0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2025-01-25 05:49:58 +01:00
construct/ircd/net.cc

3227 lines
70 KiB
C++

// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2018 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#include <ircd/asio.h>
///////////////////////////////////////////////////////////////////////////////
//
// init
//
/// Network subsystem initialization
ircd::net::init::init()
{
assert(ircd::ios);
assert(!net::dns::resolver);
net::dns::resolver = new struct dns::resolver();
sslv23_client.set_verify_mode(asio::ssl::verify_peer);
sslv23_client.set_default_verify_paths();
}
/// Network subsystem shutdown
ircd::net::init::~init()
{
delete net::dns::resolver;
net::dns::resolver = nullptr;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/net.h
//
/// Network subsystem log facility with dedicated SNOMASK.
struct ircd::log::log
ircd::net::log
{
"net", 'N'
};
ircd::const_buffer
ircd::net::peer_cert_der(const mutable_buffer &buf,
const socket &socket)
{
const SSL &ssl(socket);
const X509 &cert{openssl::peer_cert(ssl)};
return openssl::i2d(buf, cert);
}
ircd::net::ipport
ircd::net::remote_ipport(const socket &socket)
noexcept try
{
const auto &ep(socket.remote());
return make_ipport(ep);
}
catch(...)
{
return {};
}
ircd::net::ipport
ircd::net::local_ipport(const socket &socket)
noexcept try
{
const auto &ep(socket.local());
return make_ipport(ep);
}
catch(...)
{
return {};
}
size_t
ircd::net::available(const socket &socket)
noexcept
{
const ip::tcp::socket &sd(socket);
boost::system::error_code ec;
return sd.available(ec);
}
size_t
ircd::net::readable(const socket &socket)
{
ip::tcp::socket &sd(const_cast<net::socket &>(socket));
ip::tcp::socket::bytes_readable command{true};
sd.io_control(command);
return command.get();
}
bool
ircd::net::opened(const socket &socket)
noexcept try
{
const ip::tcp::socket &sd(socket);
return sd.is_open();
}
catch(...)
{
return false;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/write.h
//
void
ircd::net::flush(socket &socket)
{
if(nodelay(socket))
return;
nodelay(socket, true);
nodelay(socket, false);
}
/// Yields ircd::ctx until all buffers are sent.
///
/// This is blocking behavior; use this if the following are true:
///
/// * You put a timer on the socket so if the remote slows us down the data
/// will not occupy the daemon's memory for a long time. Remember, *all* of
/// the data will be sitting in memory even after some of it was ack'ed by
/// the remote.
///
/// * You are willing to dedicate the ircd::ctx to sending all the data to
/// the remote. The ircd::ctx will be yielding until everything is sent.
///
size_t
ircd::net::write_all(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_all(buffers);
}
/// Yields ircd::ctx until at least some buffers are sent.
///
/// This is blocking behavior; use this if the following are true:
///
/// * You put a timer on the socket so if the remote slows us down the data
/// will not occupy the daemon's memory for a long time.
///
/// * You are willing to dedicate the ircd::ctx to sending the data to
/// the remote. The ircd::ctx will be yielding until the kernel has at least
/// some space to consume at least something from the supplied buffers.
///
size_t
ircd::net::write_few(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_few(buffers);
}
/// Writes as much as possible until one of the following is true:
///
/// * The kernel buffer for the socket is full.
/// * The user buffer is exhausted.
///
/// This is non-blocking behavior. No yielding will take place; no timer is
/// needed. Multiple syscalls will be composed to fulfill the above points.
///
size_t
ircd::net::write_any(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_any(buffers);
}
/// Writes one "unit" of data or less; never more. The size of that unit
/// is determined by the system. Less may be written if one of the following
/// is true:
///
/// * The kernel buffer for the socket is full.
/// * The user buffer is exhausted.
///
/// If neither are true, more can be written using additional calls;
/// alternatively, use other variants of write_ for that.
///
/// This is non-blocking behavior. No yielding will take place; no timer is
/// needed. Only one syscall will occur.
///
size_t
ircd::net::write_one(socket &socket,
const vector_view<const const_buffer> &buffers)
{
return socket.write_one(buffers);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/read.h
//
/// Yields ircd::ctx until len bytes have been received and discarded from the
/// socket.
///
size_t
ircd::net::discard_all(socket &socket,
const size_t &len)
{
static char buffer[512] alignas(16);
size_t remain{len}; while(remain)
{
const mutable_buffer mb
{
buffer, std::min(remain, sizeof(buffer))
};
__builtin_prefetch(data(mb), 1, 0); // 1 = write, 0 = no cache
remain -= read_all(socket, mb);
}
return len;
}
/// Non-blocking discard of up to len bytes. The amount of bytes discarded
/// is returned. Zero is only returned if len==0 because the EAGAIN is
/// thrown. If any bytes have been discarded any EAGAIN encountered in
/// this function's internal loop is not thrown, but used to exit the loop.
///
size_t
ircd::net::discard_any(socket &socket,
const size_t &len)
{
static char buffer[512] alignas(16);
size_t remain{len}; while(remain) try
{
const mutable_buffer mb
{
buffer, std::min(remain, sizeof(buffer))
};
__builtin_prefetch(data(mb), 1, 0); // 1 = write, 0 = no cache
remain -= read_one(socket, mb);
}
catch(const boost::system::system_error &e)
{
if(e.code() == boost::system::errc::resource_unavailable_try_again)
if(remain <= len)
break;
throw;
}
return len - remain;
}
/// Yields ircd::ctx until buffers are full.
///
/// Use this only if the following are true:
///
/// * You know the remote has made a guarantee to send you a specific amount
/// of data.
///
/// * You put a timer on the socket so that if the remote runs short this
/// call doesn't hang the ircd::ctx forever, otherwise it will until cancel.
///
/// * You are willing to dedicate the ircd::ctx to just this operation for
/// that amount of time.
///
size_t
ircd::net::read_all(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_all(buffers);
}
/// Yields ircd::ctx until remote has sent at least one frame. The buffers may
/// be filled with any amount of data depending on what has accumulated.
///
/// Use this if the following are true:
///
/// * You know there is data to be read; you can do this asynchronously with
/// other features of the socket. Otherwise this will hang the ircd::ctx.
///
/// * You are willing to dedicate the ircd::ctx to just this operation,
/// which is non-blocking if data is known to be available, but may be
/// blocking if this call is made in the blind.
///
size_t
ircd::net::read_few(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_few(buffers);
}
/// Reads as much as possible. Non-blocking behavior.
///
/// This is intended for lowest-level/custom control and not preferred by
/// default for most users on an ircd::ctx.
///
size_t
ircd::net::read_any(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_any(buffers);
}
/// Reads one message or less in a single syscall. Non-blocking behavior.
///
/// This is intended for lowest-level/custom control and not preferred by
/// default for most users on an ircd::ctx.
///
size_t
ircd::net::read_one(socket &socket,
const vector_view<const mutable_buffer> &buffers)
{
return socket.read_one(buffers);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/wait.h
//
ircd::net::wait_opts
const ircd::net::wait_opts_default
{
};
/// Wait for socket to become "ready" using a ctx::future.
ircd::ctx::future<void>
ircd::net::wait(use_future_t,
socket &socket,
const wait_opts &wait_opts)
{
ctx::promise<void> p;
ctx::future<void> f{p};
wait(socket, wait_opts, [p(std::move(p))]
(std::exception_ptr eptr)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value();
});
return f;
}
/// Wait for socket to become "ready"; yields ircd::ctx returning code.
ircd::net::error_code
ircd::net::wait(nothrow_t,
socket &socket,
const wait_opts &wait_opts)
try
{
wait(socket, wait_opts);
return {};
}
catch(const boost::system::system_error &e)
{
return e.code();
}
/// Wait for socket to become "ready"; yields ircd::ctx; throws errors.
void
ircd::net::wait(socket &socket,
const wait_opts &wait_opts)
{
socket.wait(wait_opts);
}
/// Wait for socket to become "ready"; callback with exception_ptr
void
ircd::net::wait(socket &socket,
const wait_opts &wait_opts,
wait_callback_eptr callback)
{
socket.wait(wait_opts, std::move(callback));
}
void
ircd::net::wait(socket &socket,
const wait_opts &wait_opts,
wait_callback_ec callback)
{
socket.wait(wait_opts, std::move(callback));
}
ircd::string_view
ircd::net::reflect(const ready &type)
{
switch(type)
{
case ready::ANY: return "ANY"_sv;
case ready::READ: return "READ"_sv;
case ready::WRITE: return "WRITE"_sv;
case ready::ERROR: return "ERROR"_sv;
}
return "????"_sv;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/close.h
//
/// Static instance of default close options.
ircd::net::close_opts
const ircd::net::close_opts_default
{
};
/// Static helper callback which may be passed to the callback-based overload
/// of close(). This callback does nothing.
ircd::net::close_callback
const ircd::net::close_ignore{[]
(std::exception_ptr eptr)
{
return;
}};
ircd::ctx::future<void>
ircd::net::close(socket &socket,
const close_opts &opts)
{
ctx::promise<void> p;
ctx::future<void> f(p);
close(socket, opts, [p(std::move(p))]
(std::exception_ptr eptr)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value();
});
return f;
}
void
ircd::net::close(socket &socket,
const close_opts &opts,
close_callback callback)
{
socket.disconnect(opts, std::move(callback));
}
///////////////////////////////////////////////////////////////////////////////
//
// net/open.h
//
/// Open new socket with future-based report.
