0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-25 16:22:35 +01:00
construct/ircd/ctx.cc
2017-10-19 00:58:43 -07:00

1016 lines
22 KiB
C++

/*
* Copyright (C) 2016 Charybdis Development Team
* Copyright (C) 2016 Jason Volk <jason@zemos.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice is present in all copies.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <ircd/asio.h>
///////////////////////////////////////////////////////////////////////////////
///
/// Internal context implementation structure
///
///
struct ircd::ctx::ctx
{
using error_code = boost::system::error_code;
static uint64_t id_ctr; // monotonic
uint64_t id; // Unique runtime ID
const char *name; // User given name (optional)
context::flags flags; // User given flags
boost::asio::io_service::strand strand; // mutex/serializer
boost::asio::steady_timer alarm; // acting semaphore (64B)
boost::asio::yield_context *yc; // boost interface
uintptr_t stack_base; // assigned when spawned
size_t stack_max; // User given stack size
int64_t notes; // norm: 0 = asleep; 1 = awake; inc by others; dec by self
ctx *adjoindre; // context waiting for this to join()
microseconds awake; // monotonic counter
bool finished() const { return yc == nullptr; }
bool started() const { return bool(yc); }
bool interruption_point(std::nothrow_t); // Check for interrupt (and clear flag)
void interruption_point(); // throws interrupted
bool wait(); // yield context to ios queue (returns on this resume)
void jump(); // jump to context directly (returns on your resume)
void wake(); // jump to context by queueing with ios (use note())
bool note(); // properly request wake()
void operator()(boost::asio::yield_context, const std::function<void ()>) noexcept;
ctx(const char *const &name = "<noname>",
const size_t &stack_max = DEFAULT_STACK_SIZE,
const context::flags &flags = (context::flags)0,
boost::asio::io_service *const &ios = ircd::ios);
ctx(ctx &&) noexcept = delete;
ctx(const ctx &) = delete;
};
decltype(ircd::ctx::ctx::id_ctr)
ircd::ctx::ctx::id_ctr
{
0
};
ircd::ctx::ctx::ctx(const char *const &name,
const size_t &stack_max,
const context::flags &flags,
boost::asio::io_service *const &ios)
:id{++id_ctr}
,name{name}
,flags{flags}
,strand{*ios}
,alarm{*ios}
,yc{nullptr}
,stack_base{0}
,stack_max{stack_max}
,notes{1}
,adjoindre{nullptr}
,awake{0us}
{
}
/// Base frame for a context.
///
/// This function is the first thing executed on the new context's stack
/// and calls the user's function.
void
ircd::ctx::ctx::operator()(boost::asio::yield_context yc,
const std::function<void ()> func)
noexcept
{
this->yc = &yc;
notes = 1;
stack_base = uintptr_t(__builtin_frame_address(0));
ircd::ctx::current = this;
mark(prof::event::CUR_ENTER);
const unwind atexit([this]
{
mark(prof::event::CUR_LEAVE);
if(adjoindre)
notify(*adjoindre);
ircd::ctx::current = nullptr;
this->yc = nullptr;
if(flags & context::DETACH)
delete this;
});
// Check for a precocious interrupt
if(unlikely(flags & context::INTERRUPTED))
return;
if(likely(bool(func)))
func();
}
/// Direct context switch to this context.
///
/// This currently doesn't work yet because the suspension state of this
/// context has to be ready to be jumped to and that isn't implemented yet.
void
ircd::ctx::ctx::jump()
{
assert(this->yc);
assert(current != this); // can't jump to self
auto &yc(*this->yc);
auto &target(*yc.coro_.lock());
// Jump from the currently running context (source) to *this (target)
// with continuation of source after target
{
current->notes = 0; // Unconditionally cleared here
const continuation continuation{current};
target();
}
assert(current != this);
assert(current->notes == 1); // notes = 1; set by continuation dtor on wakeup
interruption_point();
}
/// Yield (suspend) this context until notified.
///
/// This context must be currently running otherwise bad things. Returns false
/// if the context was notified before actually suspending; the note is then
/// considered handled an another attempt to `wait()` can be made. Returns true
/// if the context suspended and was notified. When a context wakes up the
/// note counter is reset.
bool
ircd::ctx::ctx::wait()
{
namespace errc = boost::system::errc;
assert(this->yc);
assert(current == this);
if(--notes > 0)
return false;
boost::system::error_code ec;
alarm.async_wait(boost::asio::yield_context{to_asio{this}}[ec]);
assert(ec == errc::operation_canceled || ec == errc::success);
assert(current == this);
assert(notes == 1); // notes = 1; set by continuation dtor on wakeup
interruption_point();
return true;
}
/// Notifies this context to resume (wake up from waiting).
