0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-11-16 23:10:54 +01:00
construct/ircd/client.cc
2017-12-24 21:54:59 -07:00

689 lines
17 KiB
C++

/*
* charybdis: an advanced ircd.
* client.c: Controls clients.
*
* Copyright (C) 1990 Jarkko Oikarinen and University of Oulu, Co Center
* Copyright (C) 1996-2002 Hybrid Development Team
* Copyright (C) 2002-2005 ircd-ratbox development team
* Copyright (C) 2007 William Pitcock
* Copyright (C) 2016 Charybdis Development Team
* Copyright (C) 2016 Jason Volk <jason@zemos.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*/
#include <ircd/asio.h>
namespace ircd {
// Default time limit for how long a client connection can be in "async mode"
// (or idle mode) after which it is disconnected.
const auto async_timeout
{
40s
};
// Time limit for how long a connected client can be in "request mode." This
// should never be hit unless there's an error in the handling code.
const auto request_timeout
{
20s
};
// The pool of request contexts. When a client makes a request it does so by acquiring
// a stack from this pool. The request handling and response logic can then be written
// in a synchronous manner as if each connection had its own thread.
ctx::pool request
{
"request", 4_MiB
};
// Container for all active clients (connections) for iteration purposes.
client::list client::clients;
static bool handle_ec(client &, const net::error_code &);
void async_recv_next(std::shared_ptr<client>, const milliseconds &timeout);
void async_recv_next(std::shared_ptr<client>);
void disconnect(client &, const net::dc & = net::dc::RST);
void disconnect_all();
template<class... args> std::shared_ptr<client> make_client(args&&...);
} // namespace ircd
ircd::client::init::init()
{
request.add(32);
}
void
ircd::client::init::interrupt()
{
if(request.active() || !client::clients.empty())
log::warning("Interrupting %zu requests; dropping %zu requests; disconnecting %zu clients...",
request.active(),
request.pending(),
client::clients.size());
request.interrupt();
disconnect_all();
}
ircd::client::init::~init()
noexcept
{
interrupt();
if(request.active())
log::warning("Joining %zu active of %zu remaining request contexts...",
request.active(),
request.size());
else
log::debug("Waiting for %zu request contexts to join...",
request.size());
request.join();
if(unlikely(!client::clients.empty()))
{
log::error("%zu clients are unterminated...", client::clients.size());
assert(client::clients.empty());
}
}
ircd::hostport
ircd::local(const client &client)
{
if(!client.sock)
return hostport::null;
return net::local_hostport(*client.sock);
}
ircd::hostport
ircd::remote(const client &client)
{
if(!client.sock)
return hostport::null;
return net::remote_hostport(*client.sock);
}
ircd::http::response::write_closure
ircd::write_closure(client &client)
{
// returns a function that can be called to send an iovector of data to a client
return [&client](const ilist<const_buffer> &iov)
{
//std::cout << "<<<< " << size(iov) << std::endl;
//std::cout << iov << std::endl;
//std::cout << "---- " << std::endl;
const auto written
{
write(*client.sock, iov)
};
};
}
ircd::parse::read_closure
ircd::read_closure(client &client)
{
// Returns a function the parser can call when it wants more data
return [&client](char *&start, char *const &stop)
{
try
{
char *const got(start);
read(client, start, stop);
//std::cout << ">>>> " << std::distance(got, start) << std::endl;
//std::cout << string_view{got, start} << std::endl;
//std::cout << "----" << std::endl;
}
catch(const boost::system::system_error &e)
{
using namespace boost::system::errc;
switch(e.code().value())
{
case operation_canceled:
throw http::error(http::REQUEST_TIMEOUT);
default:
throw;
}
}
};
}
char *
ircd::read(client &client,
char *&start,
char *const &stop)
{
auto &sock(*client.sock);
const std::array<mutable_buffer, 1> bufs
{{
{ start, stop }
}};
char *const base(start);
start += sock.read_some(bufs);
return base;
}
const char *
ircd::write(client &client,
const char *&start,
const char *const &stop)
{
auto &sock(*client.sock);
const std::array<const_buffer, 1> bufs
{{
{ start, stop }
}};
const char *const base(start);
start += sock.write(bufs);
return base;
}
//
// client
//
ircd::client::client()
:client{std::shared_ptr<socket>{}}
{
}
ircd::client::client(const hostport &host_port,
const seconds &timeout)
:client
{
net::connect(host_port, timeout)
}
{
}
ircd::client::client(std::shared_ptr<socket> sock)
:clit{clients, clients.emplace(end(clients), this)}
,sock{std::move(sock)}
,request_timer{ircd::timer::nostart}
{
}
ircd::client::~client()
noexcept try
{
//assert(!sock || !connected(*sock));
}
catch(const std::exception &e)
{
log::critical("~client(%p): %s", this, e.what());
return;
}
namespace ircd
{
void handle_request(client &client, parse::capstan &pc, const http::request::head &head);
bool handle_request(client &client, parse::capstan &pc);
}
/// Main client loop.