///
ircd::ctx::future<std::shared_ptr<ircd::net::socket>>
ircd::net::open(const open_opts &opts)
{
ctx::promise<std::shared_ptr<socket>> p;
ctx::future<std::shared_ptr<socket>> f(p);
auto s{std::make_shared<socket>()};
open(*s, opts, [s, p(std::move(p))]
(std::exception_ptr eptr)
mutable
{
if(eptr)
p.set_exception(std::move(eptr));
else
p.set_value(s);
});
return f;
}
/// Open existing socket with callback-based report.
///
std::shared_ptr<ircd::net::socket>
ircd::net::open(const open_opts &opts,
open_callback handler)
{
auto s{std::make_shared<socket>()};
open(*s, opts, std::move(handler));
return s;
}
/// Open existing socket with callback-based report.
///
void
ircd::net::open(socket &socket,
const open_opts &opts,
open_callback handler)
{
auto complete{[s(shared_from(socket)), handler(std::move(handler))]
(std::exception_ptr eptr)
{
if(eptr)
close(*s, dc::RST);
handler(std::move(eptr));
}};
auto connector{[&socket, opts, complete(std::move(complete))]
(std::exception_ptr eptr, const ipport &ipport)
{
if(eptr)
return complete(std::move(eptr));
const auto ep{make_endpoint(ipport)};
socket.connect(ep, opts, std::move(complete));
}};
if(!opts.ipport)
dns(opts.hostport, std::move(connector));
else
connector({}, opts.ipport);
}
///////////////////////////////////////////////////////////////////////////////
//
// net/sopts.h
//
/// Construct sock_opts with the current options from socket argument
ircd::net::sock_opts::sock_opts(const socket &socket)
:blocking{net::blocking(socket)}
,nodelay{net::nodelay(socket)}
,keepalive{net::keepalive(socket)}
,linger{net::linger(socket)}
,read_bufsz{ssize_t(net::read_bufsz(socket))}
,write_bufsz{ssize_t(net::write_bufsz(socket))}
,read_lowat{ssize_t(net::read_lowat(socket))}
,write_lowat{ssize_t(net::write_lowat(socket))}
{
}
/// Updates the socket with provided options. Defaulted / -1'ed options are
/// ignored for updating.
void
ircd::net::set(socket &socket,
const sock_opts &opts)
{
if(opts.blocking != opts.IGN)
net::blocking(socket, opts.blocking);
if(opts.nodelay != opts.IGN)
net::nodelay(socket, opts.nodelay);
if(opts.keepalive != opts.IGN)
net::keepalive(socket, opts.keepalive);
if(opts.linger != opts.IGN)
net::linger(socket, opts.linger);
if(opts.read_bufsz != opts.IGN)
net::read_bufsz(socket, opts.read_bufsz);
if(opts.write_bufsz != opts.IGN)
net::write_bufsz(socket, opts.write_bufsz);
if(opts.read_lowat != opts.IGN)
net::read_lowat(socket, opts.read_lowat);
if(opts.write_lowat != opts.IGN)
net::write_lowat(socket, opts.write_lowat);
}
void
ircd::net::write_lowat(socket &socket,
const size_t &bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
ip::tcp::socket::send_low_watermark option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::read_lowat(socket &socket,
const size_t &bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
ip::tcp::socket::receive_low_watermark option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::write_bufsz(socket &socket,
const size_t &bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
ip::tcp::socket::send_buffer_size option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::read_bufsz(socket &socket,
const size_t &bytes)
{
assert(bytes <= std::numeric_limits<int>::max());
ip::tcp::socket::receive_buffer_size option
{
int(bytes)
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::linger(socket &socket,
const time_t &t)
{
assert(t >= std::numeric_limits<int>::min());
assert(t <= std::numeric_limits<int>::max());
ip::tcp::socket::linger option
{
t >= 0, // ON / OFF boolean
t >= 0? int(t) : 0 // Uses 0 when OFF
};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::keepalive(socket &socket,
const bool &b)
{
ip::tcp::socket::keep_alive option{b};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
void
ircd::net::nodelay(socket &socket,
const bool &b)
{
ip::tcp::no_delay option{b};
ip::tcp::socket &sd(socket);
sd.set_option(option);
}
/// Toggles the behavior of non-async asio calls.
///
/// This option affects very little in practice and only sets a flag in
/// userspace in asio, not an actual ioctl(). Specifically:
///
/// * All sockets are already set by asio to FIONBIO=1 no matter what, thus
/// nothing really blocks the event loop ever by default unless you try hard.
///
/// * All asio::async_ and sd.async_ and ssl.async_ calls will always do what
/// the synchronous/blocking alternative would have accomplished but using
/// the async methodology. i.e if a buffer is full you will always wait
/// asynchronously: async_write() will wait for everything, async_write_some()
/// will wait for something, etc -- but there will never be true non-blocking
/// _effective behavior_ from these calls.
///
/// * All asio non-async calls conduct blocking by (on linux) poll()'ing the
/// socket to get a real kernel-blocking operation out of it (this is the
/// try-hard part).
///
/// This flag only controls the behavior of the last bullet. In practice,
/// in this project there is never a reason to ever set this to true,
/// however, sockets do get constructed by asio in blocking mode by default
/// so we mostly use this function to set it to non-blocking.
///
void
ircd::net::blocking(socket &socket,
const bool &b)
{
ip::tcp::socket &sd(socket);
sd.non_blocking(!b);
}
size_t
ircd::net::write_lowat(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::send_low_watermark option{};
sd.get_option(option);
return option.value();
}
size_t
ircd::net::read_lowat(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::receive_low_watermark option{};
sd.get_option(option);
return option.value();
}
size_t
ircd::net::write_bufsz(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::send_buffer_size option{};
sd.get_option(option);
return option.value();
}
size_t
ircd::net::read_bufsz(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::receive_buffer_size option{};
sd.get_option(option);
return option.value();
}
time_t
ircd::net::linger(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::linger option;
sd.get_option(option);
return option.enabled()? option.timeout() : -1;
}
bool
ircd::net::keepalive(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::socket::keep_alive option;
sd.get_option(option);
return option.value();
}
bool
ircd::net::nodelay(const socket &socket)
{
const ip::tcp::socket &sd(socket);
ip::tcp::no_delay option;
sd.get_option(option);
return option.value();
}
bool
ircd::net::blocking(const socket &socket)
{
const ip::tcp::socket &sd(socket);
return !sd.non_blocking();
}
///////////////////////////////////////////////////////////////////////////////
//
// net/listener.h
//
ircd::net::listener::listener(const std::string &opts)
:listener{json::object{opts}}
{
}
ircd::net::listener::listener(const json::object &opts)
:acceptor{std::make_shared<struct acceptor>(opts)}
{
// Starts the first asynchronous accept. This has to be done out here after
// the acceptor's shared object is constructed.
acceptor->next();
}
/// Cancels all pending accepts and handshakes and waits (yields ircd::ctx)
/// until report.
///
ircd::net::listener::~listener()
noexcept
{
if(acceptor)
acceptor->join();
}
///////////////////////////////////////////////////////////////////////////////
//
// net/acceptor.h
//
ircd::log::log
ircd::net::listener::acceptor::log
{
"listener"
};
decltype(ircd::net::listener::acceptor::timeout)
ircd::net::listener::acceptor::timeout
{
{ "name", "ircd.net.acceptor.timeout" },
{ "default", 5000L },
};
ircd::net::listener::acceptor::acceptor(const json::object &opts)
try
:name
{
unquote(opts.get("name", "IRCd (ssl)"s))
}
,backlog
{
//boost::asio::ip::tcp::socket::max_connections <-- linkage failed?
opts.get<size_t>("backlog", SOMAXCONN) //TODO: XXX
}
,ssl
{
asio::ssl::context::method::sslv23_server
}
,ep
{
ip::address::from_string(unquote(opts.get("host", "127.0.0.1"s))),
opts.at<uint16_t>("port")
}
,a
{
*ircd::ios
}
{
static const auto &max_connections
{
//boost::asio::ip::tcp::socket::max_connections <-- linkage failed?