///
/// Returns true if this note was the first note received by this context
/// while it's been suspended or false if it's already been notified.
bool
ircd::ctx::ctx::note()
{
if(notes++ > 0)
return false;
wake();
return true;
}
/// Wakes a context without a note (internal)
void
ircd::ctx::ctx::wake()
try
{
alarm.cancel();
}
catch(const boost::system::system_error &e)
{
ircd::log::error("ctx::wake(%p): %s", this, e.what());
}
/// Throws if this context has been flagged for interruption and clears
/// the flag.
void
ircd::ctx::ctx::interruption_point()
{
if(unlikely(interruption_point(std::nothrow)))
throw interrupted("ctx(%p) '%s'", (const void *)this, name);
}
/// Returns true if this context has been flagged for interruption and
/// clears the flag.
bool
ircd::ctx::ctx::interruption_point(std::nothrow_t)
{
// Interruption shouldn't be used for normal operation,
// so please eat this branch misprediction.
if(unlikely(flags & context::INTERRUPTED))
{
mark(prof::event::CUR_INTERRUPT);
flags &= ~context::INTERRUPTED;
return true;
}
else return false;
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx/ctx.h
//
__thread ircd::ctx::ctx *ircd::ctx::current;
/// Yield the currently running context until `time_point` ignoring notes
void
ircd::ctx::this_ctx::sleep_until(const std::chrono::steady_clock::time_point &tp)
{
while(!wait_until(tp, std::nothrow));
}
/// Yield the currently running context until notified or `time_point`.
///
/// Returns true if this function returned because `time_point` was hit or
/// false because this context was notified.
bool
ircd::ctx::this_ctx::wait_until(const std::chrono::steady_clock::time_point &tp,
const std::nothrow_t &)
{
auto &c(cur());
c.alarm.expires_at(tp);
c.wait(); // now you're yielding with portals
return std::chrono::steady_clock::now() >= tp;
}
/// Yield the currently running context for `duration` or until notified.
///
/// Returns the duration remaining if notified, or <= 0 if suspended for
/// the full duration, or unchanged if no suspend ever took place.
std::chrono::microseconds
ircd::ctx::this_ctx::wait(const std::chrono::microseconds &duration,
const std::nothrow_t &)
{
auto &c(cur());
c.alarm.expires_from_now(duration);
c.wait(); // now you're yielding with portals
const auto ret(c.alarm.expires_from_now());
// return remaining duration.
// this is > 0 if notified
// this is unchanged if a note prevented any wait at all
return std::chrono::duration_cast<std::chrono::microseconds>(ret);
}
/// Yield the currently running context until notified.
void
ircd::ctx::this_ctx::wait()
{
auto &c(cur());
c.alarm.expires_at(std::chrono::steady_clock::time_point::max());
c.wait(); // now you're yielding with portals
}
/// Post the currently running context to the event queue and then suspend to
/// allow other contexts in the queue to run. Until we have our own queue the
/// ios queue makes no guarantees if the queue is FIFO or LIFO etc :-/
void
ircd::ctx::this_ctx::yield()
{
bool done(false);
const auto restore([&done, &me(cur())]
{
done = true;
notify(me);
});
// All spurious notifications are ignored until `done`
ios->post(restore); do
{
wait();
}
while(!done);
}
/// Throws interrupted if the currently running context was interrupted
/// and clears the interrupt flag.
void
ircd::ctx::this_ctx::interruption_point()
{
return cur().interruption_point();
}
/// Returns true if the currently running context was interrupted and clears
/// the interrupt flag.
bool
ircd::ctx::this_ctx::interruption_requested()
{
return interruption(cur());
}
/// Returns unique ID of currently running context
const uint64_t &
ircd::ctx::this_ctx::id()
{
static const uint64_t zero{0};
return current? id(cur()) : zero;
}
/// Returns optional developer-given name for currently running context
ircd::string_view
ircd::ctx::this_ctx::name()
{
static const string_view nada{"*"};
return current? name(cur()) : nada;
}
/// Yield to context `ctx`.