///
/// This function parses requests off the socket in a loop until there are no
/// more requests or there is a fatal error. The ctx will "block" to wait for
/// more data off the socket during the middle of a request until the request
/// timeout is reached. main() will not "block" to wait for more data after a
/// request; it will simply `return true` which puts this client back into
/// async mode and relinquishes this stack. returning false will disconnect
/// the client rather than putting it back into async mode. Exceptions do not
/// pass below main() therefor anything unhandled is an internal server error
/// and the client is disconnected as well.
///
/// Before main(), the client had been sitting in async mode waiting for
/// socket activity. Once activity with data was detected indicating a request,
/// the client was dispatched to the request pool where it is paired to an
/// ircd::ctx with a stack. main() is then invoked on that ircd::ctx stack.
/// Nothing from the socket has been read into userspace before main().
///
bool
ircd::client::main()
noexcept try
{
const auto header_max{8_KiB};
//const auto content_max{64_KiB};
const auto content_max{8_MiB};
const unique_buffer<mutable_buffer> buffer
{
header_max + content_max
};
parse::buffer pb{buffer};
parse::capstan pc{pb, read_closure(*this)}; do
{
if(!handle_request(*this, pc))
return false;
pb.remove();
}
while(pc.unparsed());
return true;
}
catch(const boost::system::system_error &e)
{
using namespace boost::system::errc;
using boost::system::get_system_category;
using boost::asio::error::get_ssl_category;
using boost::asio::error::get_misc_category;
const error_code &ec{e.code()};
const int &value{ec.value()};
if(ec.category() == get_system_category()) switch(value)
{
case success:
assert(0);
return true;
case broken_pipe:
case connection_reset:
case not_connected:
disconnect(*this, net::dc::RST);
return false;
case operation_canceled:
disconnect(*this, net::dc::SSL_NOTIFY);
return false;
case bad_file_descriptor:
return false;
default:
break;
}
else if(ec.category() == get_ssl_category()) switch(uint8_t(value))
{
case SSL_R_SHORT_READ:
case SSL_R_PROTOCOL_IS_SHUTDOWN:
disconnect(*this, net::dc::RST);
return false;
default:
break;
}
else if(ec.category() == get_misc_category()) switch(value)
{
case boost::asio::error::eof:
disconnect(*this, net::dc::RST);
return false;
default:
break;
}
log::error("client(%p): (unexpected) %s: (%d) %s",
(const void *)this,
ec.category().name(),
value,
ec.message());
disconnect(*this, net::dc::RST);
return false;
}
catch(const std::exception &e)
{
log::error("client[%s] [500 Internal Error]: %s",
string(remote(*this)),
e.what());
#ifdef RB_DEBUG
throw;
#else
return false;
#endif
}
/// Handle a single request within the client main() loop.
///
/// This function returns false if the main() loop should exit
/// and thus disconnect the client. It should return true in most
/// cases even for lightly erroneous requests that won't affect
/// the next requests on the tape.
///
/// This function is timed. The timeout will prevent a client from
/// sending a partial request and leave us waiting for the rest.
/// As of right now this timeout extends to our handling of the
/// request too.
bool
ircd::handle_request(client &client,
parse::capstan &pc)
try
{
client.request_timer = ircd::timer{};
const socket::scope_timeout timeout
{
*client.sock, request_timeout, [client(shared_from(client))]
(const net::error_code &ec)
{
if(!ec)
disconnect(*client, net::dc::SSL_NOTIFY_YIELD);
}
};
bool ret{true};
http::request
{
pc, nullptr, [&client, &pc, &ret]
(const auto &head)
{
handle_request(client, pc, head);
ret = !iequals(head.connection, "close"s);
}
};
return ret;
}
catch(const http::error &e)
{
log::debug("client[%s] HTTP %s in %ld$us %s",
string(remote(client)),
e.what(),
client.request_timer.at<microseconds>().count(),
e.content);
http::response
{
e.code, e.content, write_closure(client)
};
switch(e.code)
{
case http::BAD_REQUEST:
case http::REQUEST_TIMEOUT:
return false;
case http::INTERNAL_SERVER_ERROR:
throw;
default:
return true;
}
}
catch(const std::exception &e)
{
log::error("client[%s]: in %ld$us: %s",
string(remote(client)),
client.request_timer.at<microseconds>().count(),
e.what());
http::response
{
http::INTERNAL_SERVER_ERROR, e.what(), write_closure(client)
};
throw;
}
void
ircd::handle_request(client &client,
parse::capstan &pc,
const http::request::head &head)
{
log::debug("client[%s] HTTP %s `%s' (content-length: %zu)",
string(remote(client)),
head.method,
head.path,
head.content_length);
auto &resource
{
ircd::resource::find(head.path)
};
resource(client, pc, head);
}
std::shared_ptr<ircd::client>
ircd::add_client(std::shared_ptr<socket> s)
{
//ip::tcp::socket &sd(*s);
//sd.non_blocking(false);
//static const asio::socket_base::keep_alive keep_alive(true);
//sd.set_option(keep_alive);
//static const asio::socket_base::linger linger{true, 10};
//sd.set_option(linger);
const auto client
{
make_client(std::move(s))
};
log::debug("client[%s] CONNECTED local[%s]",
string(remote(*client)),
string(local(*client)));
async_recv_next(client, async_timeout);
return client;
}
template<class... args>
std::shared_ptr<ircd::client>
ircd::make_client(args&&... a)
{
return std::make_shared<client>(std::forward<args>(a)...);
}
void
ircd::disconnect_all()
{
auto it(begin(client::clients));
while(it != end(client::clients))
{
auto *const client(*it);
++it; try
{
disconnect(*client, net::dc::SSL_NOTIFY);
}
catch(const std::exception &e)
{
log::warning("Error disconnecting client @%p: %s", client, e.what());
}
}
}
void
ircd::disconnect(client &client,
const net::dc &type)
{
if(likely(client.sock))
disconnect(*client.sock, type);
}
void
ircd::async_recv_next(std::shared_ptr<client> client)
{
async_recv_next(std::move(client), milliseconds(-1));
}
///
/// This function is the basis for the client's request loop. We still use
/// an asynchronous pattern until there is activity on the socket (a request)
/// in which case the switch to synchronous mode is made by jumping into an
/// ircd::context drawn from the request pool. When the request is finished,
/// the client exits back into asynchronous mode until the next request is
/// received and rinse and repeat.