SOMAXCONN //TODO: XXX
};
static const ip::tcp::acceptor::reuse_address reuse_address
{
true
};
configure(opts);
log.debug("%s configured listener SSL",
std::string(*this));
a.open(ep.protocol());
a.set_option(reuse_address);
log.debug("%s opened listener socket",
std::string(*this));
a.bind(ep);
log.debug("%s bound listener socket",
std::string(*this));
a.listen(backlog);
log.debug("%s listening (backlog: %lu, max connections: %zu)",
std::string(*this),
backlog,
max_connections);
}
catch(const boost::system::system_error &e)
{
throw error("listener: %s", e.what());
}
ircd::net::listener::acceptor::~acceptor()
noexcept
{
}
void
ircd::net::listener::acceptor::join()
noexcept try
{
interrupt();
joining.wait([this]
{
return !accepting && !handshaking;
});
}
catch(const std::exception &e)
{
log.error("acceptor(%p) join: %s",
this,
e.what());
}
bool
ircd::net::listener::acceptor::interrupt()
noexcept try
{
a.cancel();
interrupting = true;
return true;
}
catch(const boost::system::system_error &e)
{
log.error("acceptor(%p) interrupt: %s",
this,
string(e));
return false;
}
/// Sets the next asynchronous handler to start the next accept sequence.
/// Each call to next() sets one handler which handles the connect for one
/// socket. After the connect, an asynchronous SSL handshake handler is set
/// for the socket, and next() is called again to setup for the next socket
/// too.
void
ircd::net::listener::acceptor::next()
try
{
auto sock(std::make_shared<ircd::socket>(ssl));
/*
log.debug("%s: socket(%p) is the next socket to accept",
std::string(*this),
sock.get());
*/
++accepting;
ip::tcp::socket &sd(*sock);
a.async_accept(sd, std::bind(&acceptor::accept, this, ph::_1, sock, weak_from(*this)));
}
catch(const std::exception &e)
{
throw assertive
{
"%s: %s", std::string(*this), e.what()
};
}
/// Callback for a socket connected. This handler then invokes the
/// asynchronous SSL handshake sequence.
///
void
ircd::net::listener::acceptor::accept(const error_code &ec,
const std::shared_ptr<socket> sock,
const std::weak_ptr<acceptor> a)
noexcept try
{
if(unlikely(a.expired()))
return;
--accepting;
assert(bool(sock));
log.debug("%s: socket(%p) accepted(%zu) %s %s",
std::string(*this),
sock.get(),
accepting,
string(remote_ipport(*sock)),
string(ec));
if(!check_accept_error(ec, *sock))
return;
// Toggles the behavior of non-async functions; see func comment
blocking(*sock, false);
static const socket::handshake_type handshake_type
{
socket::handshake_type::server
};
auto handshake
{
std::bind(&acceptor::handshake, this, ph::_1, sock, a)
};
++handshaking;
sock->set_timeout(milliseconds(timeout));
sock->ssl.async_handshake(handshake_type, std::move(handshake));
}
catch(const ctx::interrupted &e)
{
log.debug("%s: acceptor interrupted socket(%p) %s",
std::string(*this),
sock.get(),
string(ec));
joining.notify_all();
}
catch(const std::exception &e)
{
log.error("%s: socket(%p) in accept(): %s",
std::string(*this),
sock.get(),
e.what());
throw;
}
/// Error handler for the accept socket callback. This handler determines
/// whether or not the handler should return or continue processing the
/// result.
///
bool
ircd::net::listener::acceptor::check_accept_error(const error_code &ec,
socket &sock)
{
using namespace boost::system::errc;
using boost::system::system_category;
if(unlikely(interrupting))
throw ctx::interrupted();
if(likely(ec == success))
{
this->next();
return true;
}
if(ec.category() == system_category()) switch(ec.value())
{
case operation_canceled:
return false;
default:
break;
}
throw boost::system::system_error(ec);
}
void
ircd::net::listener::acceptor::handshake(const error_code &ec,
const std::shared_ptr<socket> sock,
const std::weak_ptr<acceptor> a)
noexcept try
{
if(unlikely(a.expired()))
return;
--handshaking;
const unwind::exceptional drop{[&sock]
{
if(bool(sock))
close(*sock, dc::RST, close_ignore);
}};
assert(bool(sock));
log.debug("socket(%p) local[%s] remote[%s] handshook(%zu) %s",
sock.get(),
string(local_ipport(*sock)),
string(remote_ipport(*sock)),
handshaking,
string(ec));
check_handshake_error(ec, *sock);
sock->cancel_timeout();
add_client(sock);
}
catch(const ctx::interrupted &e)
{
log.debug("%s: SSL handshake interrupted socket(%p) %s",
std::string(*this),
sock.get(),
string(ec));
joining.notify_all();
}
catch(const boost::system::system_error &e)
{
using namespace boost::system::errc;
const auto &fac{e.code() == timed_out? log::DEBUG : log::ERROR};
log(fac, "%s: socket(%p) in handshake(): %s",
std::string(*this),
sock.get(),
string(e));
}
catch(const std::exception &e)
{
log.error("%s: socket(%p) in handshake(): %s",
std::string(*this),
sock.get(),
e.what());
}
/// Error handler for the SSL handshake callback. This handler determines
/// whether or not the handler should return or continue processing the
/// result.
///
void
ircd::net::listener::acceptor::check_handshake_error(const error_code &ec,
socket &sock)
{
using boost::system::system_error;
using boost::system::system_category;
using namespace boost::system::errc;
if(unlikely(interrupting))
throw ctx::interrupted();
if(likely(ec.category() == system_category())) switch(ec.value())
{
case success:
return;
case operation_canceled:
if(sock.timedout)
throw system_error(timed_out, system_category());
else
break;
default:
break;
}
throw system_error(ec);
}
void
ircd::net::listener::acceptor::configure(const json::object &opts)
{
log.debug("%s preparing listener socket configuration...",
std::string(*this));
ssl.set_options
(
0
//| ssl.default_workarounds
//| ssl.no_tlsv1
//| ssl.no_tlsv1_1
//| ssl.no_tlsv1_2
//| ssl.no_sslv2
//| ssl.no_sslv3
//| ssl.single_dh_use
);
//TODO: XXX
ssl.set_password_callback([this]
(const auto &size, const auto &purpose)
{
log.debug("%s asking for password with purpose '%s' (size: %zu)",
std::string(*this),
purpose,
size);
//XXX: TODO
return "foobar";
});
if(opts.has("ssl_certificate_chain_file"))
{
const std::string filename
{
unquote(opts["ssl_certificate_chain_file"])
};
if(!fs::exists(filename))
throw error("%s: SSL certificate chain file @ `%s' not found",
std::string(*this),
filename);
ssl.use_certificate_chain_file(filename);
log.info("%s using certificate chain file '%s'",
std::string(*this),
filename);
}
if(opts.has("ssl_certificate_file_pem"))
{
const std::string filename
{
unquote(opts["ssl_certificate_file_pem"])
};
if(!fs::exists(filename))
throw error("%s: SSL certificate pem file @ `%s' not found",
std::string(*this),
filename);
ssl.use_certificate_file(filename, asio::ssl::context::pem);
log.info("%s using certificate file '%s'",
std::string(*this),
filename);
}
if(opts.has("ssl_private_key_file_pem"))
{
const std::string filename
{
unquote(opts["ssl_private_key_file_pem"])
};
if(!fs::exists(filename))
throw error("%s: SSL private key file @ `%s' not found",
std::string(*this),
filename);
ssl.use_private_key_file(filename, asio::ssl::context::pem);
log.info("%s using private key file '%s'",
std::string(*this),
filename);
}
if(opts.has("ssl_tmp_dh_file"))
{
const std::string filename
{
unquote(opts["ssl_tmp_dh_file"])
};
if(!fs::exists(filename))
throw error("%s: SSL tmp dh file @ `%s' not found",
std::string(*this),
filename);
ssl.use_tmp_dh_file(filename);
log.info("%s using tmp dh file '%s'",
std::string(*this),
filename);
}
}
ircd::net::listener::acceptor::operator
std::string()
const
{
return fmt::snstringf
{
256, "'%s' @ [%s]:%u",
name,
string(ep.address()),
ep.port()
};
}
///////////////////////////////////////////////////////////////////////////////
//
// net/socket.h
//
boost::asio::ssl::context
ircd::net::sslv23_client
{
boost::asio::ssl::context::method::sslv23_client
};
//
// socket
//
ircd::net::socket::socket(asio::ssl::context &ssl,
boost::asio::io_service *const &ios)
:sd
{
*ios
}
,ssl
{
this->sd, ssl
}
,timer
{
*ios
}
{
}
/// The dtor asserts that the socket is not open/connected requiring a
/// an SSL close_notify. There's no more room for async callbacks via
/// shared_ptr after this dtor.
