0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2025-01-19 11:01:54 +01:00
construct/include/ircd/ctx/future.h
2018-03-11 14:51:14 -07:00

477 lines
10 KiB
C++

// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2018 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_CTX_FUTURE_H
namespace ircd::ctx
{
IRCD_OVERLOAD(use_future)
template<class T = void> class future;
template<> class future<void>;
template<class... T> struct scoped_future;
enum class future_status;
template<class it> future<it> when_any(it first, const it &last);
template<class it> future<void> when_all(it first, const it &last);
}
enum class ircd::ctx::future_status
{
ready,
timeout,
deferred,
};
template<class T>
struct ircd::ctx::future
{
mutable shared_state<T> st;
public:
using value_type = typename shared_state<T>::value_type;
using pointer_type = typename shared_state<T>::pointer_type;
using reference_type = typename shared_state<T>::reference_type;
bool valid() const { return !invalid(st); }
bool operator!() const { return !valid(); }
operator bool() const { return valid(); }
template<class U, class time_point> friend future_status wait_until(const future<U> &, const time_point &, std::nothrow_t);
template<class U, class time_point> friend future_status wait_until(const future<U> &, const time_point &);
template<class time_point> future_status wait_until(const time_point &, std::nothrow_t) const;
template<class time_point> future_status wait_until(const time_point &) const;
template<class duration> future_status wait(const duration &d, std::nothrow_t) const;
template<class duration> future_status wait(const duration &d) const;
void wait() const;
T get();
operator T() { return get(); }
future() = default;
future(promise<T> &promise);
future(future &&) noexcept;
future(const future &) = delete;
future &operator=(future &&) noexcept;
future &operator=(const future &) = delete;
~future() noexcept;
};
template<>
struct ircd::ctx::future<void>
{
mutable shared_state<void> st;
public:
using value_type = typename shared_state<void>::value_type;
bool valid() const { return !invalid(st); }
bool operator!() const { return !valid(); }
operator bool() const { return valid(); }
template<class U, class time_point> friend future_status wait_until(const future<U> &, const time_point &, std::nothrow_t);
template<class U, class time_point> friend future_status wait_until(const future<U> &, const time_point &);
template<class time_point> future_status wait_until(const time_point &, std::nothrow_t) const;
template<class time_point> future_status wait_until(const time_point &) const;
template<class duration> future_status wait(const duration &d, std::nothrow_t) const;
template<class duration> future_status wait(const duration &d) const;
void wait() const;
IRCD_OVERLOAD(already)
future(promise<void> &promise);
future(already_t); // construct in ready state
future() = default;
future(future &&) noexcept;
future(const future &) = delete;
future &operator=(future &&) noexcept;
future &operator=(const future &) = delete;
~future() noexcept;
};
namespace ircd::ctx
{
template<class T,
class time_point>
future_status wait_until(const future<T> &, const time_point &, std::nothrow_t);
}
template<class... T>
struct ircd::ctx::scoped_future
:future<T...>
{
template<class... Args> scoped_future(Args&&... args);
~scoped_future() noexcept;
};
template<class... T>
template<class... Args>
ircd::ctx::scoped_future<T...>::scoped_future(Args&&... args)
:future<T...>{std::forward<Args>(args)...}
{
}
template<class... T>
ircd::ctx::scoped_future<T...>::~scoped_future()
noexcept
{
if(std::uncaught_exception())
return;
if(this->valid())
this->wait();
}
template<class T>
ircd::ctx::future<T>::future(promise<T> &promise)
{
assert(!promise.st);
st.p = &promise;
update(st);
assert(promise.st);
}
inline
ircd::ctx::future<void>::future(promise<void> &promise)
{
assert(!promise.st);
st.p = &promise;
update(st);
assert(promise.st);
}
inline
ircd::ctx::future<void>::future(already_t)
{
set_ready(st);
}
template<class T>
ircd::ctx::future<T>::future(future<T> &&o)
noexcept
:st{std::move(o.st)}
{
update(st);
o.st.p = nullptr;
}
inline
ircd::ctx::future<void>::future(future<void> &&o)
noexcept
:st{std::move(o.st)}
{
update(st);
o.st.p = nullptr;
}
template<class T>
ircd::ctx::future<T> &
ircd::ctx::future<T>::operator=(future<T> &&o)
noexcept
{
this->~future();
st = std::move(o.st);
update(st);
o.st.p = nullptr;
return *this;
}
inline ircd::ctx::future<void> &
ircd::ctx::future<void>::operator=(future<void> &&o)
noexcept
{
this->~future();
st = std::move(o.st);
update(st);
o.st.p = nullptr;
return *this;
}
template<class T>
ircd::ctx::future<T>::~future()
noexcept
{
invalidate(st);
}
inline