//
/// This sequence exists to avoid any possible c10k-style limitation imposed by
/// dedicating a context and its stack space to the lifetime of a connection.
/// This is similar to the thread-per-request pattern before async was in vogue.
//
/// Developers: Pay close attention to the comments to know exactly where you
/// are and what you can do at any given point in this sequence.
///
void
ircd::async_recv_next(std::shared_ptr<client> client,
const milliseconds &timeout)
{
assert(bool(client));
assert(bool(client->sock));
// This call returns immediately so we no longer block the current context and
// its stack while waiting for activity on idle connections between requests.
auto &sock(*client->sock);
sock(timeout, [client(std::move(client)), timeout](const net::error_code &ec)
noexcept
{
// Right here this handler is executing on the main stack (not in any
// ircd::context).
if(!handle_ec(*client, ec))
return;
// This call returns immediately because we can never block the main stack outside
// of the ircd::context system. The context the closure ends up getting is the next
// available from the request pool, which may not be available immediately so this
// handler might be queued for some time after this call returns.
request([ec, client(std::move(client)), timeout]
{
// Right here this handler is executing on an ircd::context with its own
// stack dedicated to the lifetime of this request. If client::main()
// returns true, we bring the client back into async mode to wait for
// the next request.
if(client->main())
async_recv_next(std::move(client), timeout);
else
disconnect(*client, net::dc::SSL_NOTIFY_YIELD);
});
});
}
namespace ircd
{
static bool handle_ec_success(client &);
static bool handle_ec_timeout(client &);
static bool handle_ec_eof(client &);
static bool handle_ec_short_read(client &);
static bool handle_ec_default(client &, const net::error_code &);
}
bool
ircd::handle_ec(client &client,
const net::error_code &ec)
{
using namespace boost::system::errc;
using boost::system::get_system_category;
using boost::asio::error::get_ssl_category;
using boost::asio::error::get_misc_category;
if(ec.category() == get_system_category()) switch(ec.value())
{
case success: return handle_ec_success(client);
case operation_canceled: return handle_ec_timeout(client);
default: return handle_ec_default(client, ec);
}
else if(ec.category() == get_misc_category()) switch(ec.value())
{
case asio::error::eof: return handle_ec_eof(client);
default: return handle_ec_default(client, ec);
}
else if(ec.category() == get_ssl_category()) switch(ec.value())
{
case SSL_R_SHORT_READ: return handle_ec_short_read(client);
default: return handle_ec_default(client, ec);
}
else return handle_ec_default(client, ec);
}
bool
ircd::handle_ec_default(client &client,
const net::error_code &ec)
{
log::debug("client(%p): %s: %s",
&client,
ec.category().name(),
ec.message());
disconnect(client, net::dc::SSL_NOTIFY);
return false;
}
bool
ircd::handle_ec_short_read(client &client)
try
{
log::warning("client[%s]: short_read",
string(remote(client)));
disconnect(client, net::dc::RST);
return false;
}
catch(const std::exception &e)
{
log::error("client(%p): short_read: %s",
&client,
e.what());
return false;
}
bool
ircd::handle_ec_eof(client &client)
try
{
log::debug("client[%s]: EOF",
string(remote(client)));
disconnect(client, net::dc::RST);
return false;
}
catch(const std::exception &e)
{
log::error("client(%p): EOF: %s",
&client,
e.what());
return false;
}
bool
ircd::handle_ec_timeout(client &client)
try
{
assert(bool(client.sock));
log::warning("client[%s]: disconnecting after inactivity timeout",
string(remote(client)));
disconnect(client, net::dc::SSL_NOTIFY);
return false;
}
catch(const std::exception &e)
{
log::error("client(%p): timeout: %s",
&client,
e.what());
return false;
}
bool
ircd::handle_ec_success(client &client)
{
return true;
}