ircd::net::socket::~socket()
noexcept try
{
if(unlikely(RB_DEBUG_LEVEL && opened(*this)))
throw assertive
{
"Failed to ensure socket(%p) is disconnected from %s before dtor.",
this,
string(remote())
};
}
catch(const std::exception &e)
{
log.critical("socket(%p) close: %s", this, e.what());
return;
}
void
ircd::net::socket::connect(const endpoint &ep,
const open_opts &opts,
eptr_handler callback)
{
log.debug("socket(%p) attempting connect remote[%s] to:%ld$ms",
this,
string(ep),
opts.connect_timeout.count());
auto connect_handler
{
std::bind(&socket::handle_connect, this, weak_from(*this), opts, std::move(callback), ph::_1)
};
set_timeout(opts.connect_timeout);
sd.async_connect(ep, std::move(connect_handler));
}
void
ircd::net::socket::handshake(const open_opts &opts,
eptr_handler callback)
{
log.debug("socket(%p) local[%s] remote[%s] handshaking for '%s' to:%ld$ms",
this,
string(local_ipport(*this)),
string(remote_ipport(*this)),
common_name(opts),
opts.handshake_timeout.count());
auto handshake_handler
{
std::bind(&socket::handle_handshake, this, weak_from(*this), std::move(callback), ph::_1)
};
auto verify_handler
{
std::bind(&socket::handle_verify, this, ph::_1, ph::_2, opts)
};
set_timeout(opts.handshake_timeout);
ssl.set_verify_callback(std::move(verify_handler));
ssl.async_handshake(handshake_type::client, std::move(handshake_handler));
}
void
ircd::net::socket::disconnect(const close_opts &opts,
eptr_handler callback)
try
{
if(!sd.is_open())
{
call_user(callback, {});
return;
}
log.debug("socket(%p) local[%s] remote[%s] disconnect type:%d user: in:%zu out:%zu",
(const void *)this,
string(local_ipport(*this)),
string(remote_ipport(*this)),
uint(opts.type),
in.bytes,
out.bytes);
cancel();
if(opts.sopts)
set(*this, *opts.sopts);
switch(opts.type)
{
case dc::RST:
sd.close();
break;
case dc::FIN:
sd.shutdown(ip::tcp::socket::shutdown_both);
break;
case dc::FIN_SEND:
sd.shutdown(ip::tcp::socket::shutdown_send);
break;
case dc::FIN_RECV:
sd.shutdown(ip::tcp::socket::shutdown_receive);
break;
case dc::SSL_NOTIFY:
{
auto disconnect_handler
{
std::bind(&socket::handle_disconnect, this, shared_from(*this), std::move(callback), ph::_1)
};
set_timeout(opts.timeout);
ssl.async_shutdown(std::move(disconnect_handler));
return;
}
}
call_user(callback, {});
}
catch(const boost::system::system_error &e)
{
call_user(callback, e.code());
}
catch(const std::exception &e)
{
throw assertive
{
"socket(%p) disconnect: type: %d: %s",
(const void *)this,
uint(opts.type),
e.what()
};
}
void
ircd::net::socket::cancel()
noexcept
{
cancel_timeout();
boost::system::error_code ec;
sd.cancel(ec);
assert(!ec);
}
void
ircd::net::socket::wait(const wait_opts &opts,
wait_callback_eptr callback)
{
wait(opts, [callback(std::move(callback))]
(const error_code &ec)
{
if(likely(!ec))
return callback(std::exception_ptr{});
using boost::system::system_error;
callback(std::make_exception_ptr(system_error{ec}));
});
}
/// Asynchronous callback when the socket is ready
///
/// Overload for operator() without a timeout. see: operator()
///
void
ircd::net::socket::wait(const wait_opts &opts)
try
{
const scope_timeout timeout
{
*this, opts.timeout
};
switch(opts.type)
{
case ready::ERROR:
sd.async_wait(wait_type::wait_error, yield_context{to_asio{}});
break;
case ready::WRITE:
sd.async_wait(wait_type::wait_write, yield_context{to_asio{}});
break;
case ready::READ:
sd.async_wait(wait_type::wait_read, yield_context{to_asio{}});
break;
default:
throw ircd::not_implemented{};
}
}
catch(const boost::system::system_error &e)
{
using namespace boost::system::errc;
using boost::system::system_category;
if(e.code() == operation_canceled && timedout)
throw boost::system::system_error
{
timed_out, system_category()
};
throw;
}
/// Asynchronous callback when the socket is ready
///
/// This function calls back the handler when the socket is ready
/// for the operation of the specified type.
///
void
ircd::net::socket::wait(const wait_opts &opts,
wait_callback_ec callback)
{
auto handle
{
std::bind(&socket::handle_ready, this, weak_from(*this), opts.type, std::move(callback), ph::_1)
};
set_timeout(opts.timeout);
const unwind::exceptional unset{[this]
{
cancel_timeout();
}};
switch(opts.type)
{
case ready::ERROR:
sd.async_wait(wait_type::wait_error, std::move(handle));
break;
case ready::WRITE:
sd.async_wait(wait_type::wait_write, std::move(handle));
break;
case ready::READ:
{
static char buf[1] alignas(16);
static const ilist<mutable_buffer> bufs{buf};
__builtin_prefetch(buf, 1, 0); // 1 = write, 0 = no cache
// The problem here is that waiting on the sd doesn't account for bytes
// read into SSL that we didn't consume yet. If something is stuck in
// those userspace buffers, the socket won't know about it and perform
// the wait. ASIO should fix this by adding a ssl::stream.wait() method
// which will bail out immediately in this case before passing up to the
// real socket wait.
if(SSL_peek(ssl.native_handle(), buf, sizeof(buf)) > 0)
{
handle(error_code{});
break;
}
// The problem here is that the wait operation gives ec=success on both a
// socket error and when data is actually available. We then have to check
// using a non-blocking peek in the handler. By doing it this way here we
// just get the error in the handler's ec.
sd.async_receive(bufs, sd.message_peek, std::move(handle));
//sd.async_wait(wait_type::wait_read, std::move(handle));
break;
}
default:
throw ircd::not_implemented{};
}
}
void
ircd::net::socket::handle_ready(const std::weak_ptr<socket> wp,
const net::ready type,
const ec_handler callback,
error_code ec)
noexcept try
{
using namespace boost::system::errc;
using boost::system::system_category;
// After life_guard is constructed it is safe to use *this in this frame.
const life_guard<socket> s{wp};
if(!timedout)
cancel_timeout();
else if(ec == operation_canceled && ec.category() == system_category())
ec = { timed_out, system_category() };
if(unlikely(!ec && !sd.is_open()))
ec = { bad_file_descriptor, system_category() };
log.debug("socket(%p) local[%s] remote[%s] ready %s %s available:%zu",
this,
string(local_ipport(*this)),
string(remote_ipport(*this)),
reflect(type),
string(ec),
available(*this));
call_user(callback, ec);
}
catch(const boost::system::system_error &e)
{
log.error("socket(%p) handle: %s",
this,
e.what());
assert(0);
call_user(callback, e.code());
}
catch(const std::bad_weak_ptr &e)
{
// This handler may still be registered with asio after the socket destructs, so
// the weak_ptr will indicate that fact. However, this is never intended and is
// a debug assertion which should be corrected.
log.warning("socket(%p) belated callback to handler... (%s)",
this,
e.what());
assert(0);
}
catch(const std::exception &e)
{
log.critical("socket(%p) handle: %s",
this,
e.what());
assert(0);
call_user(callback, ec);
}
void
ircd::net::socket::handle_timeout(const std::weak_ptr<socket> wp,
ec_handler callback,
error_code ec)
noexcept try
{
using namespace boost::system::errc;
using boost::system::system_category;
if(unlikely(wp.expired()))
return;
switch(ec.value())
{
// A 'success' for this handler means there was a timeout on the socket
case success:
{
assert(timedout == false);
timedout = true;
sd.cancel();
break;
}
// A cancelation means there was no timeout.
case operation_canceled:
{
assert(ec.category() == system_category());
assert(timedout == false);
break;
}
// All other errors are unexpected, logged and ignored here.