///
///
void
ircd::ctx::yield(ctx &ctx)
{
assert(current);
//ctx.jump();
// !!! TODO !!!
// XXX: We can't jump directly to a context if it's waiting on its alarm, and
// we don't know whether it's waiting on its alarm. We can add another flag to
// inform us of that, but most contexts are usually waiting on their alarm anyway.
//
// Perhaps a better way to do this would be to centralize the alarms into a single
// context with the sole job of waiting on a single alarm. Then it can schedule
// things allowing for more direct jumps until all work is complete.
// !!! TODO !!!
notify(ctx);
}
/// Notifies `ctx` to wake up from another std::thread
void
ircd::ctx::notify(ctx &ctx,
threadsafe_t)
{
signal(ctx, [&ctx]
{
notify(ctx);
});
}
/// Notifies `ctx` to wake up. This will enqueue the resumption, not jump
/// directly to `ctx`.
bool
ircd::ctx::notify(ctx &ctx)
{
return ctx.note();
}
/// Executes `func` sometime between executions of `ctx` with thread-safety
/// so `func` and `ctx` are never executed concurrently no matter how many
/// threads the io_service has available to execute events on.
void
ircd::ctx::signal(ctx &ctx,
std::function<void ()> func)
{
ctx.strand.post(std::move(func));
}
/// Marks `ctx` for interruption and enqueues it for resumption to receive the
/// interrupt which will be an exception coming out of the point where the
/// `ctx` was yielding.
void
ircd::ctx::interrupt(ctx &ctx)
{
ctx.flags |= context::INTERRUPTED;
ctx.wake();
}
/// Indicates if `ctx` was ever jumped to
bool
ircd::ctx::started(const ctx &ctx)
{
return ctx.started();
}
/// Indicates if the base frame for `ctx` returned
bool
ircd::ctx::finished(const ctx &ctx)
{
return ctx.finished();
}
/// Indicates if `ctx` was interrupted; does not clear the flag
bool
ircd::ctx::interruption(const ctx &c)
{
return c.flags & context::INTERRUPTED;
}
/// Returns the notification count for `ctx
const int64_t &
ircd::ctx::notes(const ctx &ctx)
{
return ctx.notes;
}
/// Returns the developer's optional name literal for `ctx`
ircd::string_view
ircd::ctx::name(const ctx &ctx)
{
return ctx.name;
}
/// Returns a reference to unique ID for `ctx` (which will go away with `ctx`)
const uint64_t &
ircd::ctx::id(const ctx &ctx)
{
return ctx.id;
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx/continuation.h
//
//
// Support for critical_assertion (ctx.h)
//
namespace ircd::ctx
{
bool critical_asserted;
}
ircd::ctx::this_ctx::critical_assertion::critical_assertion()
:theirs{critical_asserted}
{
critical_asserted = true;
}
ircd::ctx::this_ctx::critical_assertion::~critical_assertion()
noexcept
{
assert(critical_asserted);
critical_asserted = theirs;
}
//
// continuation
//
ircd::ctx::continuation::continuation(ctx *const &self)
:self{self}
{
mark(prof::event::CUR_YIELD);
assert(!critical_asserted);
assert(self != nullptr);
assert(self->notes <= 1);
ircd::ctx::current = nullptr;
}
ircd::ctx::continuation::~continuation()
noexcept
{
ircd::ctx::current = self;
self->notes = 1;
mark(prof::event::CUR_CONTINUE);
}
ircd::ctx::continuation::operator boost::asio::yield_context &()
{
return *self->yc;
}
ircd::ctx::continuation::operator const boost::asio::yield_context &()
const
{
return *self->yc;
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx/context.h
//
ircd::ctx::context::context(const char *const &name,
const size_t &stack_sz,
const flags &flags,
function func)
:c{std::make_unique<ctx>(name, stack_sz, flags, ircd::ios)}
{
auto spawn([stack_sz, c(c.get()), func(std::move(func))]
{
auto bound(std::bind(&ctx::operator(), c, ph::_1, std::move(func)));
const boost::coroutines::attributes attrs
{
stack_sz,
boost::coroutines::stack_unwind
};
boost::asio::spawn(c->strand, std::move(bound), attrs);
});
// The current context must be reasserted if spawn returns here
const unwind recurrent([current(ircd::ctx::current)]
{
ircd::ctx::current = current;
});
// The profiler is told about the spawn request here, not inside the closure
// which is probably the same event-slice as event::CUR_ENTER and not as useful.
