptr;
this->tail = nullptr;
} else {
assert(prev(next(head)) == head);
prev(next(head)) = nullptr;
this->head = next(head);
}
prev(head) = nullptr;
next(head) = nullptr;
return head;
}
[[gnu::hot]]
void
ircd::ctx::list::push_front(ctx *const &c)
noexcept
{
assert(next(c) == nullptr);
assert(prev(c) == nullptr);
if(!head)
{
assert(!tail);
head = c;
tail = c;
return;
}
assert(prev(head) == nullptr);
prev(head) = c;
next(c) = head;
head = c;
}
[[gnu::hot]]
void
ircd::ctx::list::push_back(ctx *const &c)
noexcept
{
assert(next(c) == nullptr);
assert(prev(c) == nullptr);
if(!tail)
{
assert(!head);
head = c;
tail = c;
return;
}
assert(next(tail) == nullptr);
next(tail) = c;
prev(c) = tail;
tail = c;
}
size_t
ircd::ctx::list::size()
const noexcept
{
size_t i{0};
for_each([&i](const ctx &)
{
++i;
});
return i;
}
void
ircd::ctx::list::rfor_each(const closure &closure)
{
for(ctx *tail{this->tail}; tail; tail = prev(tail))
closure(*tail);
}
void
ircd::ctx::list::rfor_each(const closure_const &closure)
const
{
for(const ctx *tail{this->tail}; tail; tail = prev(tail))
closure(*tail);
}
bool
ircd::ctx::list::rfor_each(const closure_bool &closure)
{
for(ctx *tail{this->tail}; tail; tail = prev(tail))
if(!closure(*tail))
return false;
return true;
}
bool
ircd::ctx::list::rfor_each(const closure_bool_const &closure)
const
{
for(const ctx *tail{this->tail}; tail; tail = prev(tail))
if(!closure(*tail))
return false;
return true;
}
void
ircd::ctx::list::for_each(const closure &closure)
{
for(ctx *head{this->head}; head; head = next(head))
closure(*head);
}
void
ircd::ctx::list::for_each(const closure_const &closure)
const
{
for(const ctx *head{this->head}; head; head = next(head))
closure(*head);
}
bool
ircd::ctx::list::for_each(const closure_bool &closure)
{
for(ctx *head{this->head}; head; head = next(head))
if(!closure(*head))
return false;
return true;
}
bool
ircd::ctx::list::for_each(const closure_bool_const &closure)
const
{
for(const ctx *head{this->head}; head; head = next(head))
if(!closure(*head))
return false;
return true;
}
[[gnu::hot]]
ircd::ctx::ctx *&
ircd::ctx::list::prev(ctx *const &c)
noexcept
{
assert(c);
return c->node.prev;
}
[[gnu::hot]]
ircd::ctx::ctx *&
ircd::ctx::list::next(ctx *const &c)
noexcept
{
assert(c);
return c->node.next;
}
[[gnu::hot]]
const ircd::ctx::ctx *
ircd::ctx::list::prev(const ctx *const &c)
noexcept
{
assert(c);
return c->node.prev;
}
[[gnu::hot]]
const ircd::ctx::ctx *
ircd::ctx::list::next(const ctx *const &c)
noexcept
{
assert(c);
return c->node.next;
}