default: throw assertive
{
"unexpected: %s\n",
(const void *)this,
string(ec)
};
}
if(callback)
call_user(callback, ec);
}
catch(const std::exception &e)
{
log.critical("socket(%p) handle timeout: %s",
(const void *)this,
e.what());
assert(0);
if(callback)
call_user(callback, ec);
}
void
ircd::net::socket::handle_connect(std::weak_ptr<socket> wp,
const open_opts opts,
eptr_handler callback,
error_code ec)
noexcept try
{
using namespace boost::system::errc;
using boost::system::system_category;
const life_guard<socket> s{wp};
log.debug("socket(%p) local[%s] remote[%s] connect %s",
this,
string(local_ipport(*this)),
string(remote_ipport(*this)),
string(ec));
// The timer was set by socket::connect() and may need to be canceled.
if(!timedout)
cancel_timeout();
else if(ec == operation_canceled && ec.category() == system_category())
ec = { timed_out, system_category() };
// A connect error; abort here by calling the user back with error.
if(ec)
return call_user(callback, ec);
// Toggles the behavior of non-async functions; see func comment
blocking(*this, false);
// Try to set the user's socket options now; if something fails we can
// invoke their callback with the error from the exception handler.
if(opts.sopts)
set(*this, *opts.sopts);
// The user can opt out of performing the handshake here.
if(!opts.handshake)
return call_user(callback, ec);
handshake(opts, std::move(callback));
}
catch(const boost::system::system_error &e)
{
log.error("socket(%p) after connect: %s",
this,
e.what());
assert(0);
call_user(callback, e.code());
}
catch(const std::bad_weak_ptr &e)
{
log.warning("socket(%p) belated callback to handle_connect... (%s)",
this,
e.what());
assert(0);
}
catch(const std::exception &e)
{
log.critical("socket(%p) handle_connect: %s",
this,
e.what());
assert(0);
call_user(callback, ec);
}
void
ircd::net::socket::handle_disconnect(std::shared_ptr<socket> s,
eptr_handler callback,
error_code ec)
noexcept try
{
using namespace boost::system::errc;
using boost::system::system_category;
if(!timedout)
cancel_timeout();
else if(ec == operation_canceled && ec.category() == system_category())
ec = { timed_out, system_category() };
log.debug("socket(%p) local[%s] remote[%s] disconnect %s",
this,
string(local_ipport(*this)),
string(remote_ipport(*this)),
string(ec));
// This ignores EOF and turns it into a success to alleviate user concern.
if(ec.category() == asio::error::get_misc_category())
if(ec.value() == asio::error::eof)
ec = error_code{};
sd.close();
call_user(callback, ec);
}
catch(const boost::system::system_error &e)
{
log.error("socket(%p) disconnect: %s",
this,
e.what());
assert(0);
call_user(callback, e.code());
}
catch(const std::exception &e)
{
log.critical("socket(%p) disconnect: %s",
this,
e.what());
assert(0);
call_user(callback, ec);
}
void
ircd::net::socket::handle_handshake(std::weak_ptr<socket> wp,
eptr_handler callback,
error_code ec)
noexcept try
{
using namespace boost::system::errc;
using boost::system::system_category;
const life_guard<socket> s{wp};
if(!timedout)
cancel_timeout();
else if(ec == operation_canceled && ec.category() == system_category())
ec = { timed_out, system_category() };
log.debug("socket(%p) local[%s] remote[%s] handshake %s",
this,
string(local_ipport(*this)),
string(remote_ipport(*this)),
string(ec));
// This is the end of the asynchronous call chain; the user is called
// back with or without error here.
call_user(callback, ec);
}
catch(const boost::system::system_error &e)
{
log.error("socket(%p) after handshake: %s",
this,
e.what());
assert(0);
call_user(callback, e.code());
}
catch(const std::bad_weak_ptr &e)
{
log.warning("socket(%p) belated callback to handle_handshake... (%s)",
this,
e.what());
assert(0);
}
catch(const std::exception &e)
{
log.critical("socket(%p) handle_handshake: %s",
this,
e.what());
assert(0);
call_user(callback, ec);
}
bool
ircd::net::socket::handle_verify(const bool valid,
asio::ssl::verify_context &vc,
const open_opts &opts)
noexcept try
{
// `valid` indicates whether or not there's an anomaly with the
// certificate; if so, it is usually enumerated by the `switch()`
// statement below. If `valid` is false, this function can return
// true to continue but it appears this function will be called a
// second time with `valid=true`.
//
// TODO: XXX: This behavior must be confirmed since we return true
// TODO: XXX: early on recoverable errors and skip other checks
// TODO: XXX: expecting a second call..
//
// The user can set this option to bypass verification.
if(!opts.verify_certificate)
return true;
// X509_STORE_CTX &
assert(vc.native_handle());
const auto &stctx{*vc.native_handle()};
const auto &cert{openssl::current_cert(stctx)};
const auto reject{[&stctx, &opts]
{
throw inauthentic
{
"%s #%ld: %s",
common_name(opts),
openssl::get_error(stctx),
openssl::get_error_string(stctx)
};
}};
if(!valid)
{
thread_local char buf[4_KiB];
const critical_assertion ca;
log.warning("verify[%s]: %s :%s",
common_name(opts),
openssl::get_error_string(stctx),
openssl::print_subject(buf, cert));
}
const auto err
{
openssl::get_error(stctx)
};
if(!valid) switch(err)
{
case X509_V_OK:
assert(0);
default:
reject();
break;
case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT:
assert(openssl::get_error_depth(stctx) == 0);
if(opts.allow_self_signed)
return true;
reject();
break;
case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN:
if(opts.allow_self_chain)
return true;
reject();
break;
case X509_V_ERR_CERT_HAS_EXPIRED:
if(opts.allow_expired)
return true;
reject();
break;
}
const bool verify_common_name
{
opts.verify_common_name &&
(opts.verify_self_signed_common_name && err == X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT)
};
if(verify_common_name)
{
if(unlikely(empty(common_name(opts))))
throw inauthentic
{
"No common name specified in connection options"
};
//TODO: this object makes an std::string
boost::asio::ssl::rfc2818_verification verifier
{
std::string(common_name(opts))
};
if(!verifier(true, vc))
{
thread_local char buf[256];
const critical_assertion ca;
throw inauthentic
{
"/CN=%s does not match target host %s :%s",
openssl::subject_common_name(buf, cert),
common_name(opts),
openssl::get_error_string(stctx)
};
}
}
{
thread_local char buf[4_KiB];
const critical_assertion ca;
log.debug("verify[%s]: %s",
common_name(opts),
openssl::print_subject(buf, cert));
}
return true;
}
catch(const inauthentic &e)
{
log.error("Certificate rejected: %s", e.what());
return false;
}
catch(const std::exception &e)
{
log.critical("Certificate error: %s", e.what());
return false;
}
void
ircd::net::socket::call_user(const ec_handler &callback,
const error_code &ec)
noexcept try
{
callback(ec);
}
catch(const std::exception &e)
{
log.critical("socket(%p) async handler: unhandled exception: %s",
this,
e.what());
close(*this, dc::RST, close_ignore);
}
void
ircd::net::socket::call_user(const eptr_handler &callback,
const error_code &ec)
noexcept try
{
if(likely(!ec))
return callback(std::exception_ptr{});
using boost::system::system_error;
callback(std::make_exception_ptr(system_error{ec}));
}
catch(const std::exception &e)
{
log.critical("socket(%p) async handler: unhandled exception: %s",
this,
e.what());
}
ircd::milliseconds
ircd::net::socket::cancel_timeout()
noexcept
{
const auto exp
{
timer.expires_from_now()
};
const auto ret
{
duration_cast<milliseconds>(exp)
};
boost::system::error_code ec;
timer.cancel(ec);
assert(!ec);
timedout = false;
return ret;
}
void
ircd::net::socket::set_timeout(const milliseconds &t)
{
set_timeout(t, nullptr);
}
void
ircd::net::socket::set_timeout(const milliseconds &t,
ec_handler callback)
{
cancel_timeout();
if(t < milliseconds(0))
return;
auto handler
{
std::bind(&socket::handle_timeout, this, weak_from(*this), std::move(callback), ph::_1)
};
timer.expires_from_now(t);
timer.async_wait(std::move(handler));
}
boost::asio::ip::tcp::endpoint
ircd::net::socket::local()
const
{
return sd.local_endpoint();
}
boost::asio::ip::tcp::endpoint
ircd::net::socket::remote()
const
{
return sd.remote_endpoint();
}
ircd::net::socket::operator
SSL &()
{
assert(ssl.native_handle());
return *ssl.native_handle();
}
ircd::net::socket::operator
const SSL &()
const
{
using type = typename std::remove_const<decltype(socket::ssl)>::type;
auto &ssl(const_cast<type &>(this->ssl));
assert(ssl.native_handle());
return *ssl.native_handle();
}
//
// socket::scope_timeout
//
ircd::net::socket::scope_timeout::scope_timeout(socket &socket,
const milliseconds &timeout)
:s{&socket}
{
socket.set_timeout(timeout);
}
ircd::net::socket::scope_timeout::scope_timeout(socket &socket,
const milliseconds &timeout,
socket::ec_handler handler)
:s{&socket}
{
socket.set_timeout(timeout, std::move(handler));
}
ircd::net::socket::scope_timeout::scope_timeout(scope_timeout &&other)
noexcept
:s{std::move(other.s)}
{
other.s = nullptr;
}
ircd::net::socket::scope_timeout &
ircd::net::socket::scope_timeout::operator=(scope_timeout &&other)
noexcept
{
this->~scope_timeout();
s = std::move(other.s);
return *this;
}
ircd::net::socket::scope_timeout::~scope_timeout()
noexcept
{
cancel();
}
bool
ircd::net::socket::scope_timeout::cancel()
noexcept try
{
if(!this->s)
return false;
auto *const s{this->s};
this->s = nullptr;
s->cancel_timeout();
return true;
}
catch(const std::exception &e)
{
log.error("socket(%p) scope_timeout::cancel: %s",
(const void *)s,
e.what());
return false;
}
bool
ircd::net::socket::scope_timeout::release()
{
const auto s{this->s};
this->s = nullptr;
return s != nullptr;
}
///////////////////////////////////////////////////////////////////////////////
//
// net/dns.h
//
/// Singleton instance of the public interface ircd::net::resolve
decltype(ircd::net::dns)
ircd::net::dns
{};
/// Singleton instance of the DNS cache
decltype(ircd::net::dns::cache)
ircd::net::dns::cache
{};
/// Singleton instance of the internal boost resolver wrapper.