ircd::ctx::future<void>::~future()
noexcept
{
invalidate(st);
}
template<class T>
T
ircd::ctx::future<T>::get()
{
wait();
if(unlikely(retrieved(st)))
throw future_already_retrieved{};
set_retrieved(st);
if(bool(st.eptr))
std::rethrow_exception(st.eptr);
return st.val;
}
template<class T>
void
ircd::ctx::future<T>::wait()
const
{
this->wait_until(steady_clock::time_point::max());
}
inline void
ircd::ctx::future<void>::wait()
const
{
this->wait_until(steady_clock::time_point::max());
}
template<class T>
template<class duration>
ircd::ctx::future_status
ircd::ctx::future<T>::wait(const duration &d)
const
{
return this->wait_until(steady_clock::now() + d);
}
template<class duration>
ircd::ctx::future_status
ircd::ctx::future<void>::wait(const duration &d)
const
{
return this->wait_until(steady_clock::now() + d);
}
template<class T>
template<class duration>
ircd::ctx::future_status
ircd::ctx::future<T>::wait(const duration &d,
std::nothrow_t)
const
{
return this->wait_until(steady_clock::now() + d, std::nothrow);
}
template<class duration>
ircd::ctx::future_status
ircd::ctx::future<void>::wait(const duration &d,
std::nothrow_t)
const
{
return this->wait_until(steady_clock::now() + d, std::nothrow);
}
template<class T>
template<class time_point>
ircd::ctx::future_status
ircd::ctx::future<T>::wait_until(const time_point &tp)
const
{
return ircd::ctx::wait_until(*this, tp);
}
template<class time_point>
ircd::ctx::future_status
ircd::ctx::future<void>::wait_until(const time_point &tp)
const
{
const auto status
{
this->wait_until(tp, std::nothrow)
};
if(status == future_status::timeout)
throw timeout{};
return status;
}
template<class T>
template<class time_point>
ircd::ctx::future_status
ircd::ctx::future<T>::wait_until(const time_point &tp,
std::nothrow_t)
const
{
return ircd::ctx::wait_until(*this, tp, std::nothrow);
}
template<class time_point>
ircd::ctx::future_status
ircd::ctx::future<void>::wait_until(const time_point &tp,
std::nothrow_t)
const
{
const auto status
{
ircd::ctx::wait_until(*this, tp, std::nothrow)
};
if(status == future_status::ready)
{
set_retrieved(st);
if(bool(st.eptr))
std::rethrow_exception(st.eptr);
}
return status;
}
template<class T,
class time_point>
ircd::ctx::future_status
ircd::ctx::wait_until(const future<T> &f,
const time_point &tp)
{
const auto ret
{
wait_until(f, tp, std::nothrow)
};
if(ret == future_status::timeout)
throw timeout{};
return ret;
}
template<class T,
class time_point>
ircd::ctx::future_status
ircd::ctx::wait_until(const future<T> &f,
const time_point &tp,
std::nothrow_t)
{
const auto wfun([&f]() -> bool
{
return !pending(f.st);
});
if(unlikely(invalid(f.st)))
throw no_state{};
if(unlikely(!f.st.cond.wait_until(tp, wfun)))
return future_status::timeout;
return likely(wfun())?
future_status::ready:
future_status::deferred;
}
/// Returns a future which becomes ready when all of the futures in the
/// collection become ready. This future has a void payload to minimize
/// its cost since this indication is positively unate.
template<class it>
ircd::ctx::future<void>
ircd::ctx::when_all(it first,
const it &last)
{
static const auto then
{
[](promise<void> &p)
{
if(!p.valid())
return;
if(refcount(*p.st) < 2)
return p.set_value();
return remove(*p.st, p);
}
};
promise<void> p;
const auto set_then
{
[&p](auto &f)
{
f.st.then = [p]
(shared_state_base &) mutable
{
then(p);
};
}
};
future<void> ret(p);
for(; first != last; ++first)
if(pending(first->st))
set_then(*first);
if(refcount(*p.st) <= 1)
p.set_value();
return ret;
}
/// Returns a future which becomes ready when any of the futures in the
/// iteration become ready or are already ready. The future that when_any()
/// eventually indicates is then considered "observed" which means you
/// are required to do nothing when including it in the next invocation of
/// when_any() and it won't be considered ready or pending again and the
/// collection does not have to be modified in any way.
///
/// The returned future's payload is an iterator into the collection as if
/// it were the result of an std::find() etc; thus to know its index an
/// std::distance often satisfactory.
template<class it>
ircd::ctx::future<it>
ircd::ctx::when_any(it first,
const it &last)
{
static const auto then
{
[](promise<it> &p, it &f)
{
if(!p.valid())
return;
set_observed(f->st);
p.set_value(f);
}
};
promise<it> p;
const auto set_then
{
[&p](it &f)
{
f->st.then = [p, f] // alloc
(shared_state_base &) mutable
{
then(p, f);
};
}
};
future<it> ret(p);
for(auto f(first); f != last; ++f)
if(ready(f->st))
{
set_observed(f->st);
p.set_value(f);
return ret;
}
for(; first != last; ++first)
if(pending(first->st))
set_then(first);
if(refcount(*p.st) <= 1)
p.set_value(first);
return ret;
}