mark(prof::event::SPAWN);
if(flags & POST)
ios->post(std::move(spawn));
else if(flags & DISPATCH)
ios->dispatch(std::move(spawn));
else
spawn();
if(flags & DETACH)
c.release();
}
ircd::ctx::context::context(const char *const &name,
const size_t &stack_size,
function func,
const flags &flags)
:context
{
name, stack_size, flags, std::move(func)
}
{
}
ircd::ctx::context::context(const char *const &name,
const flags &flags,
function func)
:context
{
name, DEFAULT_STACK_SIZE, flags, std::move(func)
}
{
}
ircd::ctx::context::context(const char *const &name,
function func,
const flags &flags)
:context
{
name, DEFAULT_STACK_SIZE, flags, std::move(func)
}
{
}
ircd::ctx::context::context(function func,
const flags &flags)
:context
{
"<noname>", DEFAULT_STACK_SIZE, flags, std::move(func)
}
{
}
ircd::ctx::context::~context()
noexcept
{
if(!c)
return;
// Can't join to bare metal, only from within another context.
if(!current)
return;
interrupt();
join();
}
void
ircd::ctx::context::join()
{
if(joined())
return;
mark(prof::event::JOIN);
assert(!c->adjoindre);
c->adjoindre = &cur(); // Set the target context to notify this context when it finishes
wait();
mark(prof::event::JOINED);
}
ircd::ctx::ctx *
ircd::ctx::context::detach()
{
c->flags |= DETACH;
return c.release();
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx_pool.h
//
ircd::ctx::pool::pool(const char *const &name,
const size_t &stack_size,
const size_t &size)
:name{name}
,stack_size{stack_size}
,available{0}
{
add(size);
}
ircd::ctx::pool::~pool()
noexcept
{
del(size());
}
void
ircd::ctx::pool::operator()(closure closure)
{
queue.push_back(std::move(closure));
dock.notify_one();
}
void
ircd::ctx::pool::del(const size_t &num)
{
const ssize_t requested(size() - num);
const size_t target(std::max(requested, ssize_t(0)));
while(ctxs.size() > target)
ctxs.pop_back();
}
void
ircd::ctx::pool::add(const size_t &num)
{
for(size_t i(0); i < num; ++i)
ctxs.emplace_back(name, stack_size, context::POST, std::bind(&pool::main, this));
}
void
ircd::ctx::pool::join()
{
del(size());
}
void
ircd::ctx::pool::interrupt()
{
for(auto &context : ctxs)
context.interrupt();
}
void
ircd::ctx::pool::main()
try
{
++available;
const unwind avail([this]
{
--available;
});
while(1)
next();
}
catch(const interrupted &e)
{
log::debug("pool(%p) ctx(%p): %s",
this,
&cur(),
e.what());
}
void
ircd::ctx::pool::next()
try
{
dock.wait([this]
{
return !queue.empty();
});
--available;
const unwind avail([this]
{
++available;
});
const auto func(std::move(queue.front()));
queue.pop_front();
func();
}
catch(const interrupted &e)
{
throw;
}
catch(const std::exception &e)
{
log::critical("pool(%p) ctx(%p): unhandled: %s",
this,
&cur(),
e.what());
}
void
ircd::ctx::debug_stats(const pool &pool)
{
log::debug("pool '%s' (stack size: %zu) total: %zu avail: %zu queued: %zu active: %zu pending: %zu",
pool.name,
pool.stack_size,
pool.size(),
pool.avail(),
pool.queued(),
pool.active(),
pool.pending());
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx_prof.h
//
namespace ircd::ctx::prof
{
time_point cur_slice_start; // Time slice state
void check_stack();
void check_slice();
void slice_start();
void handle_cur_continue();
void handle_cur_yield();
void handle_cur_leave();
void handle_cur_enter();
}
struct ircd::ctx::prof::settings ircd::ctx::prof::settings
{
0.46, // stack_usage_warning
0.67, // stack_usage_assertion
50ms, // slice_warning
0us, // slice_interrupt
0us, // slice_assertion
};
void
ircd::ctx::prof::mark(const event &e)
{
switch(e)
{
case event::CUR_ENTER: handle_cur_enter(); break;
case event::CUR_LEAVE: handle_cur_leave(); break;
case event::CUR_YIELD: handle_cur_yield(); break;
case event::CUR_CONTINUE: handle_cur_continue(); break;
default: break;