decltype(ircd::net::dns::resolver)
ircd::net::dns::resolver
{};
/// Linkage for default opts
decltype(ircd::net::dns::opts_default)
ircd::net::dns::opts_default
{};
decltype(ircd::net::dns::cache::clear_nxdomain)
ircd::net::dns::cache::clear_nxdomain
{
{ "name", "net.dns.cache.clear_nxdomain" },
{ "default", 43200L },
};
/// Convenience composition with a single ipport callback. This is the result of
/// an automatic chain of queries such as SRV and A/AAAA based on the input and
/// intermediate results.
void
ircd::net::dns::operator()(const hostport &hostport,
const opts &opts,
callback_ipport_one callback)
{
//TODO: ip6
auto calluser{[callback(std::move(callback))]
(std::exception_ptr eptr, const uint32_t &ip, const uint16_t &port)
{
if(eptr)
return callback(std::move(eptr), {});
if(!ip)
return callback(std::make_exception_ptr(net::not_found{"Host has no A record"}), {});
const ipport ipport{ip, port};
callback(std::move(eptr), ipport);
}};
if(!hostport.service)
return operator()(hostport, opts, [hostport, calluser(std::move(calluser))]
(std::exception_ptr eptr, const rfc1035::record::A &record)
{
calluser(std::move(eptr), record.ip4, port(hostport));
});
operator()(hostport, opts, [this, hostport(hostport), opts(opts), calluser(std::move(calluser))]
(std::exception_ptr eptr, const rfc1035::record::SRV &record)
mutable
{
//TODO: we get NXDOMAIN and it kills the chain..
//if(eptr)
// return callback(std::move(eptr), {});
if(!record.tgt.empty())
host(hostport) = record.tgt;
if(record.port != 0)
port(hostport) = record.port;
// Have to kill the service name to not run another SRV query now.
hostport.service = {};
opts.srv = {};
this->operator()(hostport, opts, [hostport, calluser(std::move(calluser))]
(std::exception_ptr eptr, const rfc1035::record::A &record)
{
calluser(std::move(eptr), record.ip4, port(hostport));
});
});
}
/// Convenience callback with a single SRV record which was selected from
/// the vector with stochastic respect for weighting and priority.
void
ircd::net::dns::operator()(const hostport &hostport,
const opts &opts,
callback_SRV_one callback)
{
assert(bool(ircd::net::dns::resolver));
operator()(hostport, opts, [callback(std::move(callback))]
(std::exception_ptr eptr, const vector_view<const rfc1035::record *> rrs)
{
if(eptr)
return callback(std::move(eptr), {});
//TODO: prng on weight / prio plz
for(size_t i(0); i < rrs.size(); ++i)
{
const auto &rr{*rrs.at(i)};
if(rr.type != 33)
continue;
const auto &record(rr.as<const rfc1035::record::SRV>());
return callback(std::move(eptr), record);
}
return callback(std::move(eptr), {});
});
}
/// Convenience callback with a single A record which was selected from
/// the vector randomly.
void
ircd::net::dns::operator()(const hostport &hostport,
const opts &opts,
callback_A_one callback)
{
assert(bool(ircd::net::dns::resolver));
operator()(hostport, opts, [callback(std::move(callback))]
(std::exception_ptr eptr, const vector_view<const rfc1035::record *> rrs)
{
if(eptr)
return callback(std::move(eptr), {});
//TODO: prng plz
for(size_t i(0); i < rrs.size(); ++i)
{
const auto &rr{*rrs.at(i)};
if(rr.type != 1)
continue;
const auto &record(rr.as<const rfc1035::record::A>());
return callback(std::move(eptr), record);
}
return callback(std::move(eptr), {});
});
}
/// Fundamental callback with a vector of abstract resource records.
void
ircd::net::dns::operator()(const hostport &hostport,
const opts &opts,
callback cb)
{
if(opts.cache_check)
if(query_cache(hostport, opts, cb))
return;
assert(bool(ircd::net::dns::resolver));
(*resolver)(hostport, opts, std::move(cb));
}
/// This function has an opportunity to respond from the DNS cache. If it
/// returns true, that indicates it responded by calling back the user and
/// nothing further should be done for them. If it returns false, that
/// indicates it did not respond and to proceed normally. The response can
/// be of a cached successful result, or a cached error. Both will return
/// true.
///
bool
ircd::net::dns::query_cache(const hostport &hp,
const opts &opts,
const callback &cb)
{
thread_local const rfc1035::record *record[resolver::MAX_COUNT];
std::exception_ptr eptr;
size_t count{0};
//TODO: Better deduction
if(hp.service || opts.srv) // deduced SRV query
{
thread_local char srvbuf[512];
const string_view srvhost
{
make_SRV_key(srvbuf, hp, opts)
};
auto &map{cache.SRV};
const auto pit{map.equal_range(srvhost)};
if(pit.first == pit.second)
return false;
const auto &now{ircd::time()};
for(auto it(pit.first); it != pit.second; )
{
const auto &rr{it->second};
// Cached entry is too old, ignore and erase
if(rr.ttl < now)
{
it = map.erase(it);
continue;
}
// Cached entry is a cached error, we set the eptr, but also
// include the record and increment the count like normal.
assert(!eptr);
if(!rr.tgt)
{
const auto rcode{3}; //NXDomain
eptr = std::make_exception_ptr(rfc1035::error
{
"protocol error #%u (cached) :%s", rcode, rfc1035::rcode.at(rcode)
});
}
record[count++] = &rr;
++it;
}
}
else // Deduced A query (for now)
{
auto &map{cache.A};
const auto pit{map.equal_range(std::string{host(hp)})}; //TODO: XXX
if(pit.first == pit.second)
return false;
const auto &now{ircd::time()};
for(auto it(pit.first); it != pit.second; )
{
const auto &rr{it->second};
// Cached entry is too old, ignore and erase
if(rr.ttl < now)
{
it = map.erase(it);
continue;
}
// Cached entry is a cached error, we set the eptr, but also
// include the record and increment the count like normal.
assert(!eptr);
if(!rr.ip4)
{
const auto rcode{3}; //NXDomain
eptr = std::make_exception_ptr(rfc1035::error
{
"protocol error #%u (cached) :%s", rcode, rfc1035::rcode.at(rcode)
});
}
record[count++] = &rr;
++it;
}
}
assert(count || !eptr); // no error if no cache response
assert(!eptr || count == 1); // if error, should only be one entry.
if(count)
cb(std::move(eptr), vector_view<const rfc1035::record *>(record, count));
return count;
}
ircd::string_view
ircd::net::dns::make_SRV_key(const mutable_buffer &out,
const hostport &hp,
const opts &opts)
{
if(!opts.srv)
return fmt::sprintf
{
out, "_%s._%s.%s", service(hp), opts.proto, host(hp)
};
else
return fmt::sprintf
{
out, "%s%s", opts.srv, host(hp)
};
}
///////////////////////////////////////////////////////////////////////////////
//
// net/resolver.h
//
decltype(ircd::net::dns::resolver::timeout)
ircd::net::dns::resolver::timeout
{
{ "name", "net.dns.resolver.timeout" },
{ "default", 10000L },
};
ircd::net::dns::resolver::resolver()
:ns{*ircd::ios}
,context
{
"resolver", 64_KiB, std::bind(&resolver::worker, this), context.POST
}
{
ns.open(ip::udp::v4());
ns.non_blocking(true);
set_handle();
init_servers();
}
ircd::net::dns::resolver::~resolver()
noexcept
{
ns.close();
context.interrupt();
assert(tags.empty());
}
void
ircd::net::dns::resolver::worker()
try
{
while(1)
{
dock.wait([this]
{
return !tags.empty();
});
ctx::sleep(milliseconds(timeout));
check_timeouts(milliseconds(timeout));
}
}
catch(const ctx::interrupted &)
{
return;
}
void
ircd::net::dns::resolver::check_timeouts(const milliseconds &timeout)
{
const auto cutoff
{
now<steady_point>() - timeout
};
auto it(begin(tags));
while(it != end(tags))
{
const auto &id(it->first);
auto &tag(it->second);
if(!check_timeout(id, tag, cutoff))
it = tags.erase(it);
else
++it;
}
}
bool
ircd::net::dns::resolver::check_timeout(const uint16_t &id,
tag &tag,
const steady_point &cutoff)
{
if(tag.last < cutoff)
return true;
//TODO: retry
log.error("DNS timeout id:%u", id);
const error_code ec
{
boost::system::errc::timed_out, boost::system::system_category()
};
if(tag.cb)
{
using boost::system::system_error;
tag.cb(std::make_exception_ptr(system_error{ec}), {});
}
return false;
}
/// Internal resolver entry interface.
void
ircd::net::dns::resolver::operator()(const hostport &hostport,
const opts &opts,
callback callback)
{
const auto &tag
{
set_tag(resolver::tag
{
hostport, opts, std::move(callback)
})
};
// Escape trunk
const unwind::exceptional untag{[this, &tag]
{
tags.erase(tag.id);
}};
thread_local char buf[64_KiB];
send_query(make_query(buf, tag));
}
ircd::const_buffer
ircd::net::dns::resolver::make_query(const mutable_buffer &buf,
const tag &tag)
const
{
//TODO: Better deduction
if(tag.hp.service || tag.opts.srv)
{
thread_local char srvbuf[512];
const string_view srvhost
{
make_SRV_key(srvbuf, tag.hp, tag.opts)
};
const rfc1035::question question{srvhost, "SRV"};
return rfc1035::make_query(buf, tag.id, question);
}
const rfc1035::question question{host(tag.hp), "A"};
return rfc1035::make_query(buf, tag.id, question);
}
ircd::net::dns::resolver::tag &
ircd::net::dns::resolver::set_tag(tag &&tag)
{
while(tags.size() < 65535)
{
tag.id = ircd::rand::integer(1, 65535);
auto it{tags.lower_bound(tag.id)};
if(it != end(tags) && it->first == tag.id)
continue;
it = tags.emplace_hint(it, tag.id, std::move(tag));
dock.notify_one();
return it->second;
}
throw assertive
{
"Too many DNS queries"
};
}
void
ircd::net::dns::resolver::send_query(const const_buffer &buf)
try
{
assert(!server.empty());
++server_next %= server.size();
const auto &ep{server.at(server_next)};
send_query(ep, buf);
}
catch(const std::out_of_range &)
{
throw error
{
"No DNS servers available for query"
};
}
void
ircd::net::dns::resolver::send_query(const ip::udp::endpoint &ep,
const const_buffer &buf)
{
assert(ns.non_blocking());
ns.send_to(asio::const_buffers_1(buf), ep);
}
void
ircd::net::dns::resolver::set_handle()
{
auto handler
{
std::bind(&resolver::handle, this, ph::_1, ph::_2)
};
const asio::mutable_buffers_1 bufs{reply, sizeof(reply)};
ns.async_receive_from(bufs, reply_from, std::move(handler));
}
void
ircd::net::dns::resolver::handle(const error_code &ec,
const size_t &bytes)
noexcept try
{
if(!handle_error(ec))
return;
const unwind reset{[this]
{
set_handle();
}};
if(unlikely(bytes < sizeof(rfc1035::header)))
throw rfc1035::error
{
"Got back %zu bytes < rfc1035 %zu byte header",
bytes,
sizeof(rfc1035::header)
};
char *const reply
{
this->reply
};
rfc1035::header &header
{
*reinterpret_cast<rfc1035::header *>(reply)
};
bswap(&header.qdcount);
bswap(&header.ancount);
bswap(&header.nscount);
bswap(&header.arcount);
const const_buffer body
{
reply + sizeof(header), bytes - sizeof(header)
};
handle_reply(header, body);
}
catch(const std::exception &e)
{
throw assertive
{
"resolver::handle_reply(): %s", e.what()
};
}
void
ircd::net::dns::resolver::handle_reply(const header &header,
const const_buffer &body)
try
{
const auto &id{header.id};
const auto it{tags.find(id)};
if(it == end(tags))
throw error
{
"DNS reply from %s for unrecognized tag id:%u",
string(reply_from),
id
};
auto &tag{it->second};
const unwind untag{[this, &it]
{
tags.erase(it);
}};
handle_reply(header, body, tag);
}
catch(const std::exception &e)
{
log.error("%s", e.what());
return;
}
void
ircd::net::dns::resolver::handle_reply(const header &header,
const const_buffer &body,
tag &tag)
try
{
if(unlikely(header.qr != 1))
throw rfc1035::error
{
"Response header is marked as 'Query' and not 'Response'"
};
if(header.qdcount > MAX_COUNT || header.ancount > MAX_COUNT)
throw error
{
"Response contains too many sections..."
};
const_buffer buffer
{
body
};
// Questions are regurgitated back to us so they must be parsed first
thread_local std::array<rfc1035::question, MAX_COUNT> qd;
for(size_t i(0); i < header.qdcount; ++i)
consume(buffer, size(qd.at(i).parse(buffer)));
if(!handle_error(header, qd.at(0), tag.opts))
throw rfc1035::error
{
"protocol error #%u :%s", header.rcode, rfc1035::rcode.at(header.rcode)
};
// Answers are parsed into this buffer
thread_local std::array<rfc1035::answer, MAX_COUNT> an;
for(size_t i(0); i < header.ancount; ++i)
consume(buffer, size(an[i].parse(buffer)));
if(tag.opts.cache_result)
{
// We convert all TTL values in the answers to absolute epoch time
// indicating when they expire. This makes more sense for our caches.
const auto &now{ircd::time()};
for(size_t i(0); i < header.ancount; ++i)
an[i].ttl = now + an[i].ttl;
}
// The callback to the user will be passed a vector_view of pointers
// to this array. The actual record instances will either be located
// in the cache map or placement-newed to the buffer below.
thread_local const rfc1035::record *record[MAX_COUNT];
// This will be where we place the record instances which are dynamically
// laid out and sized types. 512 bytes is assumed as a soft maximum for
// each RR instance.
thread_local uint8_t recbuf[MAX_COUNT * 512];
size_t i(0);
uint8_t *pos{recbuf};
for(; i < header.ancount; ++i) switch(an[i].qtype)
{
case 1: // A records are inserted into cache
{
if(!tag.opts.cache_result)
{
record[i] = new (pos) rfc1035::record::A(an[i]);
pos += sizeof(rfc1035::record::A);
continue;
}
const auto &name{qd.at(0).name};
const auto &host{rstrip(name, '.')};
const auto &it{cache.A.emplace(host, an[i])};
record[i] = &it->second;
continue;
}
case 5:
{
record[i] = new (pos) rfc1035::record::CNAME(an[i]);
pos += sizeof(rfc1035::record::CNAME);
continue;
}
case 33:
{
if(!tag.opts.cache_result)
{
record[i] = new (pos) rfc1035::record::SRV(an[i]);
pos += sizeof(rfc1035::record::SRV);
continue;
}
const auto &name{qd.at(0).name};
const auto &host{rstrip(name, '.')};
const auto it{cache.SRV.emplace(host, an[i])};
record[i] = &it->second;
continue;
}
default:
{
record[i] = new (pos) rfc1035::record(an[i]);
pos += sizeof(rfc1035::record);
continue;
}
}
if(tag.cb)
tag.cb({}, vector_view<const rfc1035::record *>(record, i));
}
catch(const std::exception &e)
{
// There's no need to flash red to the log for NXDOMAIN which is
// common in this system when probing SRV.