}
}
void
ircd::ctx::prof::handle_cur_enter()
{
slice_start();
}
void
ircd::ctx::prof::handle_cur_leave()
{
check_slice();
}
void
ircd::ctx::prof::handle_cur_yield()
{
check_stack();
check_slice();
}
void
ircd::ctx::prof::handle_cur_continue()
{
slice_start();
}
void
ircd::ctx::prof::slice_start()
{
cur_slice_start = steady_clock::now();
}
void
ircd::ctx::prof::check_slice()
{
auto &c(cur());
const auto time_usage(steady_clock::now() - cur_slice_start);
c.awake += duration_cast<microseconds>(time_usage);
if(unlikely(settings.slice_warning > 0us && time_usage >= settings.slice_warning))
{
log::warning("context timeslice exceeded (%p) '%s' last: %06ld$us total: %06ld$us",
(const void *)&c,
c.name,
duration_cast<microseconds>(time_usage).count(),
c.awake.count());
assert(settings.slice_assertion == 0us || time_usage < settings.slice_assertion);
}
if(unlikely(settings.slice_interrupt > 0us && time_usage >= settings.slice_interrupt))
throw interrupted("ctx(%p): Time slice exceeded (last: %06ld microseconds)",
(const void *)&c,
duration_cast<microseconds>(time_usage).count());
}
void
ircd::ctx::prof::check_stack()
{
auto &c(cur());
const double &stack_max(c.stack_max);
const auto stack_usage(stack_usage_here(c));
if(unlikely(stack_usage > stack_max * settings.stack_usage_warning))
{
log::warning("context stack usage ctx(%p) used %zu of %zu bytes",
(const void *)&c,
stack_usage,
c.stack_max);
assert(stack_usage < c.stack_max * settings.stack_usage_assertion);
}
}
size_t
ircd::ctx::stack_usage_here()
{
assert(current);
return stack_usage_here(*current);
}
size_t
ircd::ctx::stack_usage_here(const ctx &ctx)
{
return ctx.stack_base - uintptr_t(__builtin_frame_address(0));
}
///////////////////////////////////////////////////////////////////////////////
//
// ctx_ole.h
//
namespace ircd::ctx::ole
{
using closure = std::function<void () noexcept>;
std::mutex mutex;
std::condition_variable cond;
std::deque<closure> queue;
bool interruption;
std::thread *thread;
closure pop();
void worker() noexcept;
void push(closure &&);
}
ircd::ctx::ole::init::init()
{
assert(!thread);
interruption = false;
thread = new std::thread(&worker);
}
ircd::ctx::ole::init::~init()
noexcept
{
if(!thread)
return;
mutex.lock();
interruption = true;
cond.notify_one();
mutex.unlock();
thread->join();
delete thread;
thread = nullptr;
}
void
ircd::ctx::ole::offload(const std::function<void ()> &func)
{
bool done(false);
auto *const context(current);
const auto kick([&context, &done]
{
done = true;
notify(*context);
});
std::exception_ptr eptr;
auto closure([&func, &eptr, &context, &kick]
() noexcept
{
try
{
func();
}
catch(...)
{
eptr = std::current_exception();
}
// To wake the context on the IRCd thread we give it the kick
signal(*context, kick);
});
push(std::move(closure)); do
{
wait();
}
while(!done);
if(eptr)
std::rethrow_exception(eptr);
}
void
ircd::ctx::ole::push(closure &&func)
{
const std::lock_guard<decltype(mutex)> lock(mutex);
queue.emplace_back(std::move(func));
cond.notify_one();
}
void
ircd::ctx::ole::worker()
noexcept try
{
while(1)
{
const auto func(pop());
func();
}
}
catch(const interrupted &)
{
return;
}
ircd::ctx::ole::closure
ircd::ctx::ole::pop()
{
std::unique_lock<decltype(mutex)> lock(mutex);
cond.wait(lock, []
{
if(!queue.empty())
return true;
if(unlikely(interruption))
throw interrupted();
return false;
});
auto c(std::move(queue.front()));
queue.pop_front();
return std::move(c);
}
///////////////////////////////////////////////////////////////////////////////
//
// ircd/ios.h
//
void
ircd::post(std::function<void ()> function)
{
ircd::ios->post(std::move(function));
}
void
ircd::dispatch(std::function<void ()> function)
{
ircd::ios->dispatch(std::move(function));
}