if(unlikely(header.rcode != 3))
log.error("resolver tag:%u [%s]: %s",
tag.id,
string(tag.hp),
e.what());
if(tag.cb)
tag.cb(std::current_exception(), {});
}
bool
ircd::net::dns::resolver::handle_error(const header &header,
const rfc1035::question &q,
const dns::opts &opts)
{
switch(header.rcode)
{
case 0: // NoError; continue
return true;
case 3: // NXDomain; exception
{
if(opts.cache_result) switch(q.qtype)
{
case 1: // A
{
const auto &host{rstrip(q.name, '.')};
rfc1035::record::A record;
record.ttl = ircd::time() + seconds(cache::clear_nxdomain).count();
cache.A.emplace(host, record);
break;
}
case 33:
{
const auto &host{rstrip(q.name, '.')};
rfc1035::record::SRV record;
record.ttl = ircd::time() + seconds(cache::clear_nxdomain).count();
cache.SRV.emplace(host, record);
break;
}
}
return false;
}
default: // Unhandled error; exception
return false;
}
}
bool
ircd::net::dns::resolver::handle_error(const error_code &ec)
const
{
using namespace boost::system::errc;
switch(ec.value())
{
case operation_canceled:
return false;
case success:
return true;
default:
throw boost::system::system_error(ec);
}
}
//TODO: x-platform
void
ircd::net::dns::resolver::init_servers()
{
const auto resolve_conf
{
fs::read("/etc/resolv.conf")
};
tokens(resolve_conf, '\n', [this](const auto &line)
{
const auto kv(split(line, ' '));
if(kv.first == "nameserver")
{
const ipport server{kv.second, 53};
this->server.emplace_back(make_endpoint_udp(server));
log.debug("Found nameserver %s from resolv.conf",
string(server));
}
});
}
///////////////////////////////////////////////////////////////////////////////
//
// net/remote.h
//
std::ostream &
ircd::net::operator<<(std::ostream &s, const remote &t)
{
thread_local char buf[256];
const critical_assertion ca;
s << string(buf, t);
return s;
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const remote &remote)
{
const auto &ipp
{
static_cast<const ipport &>(remote)
};
if(!ipp && !remote.hostname)
{
const auto len{strlcpy(data(buf), "0.0.0.0", size(buf))};
return { data(buf), size_t(len) };
}
else if(!ipp)
{
const auto len{strlcpy(data(buf), remote.hostname, size(buf))};
return { data(buf), size_t(len) };
}
else
{
const auto len{fmt::sprintf(buf, "%s => %s", remote.hostname, string(ipp))};
return { data(buf), size_t(len) };
}
}
///////////////////////////////////////////////////////////////////////////////
//
// net/ipport.h
//
std::ostream &
ircd::net::operator<<(std::ostream &s, const ipport &t)
{
thread_local char buf[256];
const critical_assertion ca;
s << string(buf, t);
return s;
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const uint32_t &ip)
{
const auto len
{
ip::address_v4{ip}.to_string().copy(data(buf), size(buf))
};
return { data(buf), size_t(len) };
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const uint128_t &ip)
{
const auto &pun
{
reinterpret_cast<const uint8_t (&)[16]>(ip)
};
const auto &punpun
{
reinterpret_cast<const std::array<uint8_t, 16> &>(pun)
};
const auto len
{
ip::address_v6{punpun}.to_string().copy(data(buf), size(buf))
};
return { data(buf), size_t(len) };
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const ipport &ipp)
{
const auto len
{
is_v4(ipp)?
fmt::sprintf(buf, "%s:%u",
ip::address_v4{host4(ipp)}.to_string(),
port(ipp)):
is_v6(ipp)?
fmt::sprintf(buf, "%s:%u",
ip::address_v6{std::get<ipp.IP>(ipp)}.to_string(),
port(ipp)):
0
};
return { data(buf), size_t(len) };
}
ircd::net::ipport
ircd::net::make_ipport(const boost::asio::ip::udp::endpoint &ep)
{
return ipport
{
ep.address(), ep.port()
};
}
ircd::net::ipport
ircd::net::make_ipport(const boost::asio::ip::tcp::endpoint &ep)
{
return ipport
{
ep.address(), ep.port()
};
}
boost::asio::ip::udp::endpoint
ircd::net::make_endpoint_udp(const ipport &ipport)
{
return
{
is_v6(ipport)? ip::udp::endpoint
{
asio::ip::address_v6 { std::get<ipport.IP>(ipport) }, port(ipport)
}
: ip::udp::endpoint
{
asio::ip::address_v4 { host4(ipport) }, port(ipport)
},
};
}
boost::asio::ip::tcp::endpoint
ircd::net::make_endpoint(const ipport &ipport)
{
return
{
is_v6(ipport)? ip::tcp::endpoint
{
asio::ip::address_v6 { std::get<ipport.IP>(ipport) }, port(ipport)
}
: ip::tcp::endpoint
{
asio::ip::address_v4 { host4(ipport) }, port(ipport)
},
};
}
//
// ipport
//
ircd::net::ipport::ipport(const string_view &ip,
const string_view &port)
:ipport
{
ip, lex_cast<uint16_t>(port)
}
{
}
ircd::net::ipport::ipport(const string_view &ip,
const uint16_t &port)
:ipport
{
asio::ip::make_address(ip), port
}
{
}
ircd::net::ipport::ipport(const rfc1035::record::A &rr,
const uint16_t &port)
:ipport
{
rr.ip4, port
}
{
}
ircd::net::ipport::ipport(const rfc1035::record::AAAA &rr,
const uint16_t &port)
:ipport
{
rr.ip6, port
}
{
}
ircd::net::ipport::ipport(const boost::asio::ip::address &address,
const uint16_t &port)
{
std::get<TYPE>(*this) = address.is_v6();
std::get<PORT>(*this) = port;
if(is_v6(*this))
{
std::get<IP>(*this) = address.to_v6().to_bytes();
std::reverse(std::get<IP>(*this).begin(), std::get<IP>(*this).end());
}
else host4(*this) = address.to_v4().to_ulong();
}
///////////////////////////////////////////////////////////////////////////////
//
// net/hostport.h
//
std::ostream &
ircd::net::operator<<(std::ostream &s, const hostport &t)
{
thread_local char buf[256];
const critical_assertion ca;
s << string(buf, t);
return s;
}
ircd::string_view
ircd::net::string(const mutable_buffer &buf,
const hostport &hp)
{
if(empty(service(hp)))
return fmt::sprintf
{
buf, "%s:%u", host(hp), port(hp)
};
if(port(hp) == 0)
return fmt::sprintf
{
buf, "%s (%s)", host(hp), service(hp)
};
return fmt::sprintf
{
buf, "%s:%u (%s)", host(hp), port(hp), service(hp)
};
}
///////////////////////////////////////////////////////////////////////////////
//
// net/asio.h
//
std::string
ircd::net::string(const ip::address &addr)
{
return addr.to_string();
}
std::string
ircd::net::string(const ip::tcp::endpoint &ep)
{
std::string ret(128, char{});
const auto addr{string(net::addr(ep))};
const auto data{const_cast<char *>(ret.data())};
ret.resize(snprintf(data, ret.size(), "%s:%u", addr.c_str(), port(ep)));
return ret;
}
std::string
ircd::net::host(const ip::tcp::endpoint &ep)
{
return string(addr(ep));
}
boost::asio::ip::address
ircd::net::addr(const ip::tcp::endpoint &ep)
{
return ep.address();
}
uint16_t
ircd::net::port(const ip::tcp::endpoint &ep)
{
return ep.port();
}
///////////////////////////////////////////////////////////////////////////////
//
// buffer.h - provide definition for the null buffers and asio conversion
//
const ircd::buffer::mutable_buffer
ircd::buffer::null_buffer
{
nullptr, nullptr
};
const ircd::ilist<ircd::buffer::mutable_buffer>
ircd::buffer::null_buffers
{{
null_buffer
}};
ircd::buffer::mutable_buffer::operator
boost::asio::mutable_buffer()
const
{
return boost::asio::mutable_buffer
{
data(*this), size(*this)
};
}
ircd::buffer::const_buffer::operator
boost::asio::const_buffer()
const
{
return boost::asio::const_buffer
{
data(*this), size(*this)
};
}